mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
460 lines
16 KiB
460 lines
16 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
/* |
|
Test for Tensorflow models loading |
|
*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "npy_blob.hpp" |
|
|
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS |
|
|
|
namespace opencv_test |
|
{ |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
template<typename TString> |
|
static std::string _tf(TString filename) |
|
{ |
|
return (getOpenCVExtraDir() + "/dnn/") + filename; |
|
} |
|
|
|
TEST(Test_TensorFlow, read_inception) |
|
{ |
|
Net net; |
|
{ |
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); |
|
net = readNetFromTensorflow(model); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
Mat input; |
|
resize(sample, input, Size(224, 224)); |
|
input -= 128; // mean sub |
|
|
|
Mat inputBlob = blobFromImage(input); |
|
|
|
net.setInput(inputBlob, "input"); |
|
Mat out = net.forward("softmax2"); |
|
|
|
std::cout << out.dims << std::endl; |
|
} |
|
|
|
TEST(Test_TensorFlow, inception_accuracy) |
|
{ |
|
Net net; |
|
{ |
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); |
|
net = readNetFromTensorflow(model); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png")); |
|
ASSERT_TRUE(!sample.empty()); |
|
resize(sample, sample, Size(224, 224)); |
|
Mat inputBlob = blobFromImage(sample); |
|
|
|
net.setInput(inputBlob, "input"); |
|
Mat out = net.forward("softmax2"); |
|
|
|
Mat ref = blobFromNPY(_tf("tf_inception_prob.npy")); |
|
|
|
normAssert(ref, out); |
|
} |
|
|
|
static std::string path(const std::string& file) |
|
{ |
|
return findDataFile("dnn/tensorflow/" + file, false); |
|
} |
|
|
|
static void runTensorFlowNet(const std::string& prefix, int targetId = DNN_TARGET_CPU, bool hasText = false, |
|
double l1 = 1e-5, double lInf = 1e-4, |
|
bool memoryLoad = false) |
|
{ |
|
std::string netPath = path(prefix + "_net.pb"); |
|
std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : ""); |
|
std::string inpPath = path(prefix + "_in.npy"); |
|
std::string outPath = path(prefix + "_out.npy"); |
|
|
|
Net net; |
|
if (memoryLoad) |
|
{ |
|
// Load files into a memory buffers |
|
string dataModel; |
|
ASSERT_TRUE(readFileInMemory(netPath, dataModel)); |
|
|
|
string dataConfig; |
|
if (hasText) |
|
ASSERT_TRUE(readFileInMemory(netConfig, dataConfig)); |
|
|
|
net = readNetFromTensorflow(dataModel.c_str(), dataModel.size(), |
|
dataConfig.c_str(), dataConfig.size()); |
|
} |
|
else |
|
net = readNetFromTensorflow(netPath, netConfig); |
|
|
|
ASSERT_FALSE(net.empty()); |
|
|
|
net.setPreferableBackend(DNN_BACKEND_DEFAULT); |
|
net.setPreferableTarget(targetId); |
|
|
|
cv::Mat input = blobFromNPY(inpPath); |
|
cv::Mat target = blobFromNPY(outPath); |
|
|
|
net.setInput(input); |
|
cv::Mat output = net.forward(); |
|
normAssert(target, output, "", l1, lInf); |
|
} |
|
|
|
typedef testing::TestWithParam<DNNTarget> Test_TensorFlow_layers; |
|
|
|
TEST_P(Test_TensorFlow_layers, conv) |
|
{ |
|
int targetId = GetParam(); |
|
runTensorFlowNet("single_conv", targetId); |
|
runTensorFlowNet("atrous_conv2d_valid", targetId); |
|
runTensorFlowNet("atrous_conv2d_same", targetId); |
|
runTensorFlowNet("depthwise_conv2d", targetId); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, padding) |
|
{ |
|
int targetId = GetParam(); |
|
runTensorFlowNet("padding_same", targetId); |
|
runTensorFlowNet("padding_valid", targetId); |
|
runTensorFlowNet("spatial_padding", targetId); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, eltwise_add_mul) |
|
{ |
|
runTensorFlowNet("eltwise_add_mul", GetParam()); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, pad_and_concat) |
|
{ |
|
