mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
7.2 KiB
225 lines
7.2 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
#include <opencv2/core/utils/filesystem.hpp> |
|
|
|
#include <inference_engine.hpp> |
|
#include <ie_icnn_network.hpp> |
|
#include <ie_extension.h> |
|
|
|
namespace opencv_test { namespace { |
|
|
|
static void initDLDTDataPath() |
|
{ |
|
#ifndef WINRT |
|
static bool initialized = false; |
|
if (!initialized) |
|
{ |
|
const char* dldtTestDataPath = getenv("INTEL_CVSDK_DIR"); |
|
if (dldtTestDataPath) |
|
cvtest::addDataSearchPath(cv::utils::fs::join(dldtTestDataPath, "deployment_tools")); |
|
initialized = true; |
|
} |
|
#endif |
|
} |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
using namespace InferenceEngine; |
|
|
|
static inline void genData(const std::vector<size_t>& dims, Mat& m, Blob::Ptr& dataPtr) |
|
{ |
|
std::vector<int> reversedDims(dims.begin(), dims.end()); |
|
std::reverse(reversedDims.begin(), reversedDims.end()); |
|
|
|
m.create(reversedDims, CV_32F); |
|
randu(m, -1, 1); |
|
|
|
dataPtr = make_shared_blob<float>(Precision::FP32, dims, (float*)m.data); |
|
} |
|
|
|
void runIE(Target target, const std::string& xmlPath, const std::string& binPath, |
|
std::map<std::string, cv::Mat>& inputsMap, std::map<std::string, cv::Mat>& outputsMap) |
|
{ |
|
CNNNetReader reader; |
|
reader.ReadNetwork(xmlPath); |
|
reader.ReadWeights(binPath); |
|
|
|
CNNNetwork net = reader.getNetwork(); |
|
|
|
InferenceEnginePluginPtr enginePtr; |
|
InferencePlugin plugin; |
|
ExecutableNetwork netExec; |
|
InferRequest infRequest; |
|
try |
|
{ |
|
auto dispatcher = InferenceEngine::PluginDispatcher({""}); |
|
switch (target) |
|
{ |
|
case DNN_TARGET_CPU: |
|
enginePtr = dispatcher.getSuitablePlugin(TargetDevice::eCPU); |
|
break; |
|
case DNN_TARGET_OPENCL: |
|
case DNN_TARGET_OPENCL_FP16: |
|
enginePtr = dispatcher.getSuitablePlugin(TargetDevice::eGPU); |
|
break; |
|
case DNN_TARGET_MYRIAD: |
|
enginePtr = dispatcher.getSuitablePlugin(TargetDevice::eMYRIAD); |
|
break; |
|
case DNN_TARGET_FPGA: |
|
enginePtr = dispatcher.getPluginByDevice("HETERO:FPGA,CPU"); |
|
break; |
|
default: |
|
CV_Error(Error::StsNotImplemented, "Unknown target"); |
|
}; |
|
|
|
if (target == DNN_TARGET_CPU || target == DNN_TARGET_FPGA) |
|
{ |
|
std::string suffixes[] = {"_avx2", "_sse4", ""}; |
|
bool haveFeature[] = { |
|
checkHardwareSupport(CPU_AVX2), |
|
checkHardwareSupport(CPU_SSE4_2), |
|
true |
|
}; |
|
for (int i = 0; i < 3; ++i) |
|
{ |
|
if (!haveFeature[i]) |
|
continue; |
|
#ifdef _WIN32 |
|
std::string libName = "cpu_extension" + suffixes[i] + ".dll"; |
|
#else |
|
std::string libName = "libcpu_extension" + suffixes[i] + ".so"; |
|
#endif // _WIN32 |
|
try |
|
{ |
|
IExtensionPtr extension = make_so_pointer<IExtension>(libName); |
|
enginePtr->AddExtension(extension, 0); |
|
break; |
|
} |
|
catch(...) {} |
|
} |
|
// Some of networks can work without a library of extra layers. |
|
} |
|
plugin = InferencePlugin(enginePtr); |
|
|
|
netExec = plugin.LoadNetwork(net, {}); |
|
infRequest = netExec.CreateInferRequest(); |
|
} |
|
catch (const std::exception& ex) |
|
{ |
|
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what())); |
|
} |
|
|
|
// Fill input blobs. |
|
inputsMap.clear(); |
|
BlobMap inputBlobs; |
|
