mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
853 lines
30 KiB
853 lines
30 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2017-2019, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
/* |
|
Test for Tensorflow models loading |
|
*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "npy_blob.hpp" |
|
|
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS |
|
|
|
namespace opencv_test |
|
{ |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
template<typename TString> |
|
static std::string _tf(TString filename) |
|
{ |
|
return (getOpenCVExtraDir() + "/dnn/") + filename; |
|
} |
|
|
|
TEST(Test_TensorFlow, read_inception) |
|
{ |
|
Net net; |
|
{ |
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); |
|
net = readNetFromTensorflow(model); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
Mat input; |
|
resize(sample, input, Size(224, 224)); |
|
input -= Scalar::all(117); // mean sub |
|
|
|
Mat inputBlob = blobFromImage(input); |
|
|
|
net.setInput(inputBlob, "input"); |
|
Mat out = net.forward("softmax2"); |
|
|
|
std::cout << out.dims << std::endl; |
|
} |
|
|
|
TEST(Test_TensorFlow, inception_accuracy) |
|
{ |
|
Net net; |
|
{ |
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); |
|
net = readNetFromTensorflow(model); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
Mat inputBlob = blobFromImage(sample, 1.0, Size(224, 224), Scalar(), /*swapRB*/true); |
|
|
|
net.setInput(inputBlob, "input"); |
|
Mat out = net.forward("softmax2"); |
|
|
|
Mat ref = blobFromNPY(_tf("tf_inception_prob.npy")); |
|
|
|
normAssert(ref, out); |
|
} |
|
|
|
static std::string path(const std::string& file) |
|
{ |
|
return findDataFile("dnn/tensorflow/" + file); |
|
} |
|
|
|
class Test_TensorFlow_layers : public DNNTestLayer |
|
{ |
|
public: |
|
void runTensorFlowNet(const std::string& prefix, bool hasText = false, |
|
double l1 = 0.0, double lInf = 0.0, bool memoryLoad = false) |
|
{ |
|
std::string netPath = path(prefix + "_net.pb"); |
|
std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : ""); |
|
std::string inpPath = path(prefix + "_in.npy"); |
|
std::string outPath = path(prefix + "_out.npy"); |
|
|
|
cv::Mat input = blobFromNPY(inpPath); |
|
cv::Mat ref = blobFromNPY(outPath); |
|
checkBackend(&input, &ref); |
|
|
|
Net net; |
|
if (memoryLoad) |
|
{ |
|
// Load files into a memory buffers |
|
std::vector<char> dataModel; |
|
readFileContent(netPath, dataModel); |
|
|
|
std::vector<char> dataConfig; |
|
if (hasText) |
|
{ |
|
readFileContent(netConfig, dataConfig); |
|
} |
|
|
|
net = readNetFromTensorflow(dataModel.data(), dataModel.size(), |
|
dataConfig.data(), dataConfig.size()); |
|
} |
|
else |
|
net = readNetFromTensorflow(netPath, netConfig); |
|
|
|
ASSERT_FALSE(net.empty()); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
net.setInput(input); |
|
cv::Mat output = net.forward(); |
|
normAssert(ref, output, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf); |
|
} |
|
}; |
|
|
|
TEST_P(Test_TensorFlow_layers, conv) |
|
{ |
|
runTensorFlowNet("single_conv"); |
|
runTensorFlowNet("atrous_conv2d_valid"); |
|
runTensorFlowNet("atrous_conv2d_same"); |
|
runTensorFlowNet("depthwise_conv2d"); |
|
runTensorFlowNet("keras_atrous_conv2d_same"); |
|
runTensorFlowNet("conv_pool_nchw"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, Convolution3D) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000) |
|
throw SkipTestException("Test is enabled starts from 2019R1"); |
|
#endif |
|
if (target != DNN_TARGET_CPU) |
|
throw SkipTestException("Only CPU is supported"); |
|
runTensorFlowNet("conv3d"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, padding) |
|
{ |
|
runTensorFlowNet("padding_valid"); |
|
runTensorFlowNet("spatial_padding"); |
|
runTensorFlowNet("keras_pad_concat"); |
|
runTensorFlowNet("mirror_pad"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, padding_same) |
|
{ |
|
// Reference output values are in range [0.0006, 2.798] |
|
runTensorFlowNet("padding_same"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, eltwise) |
|
{ |
|
runTensorFlowNet("eltwise_add_mul"); |
|
runTensorFlowNet("eltwise_sub"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, pad_and_concat) |
|
{ |
|
runTensorFlowNet("pad_and_concat"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, concat_axis_1) |
|
{ |
|
runTensorFlowNet("concat_axis_1"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, batch_norm) |
|
{ |
|
runTensorFlowNet("batch_norm"); |
|
