Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1710 lines
64 KiB
1710 lines
64 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <limits> |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
//////////////////////////////// Initialization & Info //////////////////////// |
|
|
|
#ifndef HAVE_CUDA |
|
|
|
int cv::gpu::getCudaEnabledDeviceCount() { return 0; } |
|
|
|
void cv::gpu::setDevice(int) { throw_no_cuda(); } |
|
int cv::gpu::getDevice() { throw_no_cuda(); return 0; } |
|
|
|
void cv::gpu::resetDevice() { throw_no_cuda(); } |
|
|
|
bool cv::gpu::deviceSupports(FeatureSet) { throw_no_cuda(); return false; } |
|
|
|
bool cv::gpu::TargetArchs::builtWith(FeatureSet) { throw_no_cuda(); return false; } |
|
bool cv::gpu::TargetArchs::has(int, int) { throw_no_cuda(); return false; } |
|
bool cv::gpu::TargetArchs::hasPtx(int, int) { throw_no_cuda(); return false; } |
|
bool cv::gpu::TargetArchs::hasBin(int, int) { throw_no_cuda(); return false; } |
|
bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int, int) { throw_no_cuda(); return false; } |
|
bool cv::gpu::TargetArchs::hasEqualOrGreater(int, int) { throw_no_cuda(); return false; } |
|
bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int, int) { throw_no_cuda(); return false; } |
|
bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int, int) { throw_no_cuda(); return false; } |
|
|
|
size_t cv::gpu::DeviceInfo::sharedMemPerBlock() const { throw_no_cuda(); return 0; } |
|
void cv::gpu::DeviceInfo::queryMemory(size_t&, size_t&) const { throw_no_cuda(); } |
|
size_t cv::gpu::DeviceInfo::freeMemory() const { throw_no_cuda(); return 0; } |
|
size_t cv::gpu::DeviceInfo::totalMemory() const { throw_no_cuda(); return 0; } |
|
bool cv::gpu::DeviceInfo::supports(FeatureSet) const { throw_no_cuda(); return false; } |
|
bool cv::gpu::DeviceInfo::isCompatible() const { throw_no_cuda(); return false; } |
|
void cv::gpu::DeviceInfo::query() { throw_no_cuda(); } |
|
|
|
void cv::gpu::printCudaDeviceInfo(int) { throw_no_cuda(); } |
|
void cv::gpu::printShortCudaDeviceInfo(int) { throw_no_cuda(); } |
|
|
|
#else // HAVE_CUDA |
|
|
|
int cv::gpu::getCudaEnabledDeviceCount() |
|
{ |
|
int count; |
|
cudaError_t error = cudaGetDeviceCount( &count ); |
|
|
|
if (error == cudaErrorInsufficientDriver) |
|
return -1; |
|
|
|
if (error == cudaErrorNoDevice) |
|
return 0; |
|
|
|
cudaSafeCall( error ); |
|
return count; |
|
} |
|
|
|
void cv::gpu::setDevice(int device) |
|
{ |
|
cudaSafeCall( cudaSetDevice( device ) ); |
|
} |
|
|
|
int cv::gpu::getDevice() |
|
{ |
|
int device; |
|
cudaSafeCall( cudaGetDevice( &device ) ); |
|
return device; |
|
} |
|
|
|
void cv::gpu::resetDevice() |
|
{ |
|
cudaSafeCall( cudaDeviceReset() ); |
|
} |
|
|
|
namespace |
|
{ |
|
class CudaArch |
|
{ |
|
public: |
|
CudaArch(); |
|
|
|
bool builtWith(FeatureSet feature_set) const; |
|
bool hasPtx(int major, int minor) const; |
|
bool hasBin(int major, int minor) const; |
|
bool hasEqualOrLessPtx(int major, int minor) const; |
|
bool hasEqualOrGreaterPtx(int major, int minor) const; |
|
bool hasEqualOrGreaterBin(int major, int minor) const; |
|
|
|
private: |
|
static void fromStr(const String& set_as_str, std::vector<int>& arr); |
|
|
|
std::vector<int> bin; |
|
std::vector<int> ptx; |
|
std::vector<int> features; |
|
}; |
|
|
|
const CudaArch cudaArch; |
|
|
|
CudaArch::CudaArch() |
|
{ |
|
fromStr(CUDA_ARCH_BIN, bin); |
|
fromStr(CUDA_ARCH_PTX, ptx); |
|
fromStr(CUDA_ARCH_FEATURES, features); |
|
} |
|
|
|
bool CudaArch::builtWith(FeatureSet feature_set) const |
|
{ |
|
return !features.empty() && (features.back() >= feature_set); |
|
} |
|
|
|
bool CudaArch::hasPtx(int major, int minor) const |
|
{ |
|
return std::find(ptx.begin(), ptx.end(), major * 10 + minor) != ptx.end(); |
|
} |
|
|
|
bool CudaArch::hasBin(int major, int minor) const |
|
{ |
|
return std::find(bin.begin(), bin.end(), major * 10 + minor) != bin.end(); |
|
} |
|
|
|
bool CudaArch::hasEqualOrLessPtx(int major, int minor) const |
|
{ |
|
