mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
4.8 KiB
194 lines
4.8 KiB
#include <iostream> |
|
#include <fstream> |
|
|
|
#include <opencv2/core/utility.hpp> |
|
#include "opencv2/video.hpp" |
|
#include "opencv2/highgui.hpp" |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
inline bool isFlowCorrect(Point2f u) |
|
{ |
|
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9; |
|
} |
|
|
|
static Vec3b computeColor(float fx, float fy) |
|
{ |
|
static bool first = true; |
|
|
|
// relative lengths of color transitions: |
|
// these are chosen based on perceptual similarity |
|
// (e.g. one can distinguish more shades between red and yellow |
|
// than between yellow and green) |
|
const int RY = 15; |
|
const int YG = 6; |
|
const int GC = 4; |
|
const int CB = 11; |
|
const int BM = 13; |
|
const int MR = 6; |
|
const int NCOLS = RY + YG + GC + CB + BM + MR; |
|
static Vec3i colorWheel[NCOLS]; |
|
|
|
if (first) |
|
{ |
|
int k = 0; |
|
|
|
for (int i = 0; i < RY; ++i, ++k) |
|
colorWheel[k] = Vec3i(255, 255 * i / RY, 0); |
|
|
|
for (int i = 0; i < YG; ++i, ++k) |
|
colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0); |
|
|
|
for (int i = 0; i < GC; ++i, ++k) |
|
colorWheel[k] = Vec3i(0, 255, 255 * i / GC); |
|
|
|
for (int i = 0; i < CB; ++i, ++k) |
|
colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255); |
|
|
|
for (int i = 0; i < BM; ++i, ++k) |
|
colorWheel[k] = Vec3i(255 * i / BM, 0, 255); |
|
|
|
for (int i = 0; i < MR; ++i, ++k) |
|
colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR); |
|
|
|
first = false; |
|
} |
|
|
|
const float rad = sqrt(fx * fx + fy * fy); |
|
const float a = atan2(-fy, -fx) / (float)CV_PI; |
|
|
|
const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1); |
|
const int k0 = static_cast<int>(fk); |
|
const int k1 = (k0 + 1) % NCOLS; |
|
const float f = fk - k0; |
|
|
|
Vec3b pix; |
|
|
|
for (int b = 0; b < 3; b++) |
|
{ |
|
const float col0 = colorWheel[k0][b] / 255.f; |
|
const float col1 = colorWheel[k1][b] / 255.f; |
|
|
|
float col = (1 - f) * col0 + f * col1; |
|
|
|
if (rad <= 1) |
|
col = 1 - rad * (1 - col); // increase saturation with radius |
|
else |
|
col *= .75; // out of range |
|
|
|
pix[2 - b] = static_cast<uchar>(255.f * col); |
|
} |
|
|
|
return pix; |
|
} |
|
|
|
static void drawOpticalFlow(const Mat_<Point2f>& flow, Mat& dst, float maxmotion = -1) |
|
{ |
|
dst.create(flow.size(), CV_8UC3); |
|
dst.setTo(Scalar::all(0)); |
|
|
|
// determine motion range: |
|
float maxrad = maxmotion; |
|
|
|
if (maxmotion <= 0) |
|
{ |
|
maxrad = 1; |
|
for (int y = 0; y < flow.rows; ++y) |
|
{ |
|
for (int x = 0; x < flow.cols; ++x) |
|
{ |
|
Point2f u = flow(y, x); |
|
|
|
if (!isFlowCorrect(u)) |
|
continue; |
|
|
|
maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y)); |
|
} |
|
} |
|
} |
|
|
|
for (int y = 0; y < flow.rows; ++y) |
|
{ |
|
for (int x = 0; x < flow.cols; ++x) |
|
{ |
|
Point2f u = flow(y, x); |
|
|
|
if (isFlowCorrect(u)) |
|
dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad); |
|
} |
|
} |
|
} |
|
|
|
// binary file format for flow data specified here: |
|
// http://vision.middlebury.edu/flow/data/ |
|
static void writeOpticalFlowToFile(const Mat_<Point2f>& flow, const string& fileName) |
|
{ |
|
static const char FLO_TAG_STRING[] = "PIEH"; |
|
|
|
ofstream file(fileName.c_str(), ios_base::binary); |
|
|
|
file << FLO_TAG_STRING; |
|
|
|
file.write((const char*) &flow.cols, sizeof(int)); |
|
file.write((const char*) &flow.rows, sizeof(int)); |
|
|
|
for (int i = 0; i < flow.rows; ++i) |
|
{ |
|
for (int j = 0; j < flow.cols; ++j) |
|
{ |
|
const Point2f u = flow(i, j); |
|
|
|
file.write((const char*) &u.x, sizeof(float)); |
|
file.write((const char*) &u.y, sizeof(float)); |
|
} |
|
} |
|
} |
|
|
|
int main(int argc, const char* argv[]) |
|
{ |
|
if (argc < 3) |
|
{ |
|
cerr << "Usage : " << argv[0] << "<frame0> <frame1> [<output_flow>]" << endl; |
|
return -1; |
|
} |
|
|
|
Mat frame0 = imread(argv[1], IMREAD_GRAYSCALE); |
|
Mat frame1 = imread(argv[2], IMREAD_GRAYSCALE); |
|
|
|
if (frame0.empty()) |
|
{ |
|
cerr << "Can't open image [" << argv[1] << "]" << endl; |
|
return -1; |
|
} |
|
if (frame1.empty()) |
|
{ |
|
cerr << "Can't open image [" << argv[2] << "]" << endl; |
|
return -1; |
|
} |
|
|
|
if (frame1.size() != frame0.size()) |
|
{ |
|
cerr << "Images should be of equal sizes" << endl; |
|
return -1; |
|
} |
|
|
|
Mat_<Point2f> flow; |
|
Ptr<DenseOpticalFlow> tvl1 = createOptFlow_DualTVL1(); |
|
|
|
const double start = (double)getTickCount(); |
|
tvl1->calc(frame0, frame1, flow); |
|
const double timeSec = (getTickCount() - start) / getTickFrequency(); |
|
cout << "calcOpticalFlowDual_TVL1 : " << timeSec << " sec" << endl; |
|
|
|
Mat out; |
|
drawOpticalFlow(flow, out); |
|
|
|
if (argc == 4) |
|
writeOpticalFlowToFile(flow, argv[3]); |
|
|
|
imshow("Flow", out); |
|
waitKey(); |
|
|
|
return 0; |
|
}
|
|
|