mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
553 lines
20 KiB
553 lines
20 KiB
Camera Calibration and 3d Reconstruction |
|
======================================== |
|
|
|
.. highlight:: cpp |
|
|
|
|
|
|
|
.. index:: gpu::StereoBM_GPU |
|
|
|
gpu::StereoBM_GPU |
|
----------------- |
|
.. cpp:class:: gpu::StereoBM_GPU |
|
|
|
The class for computing stereo correspondence using block matching algorithm. :: |
|
|
|
class StereoBM_GPU |
|
{ |
|
public: |
|
enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 }; |
|
|
|
enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 }; |
|
|
|
StereoBM_GPU(); |
|
StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, |
|
int winSize = DEFAULT_WINSZ); |
|
|
|
void operator() (const GpuMat& left, const GpuMat& right, |
|
GpuMat& disparity); |
|
void operator() (const GpuMat& left, const GpuMat& right, |
|
GpuMat& disparity, const Stream & stream); |
|
|
|
static bool checkIfGpuCallReasonable(); |
|
|
|
int preset; |
|
int ndisp; |
|
int winSize; |
|
|
|
float avergeTexThreshold; |
|
|
|
... |
|
}; |
|
|
|
This class computes the disparity map using block matching algorithm. The class also performs pre- and post- filtering steps: sobel prefiltering (if ``PREFILTER_XSOBEL`` flag is set) and low textureness filtering (if ``averageTexThreshols`` :math:`>` 0). If ``avergeTexThreshold = 0`` low textureness filtering is disabled, otherwise disparity is set to 0 in each point ``(x, y)`` where for left image |
|
|
|
.. math:: |
|
\sum HorizontalGradiensInWindow(x, y, winSize) < (winSize \cdot winSize) \cdot avergeTexThreshold |
|
|
|
i.e. input left image is low textured. |
|
|
|
|
|
|
|
.. index:: gpu::StereoBM_GPU::StereoBM_GPU |
|
|
|
gpu::StereoBM_GPU::StereoBM_GPU |
|
----------------------------------- |
|
.. cpp:function:: gpu::StereoBM_GPU::StereoBM_GPU() |
|
|
|
.. cpp:function:: gpu::StereoBM_GPU::StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ) |
|
|
|
``StereoBM_GPU`` constructors. |
|
|
|
:param preset: Preset: |
|
|
|
* **BASIC_PRESET** Without preprocessing. |
|
|
|
* **PREFILTER_XSOBEL** Sobel prefilter. |
|
|
|
:param ndisparities: Number of disparities. Must be a multiple of 8 and less or equal then 256. |
|
|
|
:param winSize: Block size. |
|
|
|
|
|
|
|
.. index:: gpu::StereoBM_GPU::operator () |
|
|
|
gpu::StereoBM_GPU::operator () |
|
---------------------------------- |
|
.. cpp:function:: void gpu::StereoBM_GPU::operator() (const GpuMat& left, const GpuMat& right, GpuMat& disparity) |
|
|
|
.. cpp:function:: void gpu::StereoBM_GPU::operator() (const GpuMat& left, const GpuMat& right, GpuMat& disparity, const Stream& stream) |
|
|
|
The stereo correspondence operator. Finds the disparity for the specified rectified stereo pair. |
|
|
|
:param left: Left image; supports only ``CV_8UC1`` type. |
|
|
|
:param right: Right image with the same size and the same type as the left one. |
|
|
|
:param disparity: Output disparity map. It will be ``CV_8UC1`` image with the same size as the input images. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
|
|
|
|
.. index:: gpu::StereoBM_GPU::checkIfGpuCallReasonable |
|
|
|
gpu::StereoBM_GPU::checkIfGpuCallReasonable |
|
----------------------------------------------- |
|
.. cpp:function:: bool gpu::StereoBM_GPU::checkIfGpuCallReasonable() |
|
|
|
Some heuristics that tries to estmate if the current GPU will be faster then CPU in this algorithm. It queries current active device. |
|
|
|
|
|
|
|
.. index:: gpu::StereoBeliefPropagation |
|
|
|
gpu::StereoBeliefPropagation |
|
---------------------------- |
|
.. cpp:class:: gpu::StereoBeliefPropagation |
|
|
|
The class for computing stereo correspondence using belief propagation algorithm. :: |
|
|
|
class StereoBeliefPropagation |
|
{ |
|
public: |
|
enum { DEFAULT_NDISP = 64 }; |
|
enum { DEFAULT_ITERS = 5 }; |
|
enum { DEFAULT_LEVELS = 5 }; |
|
|
|
static void estimateRecommendedParams(int width, int height, |
|
int& ndisp, int& iters, int& levels); |
|
|
|
