mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
653 lines
25 KiB
653 lines
25 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "npy_blob.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
namespace opencv_test { namespace { |
|
|
|
template<typename TString> |
|
static std::string _tf(TString filename) |
|
{ |
|
return findDataFile(std::string("dnn/") + filename); |
|
} |
|
|
|
class Test_Caffe_nets : public DNNTestLayer |
|
{ |
|
public: |
|
void testFaster(const std::string& proto, const std::string& model, const Mat& ref, |
|
double scoreDiff = 0.0, double iouDiff = 0.0) |
|
{ |
|
checkBackend(); |
|
Net net = readNetFromCaffe(findDataFile("dnn/" + proto), |
|
findDataFile("dnn/" + model, false)); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
Mat img = imread(findDataFile("dnn/dog416.png")); |
|
resize(img, img, Size(800, 600)); |
|
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(102.9801, 115.9465, 122.7717), false, false); |
|
Mat imInfo = (Mat_<float>(1, 3) << img.rows, img.cols, 1.6f); |
|
|
|
net.setInput(blob, "data"); |
|
net.setInput(imInfo, "im_info"); |
|
// Output has shape 1x1xNx7 where N - number of detections. |
|
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] |
|
Mat out = net.forward(); |
|
scoreDiff = scoreDiff ? scoreDiff : default_l1; |
|
iouDiff = iouDiff ? iouDiff : default_lInf; |
|
normAssertDetections(ref, out, ("model name: " + model).c_str(), 0.8, scoreDiff, iouDiff); |
|
} |
|
}; |
|
|
|
TEST(Test_Caffe, memory_read) |
|
{ |
|
const string proto = findDataFile("dnn/bvlc_googlenet.prototxt"); |
|
const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false); |
|
|
|
std::vector<char> dataProto; |
|
readFileContent(proto, dataProto); |
|
|
|
std::vector<char> dataModel; |
|
readFileContent(model, dataModel); |
|
|
|
Net net = readNetFromCaffe(dataProto.data(), dataProto.size()); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
Net net2 = readNetFromCaffe(dataProto.data(), dataProto.size(), |
|
dataModel.data(), dataModel.size()); |
|
ASSERT_FALSE(net2.empty()); |
|
} |
|
|
|
TEST(Test_Caffe, read_gtsrb) |
|
{ |
|
Net net = readNetFromCaffe(_tf("gtsrb.prototxt")); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
TEST(Test_Caffe, read_googlenet) |
|
{ |
|
Net net = readNetFromCaffe(_tf("bvlc_googlenet.prototxt")); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
TEST_P(Test_Caffe_nets, Axpy) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); |
|
|
|
String proto = _tf("axpy.prototxt"); |
|
Net net = readNetFromCaffe(proto); |
|
|
|
checkBackend(); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
int size[] = {1, 2, 3, 4}; |
|
int scale_size[] = {1, 2, 1, 1}; |
|
Mat scale(4, &scale_size[0], CV_32F); |
|
Mat shift(4, &size[0], CV_32F); |
|
Mat inp(4, &size[0], CV_32F); |
|
randu(scale, -1.0f, 1.0f); |
|
randu(shift, -1.0f, 1.0f); |
|
randu(inp, -1.0f, 1.0f); |
|
|
|
net.setInput(scale, "scale"); |
|
net.setInput(shift, "shift"); |
|
net.setInput(inp, "data"); |
|
|
|
Mat out = net.forward(); |
|
|
|
Mat ref(4, &size[0], inp.type()); |
|
for (int i = 0; i < inp.size[1]; i++) { |
|
for (int h = 0; h < inp.size[2]; h++) { |
|
for (int w = 0; w < inp.size[3]; w++) { |
|
int idx[] = {0, i, h, w}; |
|
int scale_idx[] = {0, i, 0, 0}; |
|
ref.at<float>(idx) = inp.at<float>(idx) * scale.at<float>(scale_idx) + |
|
shift.at<float>(idx); |
|
} |
|
} |
|
} |
|
float l1 = (target == DNN_TARGET_OPENCL_FP16) ? 2e-4 : 1e-5; |
|
float lInf = (target == DNN_TARGET_OPENCL_FP16) ? 1e-3 : 1e-4; |
|
normAssert(ref, out, "", l1, lInf); |
|
} |
|
|
|