runTensorFlowNet("batch_norm", false, 0.0, 0.0, true); |
|
runTensorFlowNet("fused_batch_norm"); |
|
runTensorFlowNet("fused_batch_norm", false, 0.0, 0.0, true); |
|
runTensorFlowNet("batch_norm_text", true); |
|
runTensorFlowNet("batch_norm_text", true, 0.0, 0.0, true); |
|
runTensorFlowNet("unfused_batch_norm"); |
|
runTensorFlowNet("fused_batch_norm_no_gamma"); |
|
runTensorFlowNet("unfused_batch_norm_no_gamma"); |
|
runTensorFlowNet("mvn_batch_norm"); |
|
runTensorFlowNet("mvn_batch_norm_1x1"); |
|
runTensorFlowNet("switch_identity"); |
|
runTensorFlowNet("keras_batch_norm_training"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, batch_norm3D) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
{ |
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); |
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
throw SkipTestException(""); |
|
} |
|
runTensorFlowNet("batch_norm3d"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, slim_batch_norm) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); |
|
// Output values range: [-40.0597, 207.827] |
|
double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.041 : default_l1; |
|
double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.33 : default_lInf; |
|
runTensorFlowNet("slim_batch_norm", false, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, pooling) |
|
{ |
|
runTensorFlowNet("max_pool_even"); |
|
runTensorFlowNet("max_pool_odd_valid"); |
|
runTensorFlowNet("max_pool_odd_same"); |
|
runTensorFlowNet("reduce_mean"); // an average pooling over all spatial dimensions. |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, max_pool_grad) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); |
|
runTensorFlowNet("max_pool_grad"); |
|
} |
|
|
|
// TODO: fix tests and replace to pooling |
|
TEST_P(Test_TensorFlow_layers, ave_pool_same) |
|
{ |
|
// Reference output values are in range [-0.519531, 0.112976] |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD |
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
|
) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
#endif |
|
runTensorFlowNet("ave_pool_same"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, MaxPooling3D) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000) |
|
throw SkipTestException("Test is enabled starts from 2019R1"); |
|
#endif |
|
if (target != DNN_TARGET_CPU) |
|
throw SkipTestException("Only CPU is supported"); |
|
runTensorFlowNet("max_pool3d"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, AvePooling3D) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000) |
|
throw SkipTestException("Test is enabled starts from 2019R1"); |
|
#endif |
|
if (target != DNN_TARGET_CPU) |
|
throw SkipTestException("Only CPU is supported"); |
|
runTensorFlowNet("ave_pool3d"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, deconvolution) |
|
{ |
|
runTensorFlowNet("deconvolution"); |
|
runTensorFlowNet("deconvolution_same"); |
|
runTensorFlowNet("deconvolution_stride_2_same"); |
|
runTensorFlowNet("deconvolution_adj_pad_valid"); |
|
runTensorFlowNet("deconvolution_adj_pad_same"); |
|
runTensorFlowNet("keras_deconv_valid"); |
|
runTensorFlowNet("keras_deconv_same"); |
|
runTensorFlowNet("keras_deconv_same_v2"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, matmul) |
|
{ |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
runTensorFlowNet("matmul"); |
|
runTensorFlowNet("nhwc_transpose_reshape_matmul"); |
|
// Reference output values are in range [-5.688, 4.484] |
|
double l1 = target == DNN_TARGET_MYRIAD ? 6.1e-3 : default_l1; |
|
runTensorFlowNet("nhwc_reshape_matmul", false, l1); |
|
|
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, reshape) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); |
|
runTensorFlowNet("shift_reshape_no_reorder"); |
|
runTensorFlowNet("reshape_no_reorder"); |
|
runTensorFlowNet("reshape_reduce"); |
|
runTensorFlowNet("reshape_as_shape"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, flatten) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD |
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 |
|
) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); |
|
#endif |
|
|
|
runTensorFlowNet("flatten", true); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, unfused_flatten) |
|
{ |
|
runTensorFlowNet("unfused_flatten"); |
|
runTensorFlowNet("unfused_flatten_unknown_batch"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, leaky_relu) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_2018R5); |
|