runTensorFlowNet("pad_and_concat", GetParam()); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, batch_norm) |
|
{ |
|
int targetId = GetParam(); |
|
runTensorFlowNet("batch_norm", targetId); |
|
runTensorFlowNet("fused_batch_norm", targetId); |
|
runTensorFlowNet("batch_norm_text", targetId, true); |
|
runTensorFlowNet("mvn_batch_norm", targetId); |
|
runTensorFlowNet("mvn_batch_norm_1x1", targetId); |
|
runTensorFlowNet("unfused_batch_norm", targetId); |
|
runTensorFlowNet("fused_batch_norm_no_gamma", targetId); |
|
runTensorFlowNet("unfused_batch_norm_no_gamma", targetId); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, pooling) |
|
{ |
|
int targetId = GetParam(); |
|
runTensorFlowNet("max_pool_even", targetId); |
|
runTensorFlowNet("max_pool_odd_valid", targetId); |
|
runTensorFlowNet("ave_pool_same", targetId); |
|
runTensorFlowNet("max_pool_odd_same", targetId); |
|
runTensorFlowNet("reduce_mean", targetId); // an average pooling over all spatial dimensions. |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, deconvolution) |
|
{ |
|
int targetId = GetParam(); |
|
runTensorFlowNet("deconvolution", targetId); |
|
runTensorFlowNet("deconvolution_same", targetId); |
|
runTensorFlowNet("deconvolution_stride_2_same", targetId); |
|
runTensorFlowNet("deconvolution_adj_pad_valid", targetId); |
|
runTensorFlowNet("deconvolution_adj_pad_same", targetId); |
|
runTensorFlowNet("keras_deconv_valid", targetId); |
|
runTensorFlowNet("keras_deconv_same", targetId); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, matmul) |
|
{ |
|
int targetId = GetParam(); |
|
runTensorFlowNet("matmul", targetId); |
|
runTensorFlowNet("nhwc_reshape_matmul", targetId); |
|
runTensorFlowNet("nhwc_transpose_reshape_matmul", targetId); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, reshape) |
|
{ |
|
int targetId = GetParam(); |
|
runTensorFlowNet("shift_reshape_no_reorder", targetId); |
|
runTensorFlowNet("reshape_reduce", targetId); |
|
runTensorFlowNet("flatten", targetId, true); |
|
runTensorFlowNet("unfused_flatten", targetId); |
|
runTensorFlowNet("unfused_flatten_unknown_batch", targetId); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_layers, l2_normalize) |
|
{ |
|
int targetId = GetParam(); |
|
runTensorFlowNet("l2_normalize", targetId); |
|
runTensorFlowNet("l2_normalize_3d", targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_layers, availableDnnTargets()); |
|
|
|
typedef testing::TestWithParam<DNNTarget> Test_TensorFlow_nets; |
|
|
|
TEST_P(Test_TensorFlow_nets, MobileNet_SSD) |
|
{ |
|
std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false); |
|
std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt", false); |
|
std::string imgPath = findDataFile("dnn/street.png", false); |
|
|
|
Mat inp; |
|
resize(imread(imgPath), inp, Size(300, 300)); |
|
inp = blobFromImage(inp, 1.0f / 127.5, Size(), Scalar(127.5, 127.5, 127.5), true); |
|
|
|
std::vector<String> outNames(3); |
|
outNames[0] = "concat"; |
|
outNames[1] = "concat_1"; |
|
outNames[2] = "detection_out"; |
|
|
|
std::vector<Mat> target(outNames.size()); |
|
for (int i = 0; i < outNames.size(); ++i) |
|
{ |
|
std::string path = findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco." + outNames[i] + ".npy", false); |
|
target[i] = blobFromNPY(path); |
|
} |
|
|
|
Net net = readNetFromTensorflow(netPath, netConfig); |
|
|
|
net.setPreferableTarget(GetParam()); |
|
|
|
net.setInput(inp); |
|
|
|
std::vector<Mat> output; |
|
net.forward(output, outNames); |
|
|
|
normAssert(target[0].reshape(1, 1), output[0].reshape(1, 1), "", 1e-5, 1.5e-4); |
|
normAssert(target[1].reshape(1, 1), output[1].reshape(1, 1), "", 1e-5, 3e-4); |
|