typedef testing::TestWithParam<tuple<bool, Target> > Reproducibility_AlexNet; |
|
TEST_P(Reproducibility_AlexNet, Accuracy) |
|
{ |
|
Target targetId = get<1>(GetParam()); |
|
applyTestTag(targetId == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); |
|
ASSERT_TRUE(ocl::useOpenCL() || targetId == DNN_TARGET_CPU); |
|
|
|
bool readFromMemory = get<0>(GetParam()); |
|
Net net; |
|
{ |
|
const string proto = findDataFile("dnn/bvlc_alexnet.prototxt"); |
|
const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false); |
|
if (readFromMemory) |
|
{ |
|
std::vector<char> dataProto; |
|
readFileContent(proto, dataProto); |
|
std::vector<char> dataModel; |
|
readFileContent(model, dataModel); |
|
|
|
net = readNetFromCaffe(dataProto.data(), dataProto.size(), |
|
dataModel.data(), dataModel.size()); |
|
} |
|
else |
|
net = readNetFromCaffe(proto, model); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
const float l1 = 1e-5; |
|
const float lInf = (targetId == DNN_TARGET_OPENCL_FP16) ? 3e-3 : 1e-4; |
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
net.setPreferableTarget(targetId); |
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar(), false), "data"); |
|
Mat out = net.forward("prob"); |
|
Mat ref = blobFromNPY(_tf("caffe_alexnet_prob.npy")); |
|
normAssert(ref, out, "", l1, lInf); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_AlexNet, Combine(testing::Bool(), |
|
testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV)))); |
|
|
|
TEST(Reproducibility_FCN, Accuracy) |
|
{ |
|
applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG, CV_TEST_TAG_MEMORY_2GB); |
|
|
|
Net net; |
|
{ |
|
const string proto = findDataFile("dnn/fcn8s-heavy-pascal.prototxt"); |
|
const string model = findDataFile("dnn/fcn8s-heavy-pascal.caffemodel", false); |
|
net = readNetFromCaffe(proto, model); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
Mat sample = imread(_tf("street.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
std::vector<int> layerIds; |
|
std::vector<size_t> weights, blobs; |
|
net.getMemoryConsumption(shape(1,3,227,227), layerIds, weights, blobs); |
|
|
|
net.setInput(blobFromImage(sample, 1.0f, Size(500, 500), Scalar(), false), "data"); |
|
Mat out = net.forward("score"); |
|
|
|
Mat refData = imread(_tf("caffe_fcn8s_prob.png"), IMREAD_ANYDEPTH); |
|
int shape[] = {1, 21, 500, 500}; |
|
Mat ref(4, shape, CV_32FC1, refData.data); |
|
|
|
normAssert(ref, out); |
|
} |
|
|
|
TEST(Reproducibility_SSD, Accuracy) |
|
{ |
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB, CV_TEST_TAG_DEBUG_LONG); |
|
Net net; |
|
{ |
|
const string proto = findDataFile("dnn/ssd_vgg16.prototxt"); |
|
const string model = findDataFile("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", false); |
|
net = readNetFromCaffe(proto, model); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
Mat sample = imread(_tf("street.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
|
|
if (sample.channels() == 4) |
|
cvtColor(sample, sample, COLOR_BGRA2BGR); |
|
|
|
Mat in_blob = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); |
|
net.setInput(in_blob, "data"); |
|
Mat out = net.forward("detection_out"); |
|
|
|
Mat ref = blobFromNPY(_tf("ssd_out.npy")); |
|
normAssertDetections(ref, out, "", FLT_MIN); |
|
} |
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > Reproducibility_MobileNet_SSD; |
|
TEST_P(Reproducibility_MobileNet_SSD, Accuracy) |
|
{ |
|
const string proto = findDataFile("dnn/MobileNetSSD_deploy.prototxt", false); |
|
const string model = findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false); |
|