#endif |
|
runTensorFlowNet("leaky_relu_order1"); |
|
runTensorFlowNet("leaky_relu_order2"); |
|
runTensorFlowNet("leaky_relu_order3"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, l2_normalize) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD |
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
|
) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
#endif |
|
|
|
runTensorFlowNet("l2_normalize"); |
|
} |
|
|
|
// TODO: fix it and add to l2_normalize |
|
TEST_P(Test_TensorFlow_layers, l2_normalize_3d) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE |
|
&& (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) |
|
) |
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
#endif |
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
#endif |
|
|
|
runTensorFlowNet("l2_normalize_3d"); |
|
} |
|
|
|
class Test_TensorFlow_nets : public DNNTestLayer {}; |
|
|
|
TEST_P(Test_TensorFlow_nets, MobileNet_SSD) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
{ |
|
#if INF_ENGINE_VER_MAJOR_GE(2019010000) |
|
if (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
#else |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
#endif |
|
} |
|
#endif |
|
|
|
checkBackend(); |
|
std::string imgPath = findDataFile("dnn/street.png"); |
|
std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt"); |
|
std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false); |
|
|
|
Mat inp; |
|
resize(imread(imgPath), inp, Size(300, 300)); |
|
inp = blobFromImage(inp, 1.0f / 127.5, Size(), Scalar(127.5, 127.5, 127.5), true); |
|
|
|
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco.detection_out.npy")); |
|
|
|
Net net = readNetFromTensorflow(netPath, netConfig); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
net.setInput(inp); |
|
Mat out = net.forward(); |
|
|
|
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0043 : default_l1; |
|
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.037 : default_lInf; |
|
normAssertDetections(ref, out, "", 0.2, scoreDiff, iouDiff); |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE >= 2019010000 |
|
expectNoFallbacksFromIE(net); |
|
#endif |
|
} |
|
|
|
TEST_P(Test_TensorFlow_nets, Inception_v2_SSD) |
|
{ |
|
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD |
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
|
) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
#endif |
|
|
|
checkBackend(); |
|
Mat img = imread(findDataFile("dnn/street.png")); |
|
std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt"); |
|
std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false); |
|
|
|
Net net = readNetFromTensorflow(model, proto); |
|
Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
net.setInput(blob); |
|
// Output has shape 1x1xNx7 where N - number of detections. |
|
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] |
|
Mat out = net.forward(); |
|
Mat ref = (Mat_<float>(5, 7) << 0, 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729, |
|
0, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131, |
|
0, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015, |
|
0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527, |
|
0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384); |
|
|
|
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0097 : default_l1; |
|
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09 : default_lInf; |
|
normAssertDetections(ref, out, "", 0.5, scoreDiff, iouDiff); |
|
expectNoFallbacksFromIE(net); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD) |
|
{ |
|
checkBackend(); |
|
std::string proto = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt"); |
|
std::string model = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", false); |
|
|
|
Net net = readNetFromTensorflow(model, proto); |
|
Mat img = imread(findDataFile("dnn/dog416.png")); |
|
Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
net.setInput(blob); |
|
Mat out = net.forward(); |
|
|
|
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco_2017_11_17.detection_out.npy")); |
|
float scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7e-3 : 1.5e-5; |
|
float iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.012 : 1e-3; |
|
float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.35 : 0.3; |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD |
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
|
) |
|
scoreDiff = 0.061; |
|
iouDiff = 0.12; |
|
detectionConfThresh = 0.36; |
|
#endif |
|
