Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
4.2 KiB
166 lines
4.2 KiB
#!/usr/bin/env python |
|
|
|
import cv2, re, glob |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
def plot_curve(): |
|
|
|
fig, ax = plt.subplots() |
|
fig.canvas.draw() |
|
|
|
x = np.linspace(pow(10,-4), pow(10,1), 101) |
|
y = 1 - x |
|
|
|
plt.semilogy(x,y,color='m',linewidth=2) |
|
plt.xlabel("fppi") |
|
plt.ylabel("miss rate") |
|
plt.title("ROC curve Bahnhof") |
|
|
|
plt.yticks( [0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.64, 0.80]) |
|
ylabels = [item.get_text() for item in ax.get_yticklabels()] |
|
ax.set_yticklabels( ylabels ) |
|
plt.grid(True) |
|
|
|
# plt.xticks( [pow(10, -4), pow(10, -3), pow(10, -2), pow(10, -1), pow(10, 0), pow(10, 0)]) |
|
# xlabels = [item.get_text() for item in ax.get_xticklabels()] |
|
# ax.set_xticklabels( xlabels ) |
|
|
|
plt.xscale('log') |
|
plt.show() |
|
|
|
def crop_rect(rect, factor): |
|
val_x = factor * float(rect[2]) |
|
val_y = factor * float(rect[3]) |
|
x = [int(rect[0] + val_x), int(rect[1] + val_y), int(rect[2] - 2.0 * val_x), int(rect[3] - 2.0 * val_y)] |
|
return x |
|
|
|
def draw_rects(img, rects, color, l = lambda x, y : x + y): |
|
if rects is not None: |
|
for x1, y1, x2, y2 in rects: |
|
cv2.rectangle(img, (x1, y1), (l(x1, x2), l(y1, y2)), color, 2) |
|
|
|
def draw_dt(img, dts, color, l = lambda x, y : x + y): |
|
if dts is not None: |
|
for dt in dts: |
|
bb = dt.bb |
|
x1, y1, x2, y2 = dt.bb[0], dt.bb[1], dt.bb[2], dt.bb[3] |
|
|
|
cv2.rectangle(img, (x1, y1), (l(x1, x2), l(y1, y2)), color, 2) |
|
|
|
class Annotation: |
|
def __init__(self, bb): |
|
self.bb = bb |
|
|
|
class Detection: |
|
def __init__(self, bb, conf): |
|
self.bb = bb |
|
self.conf = conf |
|
self.matched = False |
|
|
|
# def crop(self): |
|
# rel_scale = self.bb[1] / 128 |
|
|
|
def crop(self, factor): |
|
print "was", self.bb |
|
self.bb = crop_rect(self.bb, factor) |
|
print "bec", self.bb |
|
|
|
# we use rect-stype for dt and box style for gt. ToDo: fix it |
|
def overlap(self, b): |
|
a = self.bb |
|
w = min( a[0] + a[2], b[2]) - max(a[0], b[0]); |
|
h = min( a[1] + a[3], b[3]) - max(a[1], b[1]); |
|
|
|
cross_area = 0.0 if (w < 0 or h < 0) else float(w * h) |
|
union_area = (a[2] * a[3]) + ((b[2] - b[0]) * (b[3] - b[1])) - cross_area; |
|
|
|
return cross_area / union_area |
|
|
|
def mark_matched(self): |
|
self.matched = True |
|
|
|
|
|
def parse_inria(ipath, f): |
|
bbs = [] |
|
path = None |
|
for l in f: |
|
box = None |
|
if l.startswith("Bounding box"): |
|
b = [x.strip() for x in l.split(":")[1].split("-")] |
|
c = [x[1:-1].split(",") for x in b] |
|
d = [int(x) for x in sum(c, [])] |
|
bbs.append(d) |
|
|
|
if l.startswith("Image filename"): |
|
path = l.split('"')[-2] |
|
|
|
return Sample(path, bbs) |
|
|
|
def glob_set(pattern): |
|
return [__n for __n in glob.iglob(pattern)] #glob.iglob(pattern) |
|
|
|
# parse ETH idl file |
|
def parse_idl(f): |
|
map = {} |
|
for l in open(f): |
|
l = re.sub(r"^\"left\/", "{\"", l) |
|
l = re.sub(r"\:", ":[", l) |
|
l = re.sub(r"(\;|\.)$", "]}", l) |
|
map.update(eval(l)) |
|
return map |
|
|
|
def norm_box(box, ratio): |
|
middle = float(box[0] + box[2]) / 2.0 |
|
new_half_width = float(box[3] - box[1]) * ratio / 2.0 |
|
return (int(round(middle - new_half_width)), box[1], int(round(middle + new_half_width)), box[3]) |
|
|
|
|
|
def norm_acpect_ratio(boxes, ratio): |
|
return [ norm_box(box, ratio) for box in boxes] |
|
|
|
|
|
def match(gts, rects, confs): |
|
if rects is None: |
|
return 0 |
|
|
|
fp = 0 |
|
fn = 0 |
|
|
|
dts = zip(*[rects.tolist(), confs.tolist()]) |
|
dts = zip(dts[0][0], dts[0][1]) |
|
dts = [Detection(r,c) for r, c in dts] |
|
|
|
factor = 1.0 / 8.0 |
|
dt_old = dts |
|
for dt in dts: |
|
dt.crop(factor) |
|
|
|
for gt in gts: |
|
|
|
# exclude small |
|
if gt[2] - gt[0] < 27: |
|
continue |
|
|
|
matched = False |
|
|
|
for dt in dts: |
|
# dt.crop() |
|
overlap = dt.overlap(gt) |
|
print dt.bb, "vs", gt, overlap |
|
if overlap > 0.5: |
|
dt.mark_matched() |
|
matched = True |
|
print "matched ", dt.bb, gt |
|
|
|
if not matched: |
|
fn = fn + 1 |
|
|
|
print "fn", fn |
|
|
|
for dt in dts: |
|
if not dt.matched: |
|
fp = fp + 1 |
|
|
|
print "fp", fp |
|
return dt_old
|
|
|