return !ptx.empty() && (ptx.front() <= major * 10 + minor); |
|
} |
|
|
|
bool CudaArch::hasEqualOrGreaterPtx(int major, int minor) const |
|
{ |
|
return !ptx.empty() && (ptx.back() >= major * 10 + minor); |
|
} |
|
|
|
bool CudaArch::hasEqualOrGreaterBin(int major, int minor) const |
|
{ |
|
return !bin.empty() && (bin.back() >= major * 10 + minor); |
|
} |
|
|
|
void CudaArch::fromStr(const String& set_as_str, std::vector<int>& arr) |
|
{ |
|
arr.clear(); |
|
|
|
size_t pos = 0; |
|
while (pos < set_as_str.size()) |
|
{ |
|
if (isspace(set_as_str[pos])) |
|
{ |
|
++pos; |
|
} |
|
else |
|
{ |
|
int cur_value; |
|
int chars_read; |
|
int args_read = sscanf(set_as_str.c_str() + pos, "%d%n", &cur_value, &chars_read); |
|
CV_Assert(args_read == 1); |
|
|
|
arr.push_back(cur_value); |
|
pos += chars_read; |
|
} |
|
} |
|
|
|
std::sort(arr.begin(), arr.end()); |
|
} |
|
} |
|
|
|
bool cv::gpu::TargetArchs::builtWith(cv::gpu::FeatureSet feature_set) |
|
{ |
|
return cudaArch.builtWith(feature_set); |
|
} |
|
|
|
bool cv::gpu::TargetArchs::has(int major, int minor) |
|
{ |
|
return hasPtx(major, minor) || hasBin(major, minor); |
|
} |
|
|
|
bool cv::gpu::TargetArchs::hasPtx(int major, int minor) |
|
{ |
|
return cudaArch.hasPtx(major, minor); |
|
} |
|
|
|
bool cv::gpu::TargetArchs::hasBin(int major, int minor) |
|
{ |
|
return cudaArch.hasBin(major, minor); |
|
} |
|
|
|
bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor) |
|
{ |
|
return cudaArch.hasEqualOrLessPtx(major, minor); |
|
} |
|
|
|
bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor) |
|
{ |
|
return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor); |
|
} |
|
|
|
bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor) |
|
{ |
|
return cudaArch.hasEqualOrGreaterPtx(major, minor); |
|
} |
|
|
|
bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor) |
|
{ |
|
return cudaArch.hasEqualOrGreaterBin(major, minor); |
|
} |
|
|
|
bool cv::gpu::deviceSupports(FeatureSet feature_set) |
|
{ |
|
static int versions[] = |
|
{ |
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 |
|
}; |
|
static const int cache_size = static_cast<int>(sizeof(versions) / sizeof(versions[0])); |
|
|
|
const int devId = getDevice(); |
|
|
|
int version; |
|
|
|
if (devId < cache_size && versions[devId] >= 0) |
|
version = versions[devId]; |
|
else |
|
{ |
|
DeviceInfo dev(devId); |
|
version = dev.majorVersion() * 10 + dev.minorVersion(); |
|
if (devId < cache_size) |
|
versions[devId] = version; |
|
} |
|
|
|
return TargetArchs::builtWith(feature_set) && (version >= feature_set); |
|
} |
|
|
|
namespace |
|
{ |
|
class DeviceProps |
|
{ |
|
public: |
|
DeviceProps(); |
|
~DeviceProps(); |
|
|
|
cudaDeviceProp* get(int devID); |
|
|
|
private: |
|
std::vector<cudaDeviceProp*> props_; |
|
}; |
|
|
|
DeviceProps::DeviceProps() |
|
{ |
|
props_.resize(10, 0); |
|
} |
|
|
|
DeviceProps::~DeviceProps() |
|
{ |
|
for (size_t i = 0; i < props_.size(); ++i) |
|
{ |
|
if (props_[i]) |
|
delete props_[i]; |
|
} |
|
props_.clear(); |
|
} |
|
|
|
cudaDeviceProp* DeviceProps::get(int devID) |
|
{ |
|
if (devID >= (int) props_.size()) |
|
props_.resize(devID + 5, 0); |
|
|
|
if (!props_[devID]) |
|
{ |
|
props_[devID] = new cudaDeviceProp; |
|
cudaSafeCall( cudaGetDeviceProperties(props_[devID], devID) ); |
|
} |
|
|
|
return props_[devID]; |
|
} |
|
|
|
DeviceProps deviceProps; |
|
} |
|
|
|
size_t cv::gpu::DeviceInfo::sharedMemPerBlock() const |
|
{ |
|
return deviceProps.get(device_id_)->sharedMemPerBlock; |
|
} |
|
|
|
void cv::gpu::DeviceInfo::queryMemory(size_t& _totalMemory, size_t& _freeMemory) const |
|
{ |
|
int prevDeviceID = getDevice(); |
|
if (prevDeviceID != device_id_) |
|
setDevice(device_id_); |
|
|
|
cudaSafeCall( cudaMemGetInfo(&_freeMemory, &_totalMemory) ); |
|
|
|
if (prevDeviceID != device_id_) |
|
setDevice(prevDeviceID); |
|
} |
|
|
|
size_t cv::gpu::DeviceInfo::freeMemory() const |
|
{ |
|
size_t _totalMemory, _freeMemory; |
|
queryMemory(_totalMemory, _freeMemory); |
|
return _freeMemory; |