Net net = readNetFromCaffe(proto, model); |
|
int backendId = get<0>(GetParam()); |
|
int targetId = get<1>(GetParam()); |
|
|
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
|
|
Mat sample = imread(_tf("street.png")); |
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
net.setInput(inp); |
|
Mat out = net.forward().clone(); |
|
|
|
ASSERT_EQ(out.size[2], 100); |
|
|
|
const float scores_diff = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 1.5e-2 : 1e-5; |
|
const float boxes_iou_diff = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 6.3e-2 : 1e-4; |
|
Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy")); |
|
normAssertDetections(ref, out, "", FLT_MIN, scores_diff, boxes_iou_diff); |
|
|
|
// Check that detections aren't preserved. |
|
inp.setTo(0.0f); |
|
net.setInput(inp); |
|
Mat zerosOut = net.forward(); |
|
zerosOut = zerosOut.reshape(1, zerosOut.total() / 7); |
|
|
|
const int numDetections = zerosOut.rows; |
|
// TODO: fix it |
|
if (targetId != DNN_TARGET_MYRIAD || |
|
getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
{ |
|
ASSERT_NE(numDetections, 0); |
|
for (int i = 0; i < numDetections; ++i) |
|
{ |
|
float confidence = zerosOut.ptr<float>(i)[2]; |
|
ASSERT_EQ(confidence, 0); |
|
} |
|
} |
|
|
|
// There is something wrong with Reshape layer in Myriad plugin. |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE) |
|
{ |
|
if (targetId == DNN_TARGET_MYRIAD || targetId == DNN_TARGET_OPENCL_FP16) |
|
return; |
|
} |
|
|
|
// Check batching mode. |
|
inp = blobFromImages(std::vector<Mat>(2, sample), 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
net.setInput(inp); |
|
Mat outBatch = net.forward(); |
|
|
|
// Output blob has a shape 1x1x2Nx7 where N is a number of detection for |
|
// a single sample in batch. The first numbers of detection vectors are batch id. |
|
// For Inference Engine backend there is -1 delimiter which points the end of detections. |
|
const int numRealDetections = ref.size[2]; |
|
EXPECT_EQ(outBatch.size[2], 2 * numDetections); |
|
out = out.reshape(1, numDetections).rowRange(0, numRealDetections); |
|
outBatch = outBatch.reshape(1, 2 * numDetections); |
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
Mat pred = outBatch.rowRange(i * numRealDetections, (i + 1) * numRealDetections); |
|
EXPECT_EQ(countNonZero(pred.col(0) != i), 0); |
|
normAssert(pred.colRange(1, 7), out.colRange(1, 7)); |
|
} |
|
} |
|
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_MobileNet_SSD, dnnBackendsAndTargets()); |
|
|
|
typedef testing::TestWithParam<Target> Reproducibility_ResNet50; |
|
TEST_P(Reproducibility_ResNet50, Accuracy) |
|
{ |
|
Target targetId = GetParam(); |
|
applyTestTag(targetId == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); |
|
ASSERT_TRUE(ocl::useOpenCL() || targetId == DNN_TARGET_CPU); |
|
|
|
Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt"), |
|
findDataFile("dnn/ResNet-50-model.caffemodel", false)); |
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
net.setPreferableTarget(targetId); |
|
|
|
float l1 = (targetId == DNN_TARGET_OPENCL_FP16) ? 3e-5 : 1e-5; |
|
float lInf = (targetId == DNN_TARGET_OPENCL_FP16) ? 6e-3 : 1e-4; |
|
|
|
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(224,224), Scalar(), false); |
|
ASSERT_TRUE(!input.empty()); |
|
|
|
net.setInput(input); |
|
Mat out = net.forward(); |
|
|
|
Mat ref = blobFromNPY(_tf("resnet50_prob.npy")); |
|
normAssert(ref, out, "", l1, lInf); |
|
|
|
if (targetId == DNN_TARGET_OPENCL || targetId == DNN_TARGET_OPENCL_FP16) |
|
{ |
|
UMat out_umat; |
|
net.forward(out_umat); |