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, |
|
int iters = DEFAULT_ITERS, |
|
int levels = DEFAULT_LEVELS, |
|
int msg_type = CV_32F); |
|
StereoBeliefPropagation(int ndisp, int iters, int levels, |
|
float max_data_term, float data_weight, |
|
float max_disc_term, float disc_single_jump, |
|
int msg_type = CV_32F); |
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, |
|
GpuMat& disparity); |
|
void operator()(const GpuMat& left, const GpuMat& right, |
|
GpuMat& disparity, Stream& stream); |
|
void operator()(const GpuMat& data, GpuMat& disparity); |
|
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream); |
|
|
|
int ndisp; |
|
|
|
int iters; |
|
int levels; |
|
|
|
float max_data_term; |
|
float data_weight; |
|
float max_disc_term; |
|
float disc_single_jump; |
|
|
|
int msg_type; |
|
|
|
... |
|
}; |
|
|
|
The class implements Pedro F. Felzenszwalb algorithm [Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early vision. International Journal of Computer Vision, 70(1), October 2006.]. It can compute own data cost (using truncated linear model) or use user-provided data cost. |
|
|
|
**Please note:** ``StereoBeliefPropagation`` requires a lot of memory: |
|
|
|
.. math:: |
|
|
|
width\_step \cdot height \cdot ndisp \cdot 4 \cdot (1 + 0.25) |
|
|
|
for message storage and |
|
|
|
.. math:: |
|
|
|
width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 + \dotsm + \frac{1}{4^{levels}} |
|
|
|
for data cost storage. ``width_step`` is the number of bytes in a line including the padding. |
|
|
|
|
|
|
|
.. index:: gpu::StereoBeliefPropagation::StereoBeliefPropagation |
|
|
|
gpu::StereoBeliefPropagation::StereoBeliefPropagation |
|
--------------------------------------------------------- |
|
.. cpp:function:: gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int msg_type = CV_32F) |
|
|
|
.. cpp:function:: gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp, int iters, int levels, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int msg_type = CV_32F) |
|
|
|
``StereoBeliefPropagation`` constructors. |
|
|
|
:param ndisp: Number of disparities. |
|
|
|
:param iters: Number of BP iterations on each level. |
|
|
|
:param levels: Number of levels. |
|
|
|
:param max_data_term: Threshold for data cost truncation. |
|
|
|
:param data_weight: Data weight. |
|
|
|
:param max_disc_term: Threshold for discontinuity truncation. |
|
|
|
:param disc_single_jump: Discontinuity single jump. |
|
|
|
:param msg_type: Type for messages. Supports ``CV_16SC1`` and ``CV_32FC1``. |
|
|
|
:cpp:class:`StereoBeliefPropagation` uses truncated linear model for the data cost and discontinuity term: |
|
|
|
.. math:: |
|
|
|
DataCost = data\_weight \cdot \min(\lvert I_2-I_1 \rvert, max\_data\_term) |
|
|
|
.. math:: |
|
|
|
DiscTerm = \min(disc\_single\_jump \cdot \lvert f_1-f_2 \rvert, max\_disc\_term) |
|
|
|
For more details please see [Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early vision. International Journal of Computer Vision, 70(1), October 2006.]. |
|
|
|
By default :cpp:class:`StereoBeliefPropagation` uses floating-point arithmetics and ``CV_32FC1`` type for messages. But also it can use fixed-point arithmetics and ``CV_16SC1`` type for messages for better perfomance. To avoid overflow in this case, the parameters must satisfy |
|
|
|
.. math:: |
|
|
|
10 \cdot 2^{levels-1} \cdot max\_data\_term < SHRT\_MAX |
|
|
|
|
|
|
|
.. index:: gpu::StereoBeliefPropagation::estimateRecommendedParams |
|
|
|
gpu::StereoBeliefPropagation::estimateRecommendedParams |
|
----------------------------------------------------------- |
|
|
|
.. cpp:function:: void gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels) |
|
|
|
Some heuristics that tries to compute recommended parameters (``ndisp``, ``iters`` and ``levels``) for specified image size (``width`` and ``height``). |
|
|
|
|
|
|
|
.. index:: gpu::StereoBeliefPropagation::operator () |
|
|
|
gpu::StereoBeliefPropagation::operator () |
|
--------------------------------------------- |