|
} |
|
|
|
size_t cv::gpu::DeviceInfo::totalMemory() const |
|
{ |
|
size_t _totalMemory, _freeMemory; |
|
queryMemory(_totalMemory, _freeMemory); |
|
return _totalMemory; |
|
} |
|
|
|
bool cv::gpu::DeviceInfo::supports(FeatureSet feature_set) const |
|
{ |
|
int version = majorVersion() * 10 + minorVersion(); |
|
return version >= feature_set; |
|
} |
|
|
|
bool cv::gpu::DeviceInfo::isCompatible() const |
|
{ |
|
// Check PTX compatibility |
|
if (TargetArchs::hasEqualOrLessPtx(majorVersion(), minorVersion())) |
|
return true; |
|
|
|
// Check BIN compatibility |
|
for (int i = minorVersion(); i >= 0; --i) |
|
if (TargetArchs::hasBin(majorVersion(), i)) |
|
return true; |
|
|
|
return false; |
|
} |
|
|
|
void cv::gpu::DeviceInfo::query() |
|
{ |
|
const cudaDeviceProp* prop = deviceProps.get(device_id_); |
|
|
|
name_ = prop->name; |
|
multi_processor_count_ = prop->multiProcessorCount; |
|
majorVersion_ = prop->major; |
|
minorVersion_ = prop->minor; |
|
} |
|
|
|
namespace |
|
{ |
|
int convertSMVer2Cores(int major, int minor) |
|
{ |
|
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM |
|
typedef struct { |
|
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version |
|
int Cores; |
|
} SMtoCores; |
|
|
|
SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, {0x30, 192}, {0x35, 192}, { -1, -1 } }; |
|
|
|
int index = 0; |
|
while (gpuArchCoresPerSM[index].SM != -1) |
|
{ |
|
if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) ) |
|
return gpuArchCoresPerSM[index].Cores; |
|
index++; |
|
} |
|
|
|
return -1; |
|
} |
|
} |
|
|
|
void cv::gpu::printCudaDeviceInfo(int device) |
|
{ |
|
int count = getCudaEnabledDeviceCount(); |
|
bool valid = (device >= 0) && (device < count); |
|
|
|
int beg = valid ? device : 0; |
|
int end = valid ? device+1 : count; |
|
|
|
printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n"); |
|
printf("Device count: %d\n", count); |
|
|
|
int driverVersion = 0, runtimeVersion = 0; |
|
cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); |
|
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); |
|
|
|
const char *computeMode[] = { |
|
"Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)", |
|
"Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)", |
|
"Prohibited (no host thread can use ::cudaSetDevice() with this device)", |
|
"Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)", |
|
"Unknown", |
|
NULL |
|
}; |
|
|
|
for(int dev = beg; dev < end; ++dev) |
|
{ |
|
cudaDeviceProp prop; |
|
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); |
|
|
|
printf("\nDevice %d: \"%s\"\n", dev, prop.name); |
|
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); |
|
printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor); |
|
printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem); |
|
|
|
int cores = convertSMVer2Cores(prop.major, prop.minor); |
|
if (cores > 0) |
|
printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n", prop.multiProcessorCount, cores, cores * prop.multiProcessorCount); |
|
|
|
printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f); |
|
|
|
printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n", |
|
prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1], |
|
prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]); |
|
printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n", |
|
prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1], |
|
prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]); |
|
|
|
printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem); |
|
printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock); |
|
printf(" Total number of registers available per block: %d\n", prop.regsPerBlock); |
|
printf(" Warp size: %d\n", prop.warpSize); |
|
printf(" Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock); |
|
printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]); |
|
printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]); |
|
printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch); |
