mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
3.9 KiB
138 lines
3.9 KiB
#include <opencv2/dnn.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
#include <fstream> |
|
#include <iostream> |
|
#include <cstdlib> |
|
using namespace std; |
|
|
|
static const string fcnType = "fcn8s"; |
|
|
|
static vector<cv::Vec3b> readColors(const string &filename = "pascal-classes.txt") |
|
{ |
|
vector<cv::Vec3b> colors; |
|
|
|
ifstream fp(filename.c_str()); |
|
if (!fp.is_open()) |
|
{ |
|
cerr << "File with colors not found: " << filename << endl; |
|
exit(-1); |
|
} |
|
|
|
string line; |
|
while (!fp.eof()) |
|
{ |
|
getline(fp, line); |
|
if (line.length()) |
|
{ |
|
stringstream ss(line); |
|
|
|
string name; ss >> name; |
|
int temp; |
|
cv::Vec3b color; |
|
ss >> temp; color[0] = (uchar)temp; |
|
ss >> temp; color[1] = (uchar)temp; |
|
ss >> temp; color[2] = (uchar)temp; |
|
colors.push_back(color); |
|
} |
|
} |
|
|
|
fp.close(); |
|
return colors; |
|
} |
|
|
|
static void colorizeSegmentation(const Mat &score, const vector<cv::Vec3b> &colors, cv::Mat &segm) |
|
{ |
|
const int rows = score.size[2]; |
|
const int cols = score.size[3]; |
|
const int chns = score.size[1]; |
|
|
|
cv::Mat maxCl(rows, cols, CV_8UC1); |
|
cv::Mat maxVal(rows, cols, CV_32FC1); |
|
for (int ch = 0; ch < chns; ch++) |
|
{ |
|
for (int row = 0; row < rows; row++) |
|
{ |
|
const float *ptrScore = score.ptr<float>(0, ch, row); |
|
uchar *ptrMaxCl = maxCl.ptr<uchar>(row); |
|
float *ptrMaxVal = maxVal.ptr<float>(row); |
|
for (int col = 0; col < cols; col++) |
|
{ |
|
if (ptrScore[col] > ptrMaxVal[col]) |
|
{ |
|
ptrMaxVal[col] = ptrScore[col]; |
|
ptrMaxCl[col] = (uchar)ch; |
|
} |
|
} |
|
} |
|
} |
|
|
|
segm.create(rows, cols, CV_8UC3); |
|
for (int row = 0; row < rows; row++) |
|
{ |
|
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row); |
|
cv::Vec3b *ptrSegm = segm.ptr<cv::Vec3b>(row); |
|
for (int col = 0; col < cols; col++) |
|
{ |
|
ptrSegm[col] = colors[ptrMaxCl[col]]; |
|
} |
|
} |
|
|
|
} |
|
|
|
int main(int argc, char **argv) |
|
{ |
|
String modelTxt = fcnType + "-heavy-pascal.prototxt"; |
|
String modelBin = fcnType + "-heavy-pascal.caffemodel"; |
|
String imageFile = (argc > 1) ? argv[1] : "rgb.jpg"; |
|
|
|
vector<cv::Vec3b> colors = readColors(); |
|
|
|
//! [Initialize network] |
|
dnn::Net net = readNetFromCaffe(modelTxt, modelBin); |
|
//! [Initialize network] |
|
|
|
if (net.empty()) |
|
{ |
|
cerr << "Can't load network by using the following files: " << endl; |
|
cerr << "prototxt: " << modelTxt << endl; |
|
cerr << "caffemodel: " << modelBin << endl; |
|
cerr << fcnType << "-heavy-pascal.caffemodel can be downloaded here:" << endl; |
|
cerr << "http://dl.caffe.berkeleyvision.org/" << fcnType << "-heavy-pascal.caffemodel" << endl; |
|
exit(-1); |
|
} |
|
|
|
//! [Prepare blob] |
|
Mat img = imread(imageFile); |
|
if (img.empty()) |
|
{ |
|
cerr << "Can't read image from the file: " << imageFile << endl; |
|
exit(-1); |
|
} |
|
|
|
resize(img, img, Size(500, 500)); //FCN accepts 500x500 BGR-images |
|
Mat inputBlob = blobFromImage(img, 1, Size(), Scalar(), false); //Convert Mat to batch of images |
|
//! [Prepare blob] |
|
|
|
//! [Set input blob] |
|
net.setInput(inputBlob, "data"); //set the network input |
|
//! [Set input blob] |
|
|
|
//! [Make forward pass] |
|
double t = (double)cv::getTickCount(); |
|
Mat score = net.forward("score"); //compute output |
|
t = (double)cv::getTickCount() - t; |
|
printf("processing time: %.1fms\n", t*1000./getTickFrequency()); |
|
//! [Make forward pass] |
|
|
|
Mat colorize; |
|
colorizeSegmentation(score, colors, colorize); |
|
Mat show; |
|
addWeighted(img, 0.4, colorize, 0.6, 0.0, show); |
|
imshow("show", show); |
|
waitKey(0); |
|
return 0; |
|
} //main
|
|
|