|
.. cpp:function:: void gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity) |
|
|
|
.. cpp:function:: void gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream) |
|
|
|
The stereo correspondence operator. Finds the disparity for the specified rectified stereo pair or data cost. |
|
|
|
:param left: Left image; supports ``CV_8UC1``, ``CV_8UC3`` and ``CV_8UC4`` types. |
|
|
|
:param right: Right image with the same size and the same type as the left one. |
|
|
|
:param disparity: Output disparity map. If ``disparity`` is empty output type will be ``CV_16SC1``, otherwise output type will be ``disparity.type()``. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
.. cpp:function:: void StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disparity) |
|
|
|
.. cpp:function:: void StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disparity, Stream& stream) |
|
|
|
:param data: The user specified data cost. It must have ``msg_type`` type and :math:`\texttt{imgRows} \cdot \texttt{ndisp} \times \texttt{imgCols}` size. |
|
|
|
:param disparity: Output disparity map. If ``disparity`` is empty output type will be ``CV_16SC1``, otherwise output type will be ``disparity.type()``. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
|
|
|
|
.. index:: gpu::StereoConstantSpaceBP |
|
|
|
gpu::StereoConstantSpaceBP |
|
-------------------------- |
|
.. cpp:class:: gpu::StereoConstantSpaceBP |
|
|
|
The class for computing stereo correspondence using constant space belief propagation algorithm. :: |
|
|
|
class StereoConstantSpaceBP |
|
{ |
|
public: |
|
enum { DEFAULT_NDISP = 128 }; |
|
enum { DEFAULT_ITERS = 8 }; |
|
enum { DEFAULT_LEVELS = 4 }; |
|
enum { DEFAULT_NR_PLANE = 4 }; |
|
|
|
static void estimateRecommendedParams(int width, int height, |
|
int& ndisp, int& iters, int& levels, int& nr_plane); |
|
|
|
explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP, |
|
int iters = DEFAULT_ITERS, |
|
int levels = DEFAULT_LEVELS, |
|
int nr_plane = DEFAULT_NR_PLANE, |
|
int msg_type = CV_32F); |
|
StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, |
|
float max_data_term, float data_weight, |
|
float max_disc_term, float disc_single_jump, |
|
int min_disp_th = 0, |
|
int msg_type = CV_32F); |
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, |
|
GpuMat& disparity); |
|
void operator()(const GpuMat& left, const GpuMat& right, |
|
GpuMat& disparity, Stream& stream); |
|
|
|
int ndisp; |
|
|
|
int iters; |
|
int levels; |
|
|
|
int nr_plane; |
|
|
|
float max_data_term; |
|
float data_weight; |
|
float max_disc_term; |
|
float disc_single_jump; |
|
|
|
int min_disp_th; |
|
|
|
int msg_type; |
|
|
|
bool use_local_init_data_cost; |
|
|
|
... |
|
}; |
|
|
|
|
|
The class implements Q. Yang algorithm [Q. Yang, L. Wang, and N. Ahuja. A constant-space belief propagation algorithm for stereo matching. In CVPR, 2010]. ``StereoConstantSpaceBP`` supports both local minimum and global minimum data cost initialization algortihms. For more details please see the paper. By default local algorithm is used, and to enable global algorithm set ``use_local_init_data_cost`` to false. |
|
|
|
|
|
|
|
.. index:: gpu::StereoConstantSpaceBP::StereoConstantSpaceBP |
|
|
|
gpu::StereoConstantSpaceBP::StereoConstantSpaceBP |
|
----------------------------------------------------- |
|
.. cpp:function:: gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int nr_plane = DEFAULT_NR_PLANE, int msg_type = CV_32F) |
|
|
|
.. cpp:function:: gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th = 0, int msg_type = CV_32F) |
|
|
|
``StereoConstantSpaceBP`` constructors. |
|
|
|
:param ndisp: Number of disparities. |
|
|
|
:param iters: Number of BP iterations on each level. |
|
|
|
:param levels: Number of levels. |
|
|
|
:param nr_plane: Number of disparity levels on the first level |
|
|
|
:param max_data_term: Truncation of data cost. |
|
|
|
:param data_weight: Data weight. |
|
|
|
:param max_disc_term: Truncation of discontinuity. |
|