normAssertDetections(ref, out, "", detectionConfThresh, scoreDiff, iouDiff); |
|
expectNoFallbacksFromIE(net); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_nets, Faster_RCNN) |
|
{ |
|
// FIXIT split test |
|
applyTestTag( |
|
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), |
|
CV_TEST_TAG_LONG, |
|
CV_TEST_TAG_DEBUG_VERYLONG |
|
); |
|
static std::string names[] = {"faster_rcnn_inception_v2_coco_2018_01_28", |
|
"faster_rcnn_resnet50_coco_2018_01_28"}; |
|
|
|
checkBackend(); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
|
|
double scoresDiff = backend == DNN_BACKEND_INFERENCE_ENGINE ? 2.9e-5 : 1e-5; |
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
std::string proto = findDataFile("dnn/" + names[i] + ".pbtxt"); |
|
std::string model = findDataFile("dnn/" + names[i] + ".pb", false); |
|
|
|
Net net = readNetFromTensorflow(model, proto); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
Mat img = imread(findDataFile("dnn/dog416.png")); |
|
Mat blob = blobFromImage(img, 1.0f, Size(800, 600), Scalar(), true, false); |
|
|
|
net.setInput(blob); |
|
Mat out = net.forward(); |
|
|
|
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/" + names[i] + ".detection_out.npy")); |
|
normAssertDetections(ref, out, names[i].c_str(), 0.3, scoresDiff); |
|
} |
|
} |
|
|
|
TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD_PPN) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) |
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
#endif |
|
|
|
checkBackend(); |
|
std::string proto = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pbtxt"); |
|
std::string model = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pb", false); |
|
|
|
Net net = readNetFromTensorflow(model, proto); |
|
Mat img = imread(findDataFile("dnn/dog416.png")); |
|
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_ppn_coco.detection_out.npy")); |
|
Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
net.setInput(blob); |
|
Mat out = net.forward(); |
|
|
|
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.048 : 1.1e-5; |
|
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.058 : default_lInf; |
|
normAssertDetections(ref, out, "", 0.45, scoreDiff, iouDiff); |
|
expectNoFallbacksFromIE(net); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8) |
|
{ |
|
checkBackend(); |
|
std::string proto = findDataFile("dnn/opencv_face_detector.pbtxt"); |
|
std::string model = findDataFile("dnn/opencv_face_detector_uint8.pb", false); |
|
|
|
Net net = readNetFromTensorflow(model, proto); |
|
Mat img = imread(findDataFile("gpu/lbpcascade/er.png")); |
|
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
net.setInput(blob); |
|
// Output has shape 1x1xNx7 where N - number of detections. |
|
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] |
|
Mat out = net.forward(); |
|
|
|
// References are from test for Caffe model. |
|
Mat ref = (Mat_<float>(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631, |
|
0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168, |
|
0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290, |
|
0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477, |
|
0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494, |
|
0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801); |
|
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 4e-3 : 3.4e-3; |
|
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.024 : 1e-2; |
|
normAssertDetections(ref, out, "", 0.9, scoreDiff, iouDiff); |
|
expectNoFallbacksFromIE(net); |
|
} |
|
|
|
// inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png') |
|
// inp = inp[:,:,[2, 1, 0]].astype(np.float32).reshape(1, 512, 512, 3) |
|
// outs = sess.run([sess.graph.get_tensor_by_name('feature_fusion/Conv_7/Sigmoid:0'), |
|
// sess.graph.get_tensor_by_name('feature_fusion/concat_3:0')], |
|
// feed_dict={'input_images:0': inp}) |
|
// scores = np.ascontiguousarray(outs[0].transpose(0, 3, 1, 2)) |
|
// geometry = np.ascontiguousarray(outs[1].transpose(0, 3, 1, 2)) |
|
// np.save('east_text_detection.scores.npy', scores) |
|
// np.save('east_text_detection.geometry.npy', geometry) |
|
TEST_P(Test_TensorFlow_nets, EAST_text_detection) |
|
{ |
|
applyTestTag( |
|
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB), |
|
CV_TEST_TAG_DEBUG_LONG |
|
); |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
#endif |
|
|
|
checkBackend(); |
|
|
|
std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false); |
|