normAssertDetections(target[2], output[2], "", 0.2); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_nets, Inception_v2_SSD) |
|
{ |
|
std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", false); |
|
std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false); |
|
|
|
Net net = readNetFromTensorflow(model, proto); |
|
Mat img = imread(findDataFile("dnn/street.png", false)); |
|
Mat blob = blobFromImage(img, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), true, false); |
|
|
|
net.setPreferableTarget(GetParam()); |
|
|
|
net.setInput(blob); |
|
// Output has shape 1x1xNx7 where N - number of detections. |
|
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] |
|
Mat out = net.forward(); |
|
Mat ref = (Mat_<float>(5, 7) << 0, 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729, |
|
0, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131, |
|
0, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015, |
|
0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527, |
|
0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384); |
|
normAssertDetections(ref, out, "", 0.5); |
|
} |
|
|
|
TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8) |
|
{ |
|
std::string proto = findDataFile("dnn/opencv_face_detector.pbtxt", false); |
|
std::string model = findDataFile("dnn/opencv_face_detector_uint8.pb", false); |
|
|
|
Net net = readNetFromTensorflow(model, proto); |
|
Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false)); |
|
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); |
|
|
|
net.setPreferableTarget(GetParam()); |
|
|
|
net.setInput(blob); |
|
// Output has shape 1x1xNx7 where N - number of detections. |
|
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] |
|
Mat out = net.forward(); |
|
|
|
// References are from test for Caffe model. |
|
Mat ref = (Mat_<float>(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631, |
|
0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168, |
|
0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290, |
|
0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477, |
|
0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494, |
|
0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801); |
|
normAssertDetections(ref, out, "", 0.9, 3.4e-3, 1e-2); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, availableDnnTargets()); |
|
|
|
TEST(Test_TensorFlow, defun) |
|
{ |
|
runTensorFlowNet("defun_dropout"); |
|
} |
|
|
|
TEST(Test_TensorFlow, fp16) |
|
{ |
|
const float l1 = 1e-3; |
|
const float lInf = 1e-2; |
|
runTensorFlowNet("fp16_single_conv", DNN_TARGET_CPU, false, l1, lInf); |
|
runTensorFlowNet("fp16_deconvolution", DNN_TARGET_CPU, false, l1, lInf); |
|
runTensorFlowNet("fp16_max_pool_odd_same", DNN_TARGET_CPU, false, l1, lInf); |
|
runTensorFlowNet("fp16_padding_valid", DNN_TARGET_CPU, false, l1, lInf); |
|
runTensorFlowNet("fp16_eltwise_add_mul", DNN_TARGET_CPU, false, l1, lInf); |
|
runTensorFlowNet("fp16_max_pool_odd_valid", DNN_TARGET_CPU, false, l1, lInf); |
|
runTensorFlowNet("fp16_pad_and_concat", DNN_TARGET_CPU, false, l1, lInf); |
|
runTensorFlowNet("fp16_max_pool_even", DNN_TARGET_CPU, false, l1, lInf); |
|
runTensorFlowNet("fp16_padding_same", DNN_TARGET_CPU, false, l1, lInf); |
|
} |
|
|
|
TEST(Test_TensorFlow, quantized) |
|
{ |
|
runTensorFlowNet("uint8_single_conv"); |
|
} |
|
|
|
TEST(Test_TensorFlow, lstm) |
|
{ |
|
runTensorFlowNet("lstm", DNN_TARGET_CPU, true); |
|
} |
|
|
|
TEST(Test_TensorFlow, split) |
|
{ |
|
runTensorFlowNet("split_equals"); |
|
} |
|
|
|
TEST(Test_TensorFlow, resize_nearest_neighbor) |
|
{ |
|
runTensorFlowNet("resize_nearest_neighbor"); |
|
} |
|
|
|
TEST(Test_TensorFlow, slice) |
|
{ |
|
runTensorFlowNet("slice_4d"); |
|
} |
|
|
|