|
|
:param disc_single_jump: Discontinuity single jump. |
|
|
|
:param min_disp_th: Minimal disparity threshold. |
|
|
|
:param msg_type: Type for messages. Supports ``CV_16SC1`` and ``CV_32FC1``. |
|
|
|
:cpp:class:`StereoConstantSpaceBP` uses truncated linear model for the data cost and discontinuity term: |
|
|
|
.. math:: |
|
|
|
DataCost = data\_weight \cdot \min(\lvert I_2-I_1 \rvert, max\_data\_term) |
|
|
|
.. math:: |
|
|
|
DiscTerm = \min(disc\_single\_jump \cdot \lvert f_1-f_2 \rvert, max\_disc\_term) |
|
|
|
For more details please see [Q. Yang, L. Wang, and N. Ahuja. A constant-space belief propagation algorithm for stereo matching. In CVPR, 2010]. |
|
|
|
By default :cpp:class:`StereoConstantSpaceBP` uses floating-point arithmetics and ``CV_32FC1`` type for messages. But also it can use fixed-point arithmetics and ``CV_16SC1`` type for messages for better perfomance. To avoid overflow in this case, the parameters must satisfy |
|
|
|
.. math:: |
|
|
|
10 \cdot 2^{levels-1} \cdot max\_data\_term < SHRT\_MAX |
|
|
|
|
|
|
|
.. index:: gpu::StereoConstantSpaceBP::estimateRecommendedParams |
|
|
|
gpu::StereoConstantSpaceBP::estimateRecommendedParams |
|
--------------------------------------------------------- |
|
|
|
.. cpp:function:: void gpu::StereoConstantSpaceBP::estimateRecommendedParams( int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane) |
|
|
|
Some heuristics that tries to compute parameters (``ndisp``, ``iters``, ``levels`` and ``nr_plane``) for specified image size (``width`` and ``height``). |
|
|
|
|
|
.. index:: gpu::StereoConstantSpaceBP::operator () |
|
|
|
gpu::StereoConstantSpaceBP::operator () |
|
------------------------------------------- |
|
.. cpp:function:: void gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity) |
|
|
|
.. cpp:function:: void gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream) |
|
|
|
The stereo correspondence operator. Finds the disparity for the specified rectified stereo pair. |
|
|
|
:param left: Left image; supports ``CV_8UC1``, ``CV_8UC3`` and ``CV_8UC4`` types. |
|
|
|
:param right: Right image with the same size and the same type as the left one. |
|
|
|
:param disparity: Output disparity map. If ``disparity`` is empty output type will be ``CV_16SC1``, otherwise output type will be ``disparity.type()``. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
|
|
|
|
.. index:: gpu::DisparityBilateralFilter |
|
|
|
gpu::DisparityBilateralFilter |
|
----------------------------- |
|
.. cpp:class:: gpu::DisparityBilateralFilter |
|
|
|
The class for disparity map refinement using joint bilateral filtering. :: |
|
|
|
class DisparityBilateralFilter |
|
{ |
|
public: |
|
enum { DEFAULT_NDISP = 64 }; |
|
enum { DEFAULT_RADIUS = 3 }; |
|
enum { DEFAULT_ITERS = 1 }; |
|
|
|
explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, |
|
int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS); |
|
|
|
DisparityBilateralFilter(int ndisp, int radius, int iters, |
|
float edge_threshold, float max_disc_threshold, |
|
float sigma_range); |
|
|
|
void operator()(const GpuMat& disparity, const GpuMat& image, |
|
GpuMat& dst); |
|
void operator()(const GpuMat& disparity, const GpuMat& image, |
|
GpuMat& dst, Stream& stream); |
|
|
|
... |
|
}; |
|
|
|
|
|
The class implements Q. Yang algorithm [Q. Yang, L. Wang, and N. Ahuja. A constant-space belief propagation algorithm for stereo matching. In CVPR, 2010]. |
|
|
|
|
|
|
|
.. index:: gpu::DisparityBilateralFilter::DisparityBilateralFilter |
|
|
|
gpu::DisparityBilateralFilter::DisparityBilateralFilter |
|
----------------------------------------------------------- |
|
.. cpp:function:: gpu::DisparityBilateralFilter::DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS) |
|
|
|
.. cpp:function:: gpu::DisparityBilateralFilter::DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range) |
|
|
|
``DisparityBilateralFilter`` constructors. |
|
|
|
:param ndisp: Number of disparities. |
|
|
|
:param radius: Filter radius. |