std::string imgPath = findDataFile("cv/ximgproc/sources/08.png"); |
|
std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy"); |
|
std::string refGeometryPath = findDataFile("dnn/east_text_detection.geometry.npy"); |
|
|
|
Net net = readNet(netPath); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
Mat img = imread(imgPath); |
|
Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false); |
|
net.setInput(inp); |
|
|
|
std::vector<Mat> outs; |
|
std::vector<String> outNames(2); |
|
outNames[0] = "feature_fusion/Conv_7/Sigmoid"; |
|
outNames[1] = "feature_fusion/concat_3"; |
|
net.forward(outs, outNames); |
|
|
|
Mat scores = outs[0]; |
|
Mat geometry = outs[1]; |
|
|
|
// Scores are in range [0, 1]. Geometry values are in range [-0.23, 290] |
|
double l1_scores = default_l1, lInf_scores = default_lInf; |
|
double l1_geometry = default_l1, lInf_geometry = default_lInf; |
|
if (target == DNN_TARGET_OPENCL_FP16) |
|
{ |
|
lInf_scores = backend == DNN_BACKEND_INFERENCE_ENGINE ? 0.16 : 0.11; |
|
l1_geometry = 0.28; lInf_geometry = 5.94; |
|
} |
|
else if (target == DNN_TARGET_MYRIAD) |
|
{ |
|
lInf_scores = 0.41; |
|
l1_geometry = 0.28; lInf_geometry = 5.94; |
|
} |
|
else |
|
{ |
|
l1_geometry = 1e-4, lInf_geometry = 3e-3; |
|
} |
|
normAssert(scores, blobFromNPY(refScoresPath), "scores", l1_scores, lInf_scores); |
|
normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", l1_geometry, lInf_geometry); |
|
expectNoFallbacksFromIE(net); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, dnnBackendsAndTargets()); |
|
|
|
TEST_P(Test_TensorFlow_layers, fp16_weights) |
|
{ |
|
float l1 = 0.00078; |
|
float lInf = 0.012; |
|
runTensorFlowNet("fp16_single_conv", false, l1, lInf); |
|
runTensorFlowNet("fp16_max_pool_odd_same", false, l1, lInf); |
|
runTensorFlowNet("fp16_eltwise_add_mul", false, l1, lInf); |
|
runTensorFlowNet("fp16_pad_and_concat", false, l1, lInf); |
|
runTensorFlowNet("fp16_padding_valid", false, l1, lInf); |
|
// Reference output values are in range [0.0889, 1.651] |
|
runTensorFlowNet("fp16_max_pool_even", false, (target == DNN_TARGET_MYRIAD) ? 0.003 : l1, lInf); |
|
if (target == DNN_TARGET_MYRIAD) { |
|
l1 = 0.0041; |
|
lInf = 0.024; |
|
} |
|
// Reference output values are in range [0, 10.75] |
|
runTensorFlowNet("fp16_deconvolution", false, l1, lInf); |
|
// Reference output values are in range [0.418, 2.297] |
|
runTensorFlowNet("fp16_max_pool_odd_valid", false, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, fp16_padding_same) |
|
{ |
|
// Reference output values are in range [-3.504, -0.002] |
|
runTensorFlowNet("fp16_padding_same", false, 7e-4, 4e-3); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, defun) |
|
{ |
|
runTensorFlowNet("defun_dropout"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, quantized) |
|
{ |
|
runTensorFlowNet("uint8_single_conv"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, lstm) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
runTensorFlowNet("lstm", true); |
|
runTensorFlowNet("lstm", true, 0.0, 0.0, true); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, split) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); |
|
runTensorFlowNet("split"); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); |
|
runTensorFlowNet("split_equals"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, resize_nearest_neighbor) |
|
{ |
|
runTensorFlowNet("resize_nearest_neighbor"); |
|
runTensorFlowNet("keras_upsampling2d"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, slice) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && |
|
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) |
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
runTensorFlowNet("slice_4d"); |
|
runTensorFlowNet("strided_slice"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, softmax) |
|
{ |
|
runTensorFlowNet("keras_softmax"); |
|
runTensorFlowNet("slim_softmax"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, slim_softmax_v2) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && |
|
getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 |
|
) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); |
|
#endif |
|
runTensorFlowNet("slim_softmax_v2"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, relu6) |
|
{ |
|
runTensorFlowNet("keras_relu6"); |
|
runTensorFlowNet("keras_relu6", /*hasText*/ true); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, subpixel) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); |
|