|
normAssert(ref, out_umat, "out_umat", l1, lInf); |
|
|
|
std::vector<UMat> out_umats; |
|
net.forward(out_umats); |
|
normAssert(ref, out_umats[0], "out_umat_vector", l1, lInf); |
|
} |
|
} |
|
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_ResNet50, |
|
testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV))); |
|
|
|
typedef testing::TestWithParam<Target> Reproducibility_SqueezeNet_v1_1; |
|
TEST_P(Reproducibility_SqueezeNet_v1_1, Accuracy) |
|
{ |
|
int targetId = GetParam(); |
|
if(targetId == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt"), |
|
findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
net.setPreferableTarget(targetId); |
|
|
|
Mat input = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(227,227), Scalar(), false, true); |
|
ASSERT_TRUE(!input.empty()); |
|
|
|
Mat out; |
|
if (targetId == DNN_TARGET_OPENCL) |
|
{ |
|
// Firstly set a wrong input blob and run the model to receive a wrong output. |
|
// Then set a correct input blob to check CPU->GPU synchronization is working well. |
|
net.setInput(input * 2.0f); |
|
out = net.forward(); |
|
} |
|
net.setInput(input); |
|
out = net.forward(); |
|
|
|
Mat ref = blobFromNPY(_tf("squeezenet_v1.1_prob.npy")); |
|
normAssert(ref, out); |
|
} |
|
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_SqueezeNet_v1_1, |
|
testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV))); |
|
|
|
TEST(Reproducibility_AlexNet_fp16, Accuracy) |
|
{ |
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB); |
|
const float l1 = 1e-5; |
|
const float lInf = 3e-3; |
|
|
|
const string proto = findDataFile("dnn/bvlc_alexnet.prototxt"); |
|
const string model = findDataFile("dnn/bvlc_alexnet.caffemodel", false); |
|
|
|
shrinkCaffeModel(model, "bvlc_alexnet.caffemodel_fp16"); |
|
Net net = readNetFromCaffe(proto, "bvlc_alexnet.caffemodel_fp16"); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
Mat sample = imread(findDataFile("dnn/grace_hopper_227.png")); |
|
|
|
net.setInput(blobFromImage(sample, 1.0f, Size(227, 227), Scalar())); |
|
Mat out = net.forward(); |
|
Mat ref = blobFromNPY(findDataFile("dnn/caffe_alexnet_prob.npy")); |
|
normAssert(ref, out, "", l1, lInf); |
|
} |
|
|
|
TEST(Reproducibility_GoogLeNet_fp16, Accuracy) |
|
{ |
|
const float l1 = 1e-5; |
|
const float lInf = 3e-3; |
|
|
|
const string proto = findDataFile("dnn/bvlc_googlenet.prototxt"); |
|
const string model = findDataFile("dnn/bvlc_googlenet.caffemodel", false); |
|
|
|
shrinkCaffeModel(model, "bvlc_googlenet.caffemodel_fp16"); |
|
Net net = readNetFromCaffe(proto, "bvlc_googlenet.caffemodel_fp16"); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
std::vector<Mat> inpMats; |
|
inpMats.push_back( imread(_tf("googlenet_0.png")) ); |
|
inpMats.push_back( imread(_tf("googlenet_1.png")) ); |
|
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty()); |
|
|
|
net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data"); |
|
Mat out = net.forward("prob"); |
|
|
|
Mat ref = blobFromNPY(_tf("googlenet_prob.npy")); |
|
normAssert(out, ref, "", l1, lInf); |
|
} |
|
|
|
// https://github.com/richzhang/colorization |
|
TEST_P(Test_Caffe_nets, Colorization) |
|
{ |
|
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); |
|
checkBackend(); |
|
|
|
Mat inp = blobFromNPY(_tf("colorization_inp.npy")); |
|
Mat ref = blobFromNPY(_tf("colorization_out.npy")); |
|
Mat kernel = blobFromNPY(_tf("colorization_pts_in_hull.npy")); |
|
|
|
const string proto = findDataFile("dnn/colorization_deploy_v2.prototxt", false); |
|
const string model = findDataFile("dnn/colorization_release_v2.caffemodel", false); |
