mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
5.7 KiB
173 lines
5.7 KiB
#include "perf_precomp.hpp" |
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/opencv_modules.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace perf; |
|
using std::tr1::tuple; |
|
using std::tr1::get; |
|
|
|
#define SURF_MATCH_CONFIDENCE 0.65f |
|
#define ORB_MATCH_CONFIDENCE 0.3f |
|
#define WORK_MEGAPIX 0.6 |
|
|
|
typedef TestBaseWithParam<string> stitch; |
|
typedef TestBaseWithParam<tuple<string, string> > stitchDatasets; |
|
|
|
#ifdef HAVE_OPENCV_XFEATURES2D |
|
#define TEST_DETECTORS testing::Values("surf", "orb") |
|
#else |
|
#define TEST_DETECTORS testing::Values<string>("orb") |
|
#endif |
|
#define AFFINE_DATASETS testing::Values("s", "budapest", "newspaper", "prague") |
|
|
|
PERF_TEST_P(stitch, a123, TEST_DETECTORS) |
|
{ |
|
Mat pano; |
|
|
|
vector<Mat> imgs; |
|
imgs.push_back( imread( getDataPath("stitching/a1.png") ) ); |
|
imgs.push_back( imread( getDataPath("stitching/a2.png") ) ); |
|
imgs.push_back( imread( getDataPath("stitching/a3.png") ) ); |
|
|
|
Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb" |
|
? Ptr<detail::FeaturesFinder>(new detail::OrbFeaturesFinder()) |
|
: Ptr<detail::FeaturesFinder>(new detail::SurfFeaturesFinder()); |
|
|
|
Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb" |
|
? makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE) |
|
: makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE); |
|
|
|
declare.time(30 * 20).iterations(20); |
|
|
|
while(next()) |
|
{ |
|
Stitcher stitcher = Stitcher::createDefault(); |
|
stitcher.setFeaturesFinder(featuresFinder); |
|
stitcher.setFeaturesMatcher(featuresMatcher); |
|
stitcher.setWarper(makePtr<SphericalWarper>()); |
|
stitcher.setRegistrationResol(WORK_MEGAPIX); |
|
|
|
startTimer(); |
|
stitcher.stitch(imgs, pano); |
|
stopTimer(); |
|
} |
|
|
|
EXPECT_NEAR(pano.size().width, 1182, 50); |
|
EXPECT_NEAR(pano.size().height, 682, 30); |
|
|
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
PERF_TEST_P(stitch, b12, TEST_DETECTORS) |
|
{ |
|
Mat pano; |
|
|
|
vector<Mat> imgs; |
|
imgs.push_back( imread( getDataPath("stitching/b1.png") ) ); |
|
imgs.push_back( imread( getDataPath("stitching/b2.png") ) ); |
|
|
|
Ptr<detail::FeaturesFinder> featuresFinder = GetParam() == "orb" |
|
? Ptr<detail::FeaturesFinder>(new detail::OrbFeaturesFinder()) |
|
: Ptr<detail::FeaturesFinder>(new detail::SurfFeaturesFinder()); |
|
|
|
Ptr<detail::FeaturesMatcher> featuresMatcher = GetParam() == "orb" |
|
? makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE) |
|
: makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE); |
|
|
|
declare.time(30 * 20).iterations(20); |
|
|
|
while(next()) |
|
{ |
|
Stitcher stitcher = Stitcher::createDefault(); |
|
stitcher.setFeaturesFinder(featuresFinder); |
|
stitcher.setFeaturesMatcher(featuresMatcher); |
|
stitcher.setWarper(makePtr<SphericalWarper>()); |
|
stitcher.setRegistrationResol(WORK_MEGAPIX); |
|
|
|
startTimer(); |
|
stitcher.stitch(imgs, pano); |
|
stopTimer(); |
|
} |
|
|
|
EXPECT_NEAR(pano.size().width, 1117, 50); |
|
EXPECT_NEAR(pano.size().height, 642, 30); |
|
|
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
PERF_TEST_P(stitchDatasets, affine, testing::Combine(AFFINE_DATASETS, TEST_DETECTORS)) |
|
{ |
|
string dataset = get<0>(GetParam()); |
|
string detector = get<1>(GetParam()); |
|
|
|
Mat pano; |
|
vector<Mat> imgs; |
|
int width, height, allowed_diff = 10; |
|
Ptr<detail::FeaturesFinder> featuresFinder; |
|
|
|
if(detector == "orb") |
|
featuresFinder = makePtr<detail::OrbFeaturesFinder>(); |
|
else |
|
featuresFinder = makePtr<detail::SurfFeaturesFinder>(); |
|
|
|
if(dataset == "budapest") |
|
{ |
|
imgs.push_back(imread(getDataPath("stitching/budapest1.jpg"))); |
|
imgs.push_back(imread(getDataPath("stitching/budapest2.jpg"))); |
|
imgs.push_back(imread(getDataPath("stitching/budapest3.jpg"))); |
|
imgs.push_back(imread(getDataPath("stitching/budapest4.jpg"))); |
|
imgs.push_back(imread(getDataPath("stitching/budapest5.jpg"))); |
|
imgs.push_back(imread(getDataPath("stitching/budapest6.jpg"))); |
|
width = 2313; |
|
height = 1158; |
|
// this dataset is big, the results between surf and orb differ slightly, |
|
// but both are still good |
|
allowed_diff = 27; |
|
} |
|
else if (dataset == "newspaper") |
|
{ |
|
imgs.push_back(imread(getDataPath("stitching/newspaper1.jpg"))); |
|
imgs.push_back(imread(getDataPath("stitching/newspaper2.jpg"))); |
|
imgs.push_back(imread(getDataPath("stitching/newspaper3.jpg"))); |
|
imgs.push_back(imread(getDataPath("stitching/newspaper4.jpg"))); |
|
width = 1791; |
|
height = 1136; |
|
// we need to boost ORB number of features to be able to stitch this dataset |
|
// SURF works just fine with default settings |
|
if(detector == "orb") |
|
featuresFinder = makePtr<detail::OrbFeaturesFinder>(Size(3,1), 3000); |
|
} |
|
else if (dataset == "prague") |
|
{ |
|
imgs.push_back(imread(getDataPath("stitching/prague1.jpg"))); |
|
imgs.push_back(imread(getDataPath("stitching/prague2.jpg"))); |
|
width = 983; |
|
height = 1759; |
|
} |
|
else // dataset == "s" |
|
{ |
|
imgs.push_back(imread(getDataPath("stitching/s1.jpg"))); |
|
imgs.push_back(imread(getDataPath("stitching/s2.jpg"))); |
|
width = 1815; |
|
height = 700; |
|
} |
|
|
|
declare.time(30 * 20).iterations(20); |
|
|
|
while(next()) |
|
{ |
|
Ptr<Stitcher> stitcher = Stitcher::create(Stitcher::SCANS, false); |
|
stitcher->setFeaturesFinder(featuresFinder); |
|
|
|
startTimer(); |
|
stitcher->stitch(imgs, pano); |
|
stopTimer(); |
|
} |
|
|
|
EXPECT_NEAR(pano.size().width, width, allowed_diff); |
|
EXPECT_NEAR(pano.size().height, height, allowed_diff); |
|
|
|
SANITY_CHECK_NOTHING(); |
|
}
|
|
|