runTensorFlowNet("subpixel"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, keras_mobilenet_head) |
|
{ |
|
runTensorFlowNet("keras_mobilenet_head"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, resize_bilinear) |
|
{ |
|
runTensorFlowNet("resize_bilinear"); |
|
runTensorFlowNet("resize_bilinear_factor"); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, squeeze) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD |
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 |
|
) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); |
|
#endif |
|
int inpShapes[][4] = {{1, 3, 4, 2}, {1, 3, 1, 2}, {1, 3, 4, 1}, {1, 3, 4, 1}}; // TensorFlow's shape (NHWC) |
|
int outShapes[][3] = {{3, 4, 2}, {1, 3, 2}, {1, 3, 4}, {1, 3, 4}}; |
|
int squeeze_dims[] = {0, 2, 3, -1}; |
|
for (int i = 0; i < 4; ++i) |
|
{ |
|
SCOPED_TRACE(format("i=%d", i)); |
|
std::string pbtxt = |
|
"node { name: \"input\" op: \"Placeholder\"" |
|
"attr { key: \"data_format\" value { s: \"NHWC\" } } }" |
|
"node { name: \"squeeze\" op: \"Squeeze\" input: \"input\"" |
|
"attr { key: \"squeeze_dims\" value { list { i:" + format("%d", squeeze_dims[i]) + "}}}}"; |
|
Net net = readNetFromTensorflow(0, 0, pbtxt.c_str(), pbtxt.size()); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
Mat tfInp(4, &inpShapes[i][0], CV_32F); |
|
randu(tfInp, -1, 1); |
|
|
|
// NHWC to NCHW |
|
CV_Assert(inpShapes[i][0] == 1); |
|
std::swap(inpShapes[i][2], inpShapes[i][3]); |
|
std::swap(inpShapes[i][1], inpShapes[i][2]); |
|
Mat cvInp = tfInp.reshape(1, tfInp.total() / inpShapes[i][1]).t(); |
|
cvInp = cvInp.reshape(1, 4, &inpShapes[i][0]); |
|
|
|
net.setInput(cvInp); |
|
Mat out = net.forward(); |
|
normAssert(tfInp.reshape(1, 3, &outShapes[i][0]), out, "", default_l1, default_lInf); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_layers, dnnBackendsAndTargets()); |
|
|
|
TEST(Test_TensorFlow, two_inputs) |
|
{ |
|
Net net = readNet(path("two_inputs_net.pbtxt")); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
Mat firstInput(2, 3, CV_32FC1), secondInput(2, 3, CV_32FC1); |
|
randu(firstInput, -1, 1); |
|
randu(secondInput, -1, 1); |
|
|
|
net.setInput(firstInput, "first_input"); |
|
net.setInput(secondInput, "second_input"); |
|
Mat out = net.forward(); |
|
|
|
normAssert(out, firstInput + secondInput); |
|
} |
|
|
|
TEST(Test_TensorFlow, Mask_RCNN) |
|
{ |
|
applyTestTag(CV_TEST_TAG_MEMORY_1GB, CV_TEST_TAG_DEBUG_VERYLONG); |
|
Mat img = imread(findDataFile("dnn/street.png")); |
|
std::string proto = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt"); |
|
std::string model = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pb", false); |
|
|
|
Net net = readNetFromTensorflow(model, proto); |
|
Mat refDetections = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_out.npy")); |
|
Mat refMasks = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_masks.npy")); |
|
Mat blob = blobFromImage(img, 1.0f, Size(800, 800), Scalar(), true, false); |
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
net.setInput(blob); |
|
|
|
// Mask-RCNN predicts bounding boxes and segmentation masks. |
|
std::vector<String> outNames(2); |
|
outNames[0] = "detection_out_final"; |
|
outNames[1] = "detection_masks"; |
|
|
|
std::vector<Mat> outs; |
|
net.forward(outs, outNames); |
|
|
|
Mat outDetections = outs[0]; |
|
Mat outMasks = outs[1]; |
|
normAssertDetections(refDetections, outDetections, "", /*threshold for zero confidence*/1e-5); |
|
|
|
// Output size of masks is NxCxHxW where |
|
// N - number of detected boxes |
|
// C - number of classes (excluding background) |
|
// HxW - segmentation shape |
|
const int numDetections = outDetections.size[2]; |
|
|
|
int masksSize[] = {1, numDetections, outMasks.size[2], outMasks.size[3]}; |
|
Mat masks(4, &masksSize[0], CV_32F); |
|
|
|
std::vector<cv::Range> srcRanges(4, cv::Range::all()); |
|
std::vector<cv::Range> dstRanges(4, cv::Range::all()); |
|
|
|
outDetections = outDetections.reshape(1, outDetections.total() / 7); |
|
for (int i = 0; i < numDetections; ++i) |
|
{ |
|
// Get a class id for this bounding box and copy mask only for that class. |
|
int classId = static_cast<int>(outDetections.at<float>(i, 1)); |
|
srcRanges[0] = dstRanges[1] = cv::Range(i, i + 1); |
|
srcRanges[1] = cv::Range(classId, classId + 1); |
|
outMasks(srcRanges).copyTo(masks(dstRanges)); |
|
} |
|
cv::Range topRefMasks[] = {Range::all(), Range(0, numDetections), Range::all(), Range::all()}; |
|
normAssert(masks, refMasks(&topRefMasks[0])); |
|
} |
|
|
|
}
|
|
|