|
Net net = readNetFromCaffe(proto, model); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
net.getLayer(net.getLayerId("class8_ab"))->blobs.push_back(kernel); |
|
net.getLayer(net.getLayerId("conv8_313_rh"))->blobs.push_back(Mat(1, 313, CV_32F, 2.606)); |
|
|
|
net.setInput(inp); |
|
Mat out = net.forward(); |
|
|
|
// Reference output values are in range [-29.1, 69.5] |
|
double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.25 : 4e-4; |
|
double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 5.3 : 3e-3; |
|
if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
{ |
|
l1 = 0.5; lInf = 11; |
|
} |
|
normAssert(out, ref, "", l1, lInf); |
|
expectNoFallbacksFromIE(net); |
|
} |
|
|
|
TEST_P(Test_Caffe_nets, DenseNet_121) |
|
{ |
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB); |
|
checkBackend(); |
|
const string proto = findDataFile("dnn/DenseNet_121.prototxt", false); |
|
const string model = findDataFile("dnn/DenseNet_121.caffemodel", false); |
|
|
|
Mat inp = imread(_tf("dog416.png")); |
|
inp = blobFromImage(inp, 1.0 / 255, Size(224, 224), Scalar(), true, true); |
|
Mat ref = blobFromNPY(_tf("densenet_121_output.npy")); |
|
|
|
Net net = readNetFromCaffe(proto, model); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
net.setInput(inp); |
|
Mat out = net.forward(); |
|
|
|
// Reference is an array of 1000 values from a range [-6.16, 7.9] |
|
float l1 = default_l1, lInf = default_lInf; |
|
if (target == DNN_TARGET_OPENCL_FP16) |
|
{ |
|
l1 = 0.017; lInf = 0.0795; |
|
} |
|
else if (target == DNN_TARGET_MYRIAD) |
|
{ |
|
l1 = 0.11; lInf = 0.5; |
|
} |
|
normAssert(out, ref, "", l1, lInf); |
|
if (target != DNN_TARGET_MYRIAD || getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
expectNoFallbacksFromIE(net); |
|
} |
|
|
|
TEST(Test_Caffe, multiple_inputs) |
|
{ |
|
const string proto = findDataFile("dnn/layers/net_input.prototxt"); |
|
Net net = readNetFromCaffe(proto); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
Mat first_image(10, 11, CV_32FC3); |
|
Mat second_image(10, 11, CV_32FC3); |
|
randu(first_image, -1, 1); |
|
randu(second_image, -1, 1); |
|
|
|
first_image = blobFromImage(first_image); |
|
second_image = blobFromImage(second_image); |
|
|
|
Mat first_image_blue_green = slice(first_image, Range::all(), Range(0, 2), Range::all(), Range::all()); |
|
Mat first_image_red = slice(first_image, Range::all(), Range(2, 3), Range::all(), Range::all()); |
|
Mat second_image_blue_green = slice(second_image, Range::all(), Range(0, 2), Range::all(), Range::all()); |
|
Mat second_image_red = slice(second_image, Range::all(), Range(2, 3), Range::all(), Range::all()); |
|
|
|
net.setInput(first_image_blue_green, "old_style_input_blue_green"); |
|
net.setInput(first_image_red, "different_name_for_red"); |
|
net.setInput(second_image_blue_green, "input_layer_blue_green"); |
|
net.setInput(second_image_red, "old_style_input_red"); |
|
Mat out = net.forward(); |
|
|
|
normAssert(out, first_image + second_image); |
|
} |
|
|
|
TEST(Test_Caffe, shared_weights) |
|
{ |
|
const string proto = findDataFile("dnn/layers/shared_weights.prototxt"); |
|
const string model = findDataFile("dnn/layers/shared_weights.caffemodel"); |
|
|
|
Net net = readNetFromCaffe(proto, model); |
|
|
|
Mat input_1 = (Mat_<float>(2, 2) << 0., 2., 4., 6.); |
|
Mat input_2 = (Mat_<float>(2, 2) << 1., 3., 5., 7.); |
|
|
|
Mat blob_1 = blobFromImage(input_1); |
|
Mat blob_2 = blobFromImage(input_2); |
|
|
|
net.setInput(blob_1, "input_1"); |
|
net.setInput(blob_2, "input_2"); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