for (auto& it : net.getInputsInfo()) |
|
{ |
|
genData(it.second->getDims(), inputsMap[it.first], inputBlobs[it.first]); |
|
} |
|
infRequest.SetInput(inputBlobs); |
|
|
|
// Fill output blobs. |
|
outputsMap.clear(); |
|
BlobMap outputBlobs; |
|
for (auto& it : net.getOutputsInfo()) |
|
{ |
|
genData(it.second->dims, outputsMap[it.first], outputBlobs[it.first]); |
|
} |
|
infRequest.SetOutput(outputBlobs); |
|
|
|
infRequest.Infer(); |
|
} |
|
|
|
std::vector<String> getOutputsNames(const Net& net) |
|
{ |
|
std::vector<String> names; |
|
if (names.empty()) |
|
{ |
|
std::vector<int> outLayers = net.getUnconnectedOutLayers(); |
|
std::vector<String> layersNames = net.getLayerNames(); |
|
names.resize(outLayers.size()); |
|
for (size_t i = 0; i < outLayers.size(); ++i) |
|
names[i] = layersNames[outLayers[i] - 1]; |
|
} |
|
return names; |
|
} |
|
|
|
void runCV(Target target, const std::string& xmlPath, const std::string& binPath, |
|
const std::map<std::string, cv::Mat>& inputsMap, |
|
std::map<std::string, cv::Mat>& outputsMap) |
|
{ |
|
Net net = readNet(xmlPath, binPath); |
|
for (auto& it : inputsMap) |
|
net.setInput(it.second, it.first); |
|
net.setPreferableTarget(target); |
|
|
|
std::vector<String> outNames = getOutputsNames(net); |
|
std::vector<Mat> outs; |
|
net.forward(outs, outNames); |
|
|
|
outputsMap.clear(); |
|
EXPECT_EQ(outs.size(), outNames.size()); |
|
for (int i = 0; i < outs.size(); ++i) |
|
{ |
|
EXPECT_TRUE(outputsMap.insert({outNames[i], outs[i]}).second); |
|
} |
|
} |
|
|
|
typedef TestWithParam<tuple<Target, String> > DNNTestOpenVINO; |
|
TEST_P(DNNTestOpenVINO, models) |
|
{ |
|
Target target = (dnn::Target)(int)get<0>(GetParam()); |
|
std::string modelName = get<1>(GetParam()); |
|
std::string precision = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? "FP16" : "FP32"; |
|
|
|
#ifdef INF_ENGINE_RELEASE |
|
#if INF_ENGINE_RELEASE <= 2018050000 |
|
std::string prefix = utils::fs::join("intel_models", |
|
utils::fs::join(modelName, |
|
utils::fs::join(precision, modelName))); |
|
#endif |
|
#endif |
|
|
|
initDLDTDataPath(); |
|
std::string xmlPath = findDataFile(prefix + ".xml"); |
|
std::string binPath = findDataFile(prefix + ".bin"); |
|
|
|
std::map<std::string, cv::Mat> inputsMap; |
|
std::map<std::string, cv::Mat> ieOutputsMap, cvOutputsMap; |
|
// Single Myriad device cannot be shared across multiple processes. |
|
if (target == DNN_TARGET_MYRIAD) |
|
resetMyriadDevice(); |
|
runIE(target, xmlPath, binPath, inputsMap, ieOutputsMap); |
|
runCV(target, xmlPath, binPath, inputsMap, cvOutputsMap); |
|
|
|
EXPECT_EQ(ieOutputsMap.size(), cvOutputsMap.size()); |
|
for (auto& srcIt : ieOutputsMap) |
|
{ |
|
auto dstIt = cvOutputsMap.find(srcIt.first); |
|
CV_Assert(dstIt != cvOutputsMap.end()); |
|
double normInf = cvtest::norm(srcIt.second, dstIt->second, cv::NORM_INF); |
|
EXPECT_EQ(normInf, 0); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, |
|
DNNTestOpenVINO, |
|
Combine(testing::ValuesIn(getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE)), |
|
testing::Values( |
|
"age-gender-recognition-retail-0013", |
|
"face-person-detection-retail-0002", |
|
"head-pose-estimation-adas-0001", |
|
"person-detection-retail-0002", |
|
"vehicle-detection-adas-0002" |
|
)) |
|
); |
|
|
|
}} |
|
#endif // HAVE_INF_ENGINE
|
|
|