mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.8 KiB
162 lines
5.8 KiB
#include <opencv2/dnn.hpp> |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
#include <fstream> |
|
#include <iostream> |
|
#include <cstdlib> |
|
using namespace std; |
|
|
|
const size_t inWidth = 300; |
|
const size_t inHeight = 300; |
|
const float WHRatio = inWidth / (float)inHeight; |
|
const float inScaleFactor = 0.007843f; |
|
const float meanVal = 127.5; |
|
const char* classNames[] = {"background", |
|
"aeroplane", "bicycle", "bird", "boat", |
|
"bottle", "bus", "car", "cat", "chair", |
|
"cow", "diningtable", "dog", "horse", |
|
"motorbike", "person", "pottedplant", |
|
"sheep", "sofa", "train", "tvmonitor"}; |
|
|
|
const char* about = "This sample uses Single-Shot Detector " |
|
"(https://arxiv.org/abs/1512.02325)" |
|
"to detect objects on image.\n" |
|
".caffemodel model's file is avaliable here: " |
|
"https://github.com/chuanqi305/MobileNet-SSD\n"; |
|
|
|
const char* params |
|
= "{ help | false | print usage }" |
|
"{ proto | MobileNetSSD_deploy.prototxt | model configuration }" |
|
"{ model | MobileNetSSD_deploy.caffemodel | model weights }" |
|
"{ video | | video for detection }" |
|
"{ out | | path to output video file}" |
|
"{ min_confidence | 0.2 | min confidence }"; |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
cv::CommandLineParser parser(argc, argv, params); |
|
|
|
if (parser.get<bool>("help")) |
|
{ |
|
cout << about << endl; |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
String modelConfiguration = parser.get<string>("proto"); |
|
String modelBinary = parser.get<string>("model"); |
|
|
|
//! [Initialize network] |
|
dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary); |
|
//! [Initialize network] |
|
|
|
VideoCapture cap(parser.get<String>("video")); |
|
if(!cap.isOpened()) // check if we succeeded |
|
{ |
|
cap = VideoCapture(0); |
|
if(!cap.isOpened()) |
|
{ |
|
cout << "Couldn't find camera" << endl; |
|
return -1; |
|
} |
|
} |
|
|
|
Size inVideoSize = Size((int) cap.get(CV_CAP_PROP_FRAME_WIDTH), //Acquire input size |
|
(int) cap.get(CV_CAP_PROP_FRAME_HEIGHT)); |
|
|
|
Size cropSize; |
|
if (inVideoSize.width / (float)inVideoSize.height > WHRatio) |
|
{ |
|
cropSize = Size(static_cast<int>(inVideoSize.height * WHRatio), |
|
inVideoSize.height); |
|
} |
|
else |
|
{ |
|
cropSize = Size(inVideoSize.width, |
|
static_cast<int>(inVideoSize.width / WHRatio)); |
|
} |
|
|
|
Rect crop(Point((inVideoSize.width - cropSize.width) / 2, |
|
(inVideoSize.height - cropSize.height) / 2), |
|
cropSize); |
|
|
|
VideoWriter outputVideo; |
|
outputVideo.open(parser.get<String>("out") , |
|
static_cast<int>(cap.get(CV_CAP_PROP_FOURCC)), |
|
cap.get(CV_CAP_PROP_FPS), cropSize, true); |
|
|
|
for(;;) |
|
{ |
|
Mat frame; |
|
cap >> frame; // get a new frame from camera |
|
//! [Prepare blob] |
|
|
|
Mat inputBlob = blobFromImage(frame, inScaleFactor, |
|
Size(inWidth, inHeight), meanVal, false); //Convert Mat to batch of images |
|
//! [Prepare blob] |
|
|
|
//! [Set input blob] |
|
net.setInput(inputBlob, "data"); //set the network input |
|
//! [Set input blob] |
|
|
|
//! [Make forward pass] |
|
Mat detection = net.forward("detection_out"); //compute output |
|
//! [Make forward pass] |
|
|
|
std::vector<double> layersTimings; |
|
double freq = getTickFrequency() / 1000; |
|
double time = net.getPerfProfile(layersTimings) / freq; |
|
cout << "Inference time, ms: " << time << endl; |
|
|
|
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); |
|
|
|
frame = frame(crop); |
|
|
|
float confidenceThreshold = parser.get<float>("min_confidence"); |
|
for(int i = 0; i < detectionMat.rows; i++) |
|
{ |
|
float confidence = detectionMat.at<float>(i, 2); |
|
|
|
if(confidence > confidenceThreshold) |
|
{ |
|
size_t objectClass = (size_t)(detectionMat.at<float>(i, 1)); |
|
|
|
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); |
|
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); |
|
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); |
|
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); |
|
|
|
ostringstream ss; |
|
ss << confidence; |
|
String conf(ss.str()); |
|
|
|
Rect object((int)xLeftBottom, (int)yLeftBottom, |
|
(int)(xRightTop - xLeftBottom), |
|
(int)(yRightTop - yLeftBottom)); |
|
|
|
rectangle(frame, object, Scalar(0, 255, 0)); |
|
String label = String(classNames[objectClass]) + ": " + conf; |
|
int baseLine = 0; |
|
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
|
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), |
|
Size(labelSize.width, labelSize.height + baseLine)), |
|
Scalar(255, 255, 255), CV_FILLED); |
|
putText(frame, label, Point(xLeftBottom, yLeftBottom), |
|
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); |
|
} |
|
} |
|
|
|
if (outputVideo.isOpened()) |
|
outputVideo << frame; |
|
|
|
imshow("detections", frame); |
|
if (waitKey(1) >= 0) break; |
|
} |
|
|
|
return 0; |
|
} // main
|
|
|