|
|
|
:param iters: Number of iterations. |
|
|
|
:param edge_threshold: Threshold for edges. |
|
|
|
:param max_disc_threshold: Constant to reject outliers. |
|
|
|
:param sigma_range: Filter range. |
|
|
|
|
|
|
|
.. index:: gpu::DisparityBilateralFilter::operator () |
|
|
|
gpu::DisparityBilateralFilter::operator () |
|
---------------------------------------------- |
|
.. cpp:function:: void gpu::DisparityBilateralFilter::operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst) |
|
|
|
.. cpp:function:: void gpu::DisparityBilateralFilter::operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream) |
|
|
|
Refines disparity map using joint bilateral filtering. |
|
|
|
:param disparity: Input disparity map; supports ``CV_8UC1`` and ``CV_16SC1`` types. |
|
|
|
:param image: Input image; supports ``CV_8UC1`` and ``CV_8UC3`` types. |
|
|
|
:param dst: Destination disparity map; will have the same size and type as ``disparity``. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
|
|
|
|
.. index:: gpu::drawColorDisp |
|
|
|
gpu::drawColorDisp |
|
---------------------- |
|
.. cpp:function:: void gpu::drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp) |
|
|
|
.. cpp:function:: void gpu::drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, const Stream& stream) |
|
|
|
Does coloring of disparity image. |
|
|
|
:param src_disp: Source disparity image. Supports ``CV_8UC1`` and ``CV_16SC1`` types. |
|
|
|
:param dst_disp: Output disparity image. Will have the same size as ``src_disp`` and ``CV_8UC4`` type in ``BGRA`` format (alpha = 255). |
|
|
|
:param ndisp: Number of disparities. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
This function converts :math:`[0..ndisp)` interval to :math:`[0..240, 1, 1]` in ``HSV`` color space, than convert ``HSV`` color space to ``RGB``. |
|
|
|
|
|
|
|
.. index:: gpu::reprojectImageTo3D |
|
|
|
gpu::reprojectImageTo3D |
|
--------------------------- |
|
.. cpp:function:: void gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q) |
|
|
|
.. cpp:function:: void gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const Stream& stream) |
|
|
|
Reprojects disparity image to 3D space. |
|
|
|
:param disp: Input disparity image; supports ``CV_8U`` and ``CV_16S`` types. |
|
|
|
:param xyzw: Output 4-channel floating-point image of the same size as ``disp``. Each element of ``xyzw(x,y)`` will contain the 3D coordinates ``(x,y,z,1)`` of the point ``(x,y)``, computed from the disparity map. |
|
|
|
:param Q: :math:`4 \times 4` perspective transformation matrix that can be obtained via :c:func:`stereoRectify`. |
|
|
|
:param stream: Stream for the asynchronous version. |
|
|
|
See also: :c:func:`reprojectImageTo3D`. |
|
|
|
|
|
|
|
.. index:: gpu::solvePnPRansac |
|
|
|
gpu::solvePnPRansac |
|
------------------- |
|
|
|
.. cpp:function:: void gpu::solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false, int num_iters=100, float max_dist=8.0, int min_inlier_count=100, vector<int>* inliers=NULL) |
|
|
|
Finds the object pose from the 3D-2D point correspondences. |
|
|
|
:param object: Single-row matrix of object points. |
|
|
|
:param image: Single-row matrix of image points. |
|
|
|
:param camera_mat: 3x3 matrix of intrinsic camera parameters. |
|
|
|
:param dist_coef: Distortion coefficients. See :c:func:`undistortPoints` for details. |
|
|
|
:param rvec: Output 3D rotation vector. |
|
|
|
:param tvec: Output 3D translation vector. |
|
|
|
:param use_extrinsic_guess: Indicates the function must use ``rvec`` and ``tvec`` as initial transformation guess. It isn't supported for now. |
|
|
|
:param num_iters: Maximum number of RANSAC iterations. |
|
|
|
:param max_dist: Euclidean distance threshold to detect whether point is inlier or not. |
|
|
|
:param min_inlier_count: Indicates the function must stop if greater or equal number of inliers is achieved. It isn't supported for now. |
|
|
|
:param inliers: Output vector of inlier indices. |
|
|
|
See also :c:func:`solvePnPRansac`.
|
|
|