TEST(Test_TensorFlow, softmax) |
|
{ |
|
runTensorFlowNet("keras_softmax"); |
|
} |
|
|
|
TEST(Test_TensorFlow, relu6) |
|
{ |
|
runTensorFlowNet("keras_relu6"); |
|
} |
|
|
|
TEST(Test_TensorFlow, keras_mobilenet_head) |
|
{ |
|
runTensorFlowNet("keras_mobilenet_head"); |
|
} |
|
|
|
TEST(Test_TensorFlow, memory_read) |
|
{ |
|
double l1 = 1e-5; |
|
double lInf = 1e-4; |
|
runTensorFlowNet("lstm", DNN_TARGET_CPU, true, l1, lInf, true); |
|
|
|
runTensorFlowNet("batch_norm", DNN_TARGET_CPU, false, l1, lInf, true); |
|
runTensorFlowNet("fused_batch_norm", DNN_TARGET_CPU, false, l1, lInf, true); |
|
runTensorFlowNet("batch_norm_text", DNN_TARGET_CPU, true, l1, lInf, true); |
|
} |
|
|
|
// Test a custom layer. |
|
class ResizeBilinearLayer CV_FINAL : public Layer |
|
{ |
|
public: |
|
ResizeBilinearLayer(const LayerParams ¶ms) : Layer(params) |
|
{ |
|
CV_Assert(!params.get<bool>("align_corners", false)); |
|
CV_Assert(blobs.size() == 1, blobs[0].type() == CV_32SC1); |
|
outHeight = blobs[0].at<int>(0, 0); |
|
outWidth = blobs[0].at<int>(0, 1); |
|
} |
|
|
|
static Ptr<Layer> create(LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new ResizeBilinearLayer(params)); |
|
} |
|
|
|
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs, |
|
const int requiredOutputs, |
|
std::vector<std::vector<int> > &outputs, |
|
std::vector<std::vector<int> > &internals) const CV_OVERRIDE |
|
{ |
|
std::vector<int> outShape(4); |
|
outShape[0] = inputs[0][0]; // batch size |
|
outShape[1] = inputs[0][1]; // number of channels |
|
outShape[2] = outHeight; |
|
outShape[3] = outWidth; |
|
outputs.assign(1, outShape); |
|
return false; |
|
} |
|
|
|
// This implementation is based on a reference implementation from |
|
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h |
|
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE |
|
{ |
|
Mat& inp = *inputs[0]; |
|
Mat& out = outputs[0]; |
|
const float* inpData = (float*)inp.data; |
|
float* outData = (float*)out.data; |
|
|
|
const int batchSize = inp.size[0]; |
|
const int numChannels = inp.size[1]; |
|
const int inpHeight = inp.size[2]; |
|
const int inpWidth = inp.size[3]; |
|
|
|
float heightScale = static_cast<float>(inpHeight) / outHeight; |
|
float widthScale = static_cast<float>(inpWidth) / outWidth; |
|
for (int b = 0; b < batchSize; ++b) |
|
{ |
|
for (int y = 0; y < outHeight; ++y) |
|
{ |
|
float input_y = y * heightScale; |
|
int y0 = static_cast<int>(std::floor(input_y)); |
|
int y1 = std::min(y0 + 1, inpHeight - 1); |
|
for (int x = 0; x < outWidth; ++x) |
|
{ |
|
float input_x = x * widthScale; |
|
int x0 = static_cast<int>(std::floor(input_x)); |
|
int x1 = std::min(x0 + 1, inpWidth - 1); |
|
for (int c = 0; c < numChannels; ++c) |
|
{ |
|
float interpolation = |
|
inpData[offset(inp.size, c, x0, y0, b)] * (1 - (input_y - y0)) * (1 - (input_x - x0)) + |
|
inpData[offset(inp.size, c, x0, y1, b)] * (input_y - y0) * (1 - (input_x - x0)) + |
|
inpData[offset(inp.size, c, x1, y0, b)] * (1 - (input_y - y0)) * (input_x - x0) + |
|
inpData[offset(inp.size, c, x1, y1, b)] * (input_y - y0) * (input_x - x0); |
|
outData[offset(out.size, c, x, y, b)] = interpolation; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
virtual void forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE {} |
|
|
|
private: |
|
static inline int offset(const MatSize& size, int c, int x, int y, int b) |
|
{ |
|
return x + size[3] * (y + size[2] * (c + size[1] * b)); |
|
} |
|
|
|
int outWidth, outHeight; |
|
}; |
|
|
|
TEST(Test_TensorFlow, resize_bilinear) |
|
{ |
|
CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer); |
|
runTensorFlowNet("resize_bilinear"); |
|
LayerFactory::unregisterLayer("ResizeBilinear"); |
|
} |
|
|
|
}
|
|
|