Mat sum = net.forward(); |
|
|
|
EXPECT_EQ(sum.at<float>(0,0), 12.); |
|
EXPECT_EQ(sum.at<float>(0,1), 16.); |
|
} |
|
|
|
typedef testing::TestWithParam<tuple<std::string, Target> > opencv_face_detector; |
|
TEST_P(opencv_face_detector, Accuracy) |
|
{ |
|
std::string proto = findDataFile("dnn/opencv_face_detector.prototxt", false); |
|
std::string model = findDataFile(get<0>(GetParam()), false); |
|
dnn::Target targetId = (dnn::Target)(int)get<1>(GetParam()); |
|
|
|
Net net = readNetFromCaffe(proto, model); |
|
Mat img = imread(findDataFile("gpu/lbpcascade/er.png")); |
|
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); |
|
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
net.setPreferableTarget(targetId); |
|
|
|
net.setInput(blob); |
|
// Output has shape 1x1xNx7 where N - number of detections. |
|
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] |
|
Mat out = net.forward(); |
|
Mat ref = (Mat_<float>(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631, |
|
0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168, |
|
0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290, |
|
0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477, |
|
0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494, |
|
0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801); |
|
normAssertDetections(ref, out, "", 0.5, 1e-5, 2e-4); |
|
} |
|
INSTANTIATE_TEST_CASE_P(Test_Caffe, opencv_face_detector, |
|
Combine( |
|
Values("dnn/opencv_face_detector.caffemodel", |
|
"dnn/opencv_face_detector_fp16.caffemodel"), |
|
Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL) |
|
) |
|
); |
|
|
|
TEST_P(Test_Caffe_nets, FasterRCNN_vgg16) |
|
{ |
|
applyTestTag( |
|
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), |
|
CV_TEST_TAG_LONG, |
|
CV_TEST_TAG_DEBUG_VERYLONG |
|
); |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) |
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
#endif |
|
|
|
static Mat ref = (Mat_<float>(3, 7) << 0, 2, 0.949398, 99.2454, 210.141, 601.205, 462.849, |
|
0, 7, 0.997022, 481.841, 92.3218, 722.685, 175.953, |
|
0, 12, 0.993028, 133.221, 189.377, 350.994, 563.166); |
|
testFaster("faster_rcnn_vgg16.prototxt", "VGG16_faster_rcnn_final.caffemodel", ref); |
|
} |
|
|
|
TEST_P(Test_Caffe_nets, FasterRCNN_zf) |
|
{ |
|
applyTestTag( |
|
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB), |
|
CV_TEST_TAG_DEBUG_LONG |
|
); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
static Mat ref = (Mat_<float>(3, 7) << 0, 2, 0.90121, 120.407, 115.83, 570.586, 528.395, |
|
0, 7, 0.988779, 469.849, 75.1756, 718.64, 186.762, |
|
0, 12, 0.967198, 138.588, 206.843, 329.766, 553.176); |
|
testFaster("faster_rcnn_zf.prototxt", "ZF_faster_rcnn_final.caffemodel", ref); |
|
} |
|
|
|
TEST_P(Test_Caffe_nets, RFCN) |
|
{ |
|
applyTestTag( |
|
(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_2GB), |
|
CV_TEST_TAG_LONG, |
|
CV_TEST_TAG_DEBUG_VERYLONG |
|
); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
double scoreDiff = (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ? 4e-3 : default_l1; |
|
double iouDiff = (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ? 8e-2 : default_lInf; |
|
static Mat ref = (Mat_<float>(2, 7) << 0, 7, 0.991359, 491.822, 81.1668, 702.573, 178.234, |
|
0, 12, 0.94786, 132.093, 223.903, 338.077, 566.16); |
|
testFaster("rfcn_pascal_voc_resnet50.prototxt", "resnet50_rfcn_final.caffemodel", ref, scoreDiff, iouDiff); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Caffe_nets, dnnBackendsAndTargets()); |
|
|
|
}} // namespace
|
|
|