|
printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment); |
|
|
|
printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount); |
|
printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No"); |
|
printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No"); |
|
printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No"); |
|
|
|
printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No"); |
|
printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No"); |
|
printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No"); |
|
printf(" Device is using TCC driver mode: %s\n", prop.tccDriver ? "Yes" : "No"); |
|
printf(" Device supports Unified Addressing (UVA): %s\n", prop.unifiedAddressing ? "Yes" : "No"); |
|
printf(" Device PCI Bus ID / PCI location ID: %d / %d\n", prop.pciBusID, prop.pciDeviceID ); |
|
printf(" Compute Mode:\n"); |
|
printf(" %s \n", computeMode[prop.computeMode]); |
|
} |
|
|
|
printf("\n"); |
|
printf("deviceQuery, CUDA Driver = CUDART"); |
|
printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100); |
|
printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100); |
|
printf(", NumDevs = %d\n\n", count); |
|
fflush(stdout); |
|
} |
|
|
|
void cv::gpu::printShortCudaDeviceInfo(int device) |
|
{ |
|
int count = getCudaEnabledDeviceCount(); |
|
bool valid = (device >= 0) && (device < count); |
|
|
|
int beg = valid ? device : 0; |
|
int end = valid ? device+1 : count; |
|
|
|
int driverVersion = 0, runtimeVersion = 0; |
|
cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); |
|
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); |
|
|
|
for(int dev = beg; dev < end; ++dev) |
|
{ |
|
cudaDeviceProp prop; |
|
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); |
|
|
|
const char *arch_str = prop.major < 2 ? " (not Fermi)" : ""; |
|
printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f); |
|
printf(", sm_%d%d%s", prop.major, prop.minor, arch_str); |
|
|
|
int cores = convertSMVer2Cores(prop.major, prop.minor); |
|
if (cores > 0) |
|
printf(", %d cores", cores * prop.multiProcessorCount); |
|
|
|
printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); |
|
} |
|
fflush(stdout); |
|
} |
|
|
|
#endif // HAVE_CUDA |
|
|
|
//////////////////////////////// GpuMat /////////////////////////////// |
|
|
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m) |
|
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) |
|
{ |
|
if (refcount) |
|
CV_XADD(refcount, 1); |
|
} |
|
|
|
cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) : |
|
flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_), |
|
step(step_), data((uchar*)data_), refcount(0), |
|
datastart((uchar*)data_), dataend((uchar*)data_) |
|
{ |
|
size_t minstep = cols * elemSize(); |
|
|
|
if (step == Mat::AUTO_STEP) |
|
{ |
|
step = minstep; |
|
flags |= Mat::CONTINUOUS_FLAG; |
|
} |
|
else |
|
{ |
|
if (rows == 1) |
|
step = minstep; |
|
|
|
CV_DbgAssert(step >= minstep); |
|
|
|
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; |
|
} |
|
dataend += step * (rows - 1) + minstep; |
|
} |
|
|
|
cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) : |
|
flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(size_.height), cols(size_.width), |
|
step(step_), data((uchar*)data_), refcount(0), |
|
datastart((uchar*)data_), dataend((uchar*)data_) |
|
{ |
|
size_t minstep = cols * elemSize(); |
|
|
|
if (step == Mat::AUTO_STEP) |
|
{ |
|
step = minstep; |
|
flags |= Mat::CONTINUOUS_FLAG; |
|
} |
|
else |
|
{ |
|
if (rows == 1) |
|
step = minstep; |
|
|
|
CV_DbgAssert(step >= minstep); |
|
|
|
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; |
|
} |
|
dataend += step * (rows - 1) + minstep; |
|
} |
|
|
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range _rowRange, Range _colRange) |
|
{ |
|
flags = m.flags; |
|
step = m.step; refcount = m.refcount; |
|
data = m.data; datastart = m.datastart; dataend = m.dataend; |
|
|
|
if (_rowRange == Range::all()) |
|
rows = m.rows; |
|
else |
|
{ |
|
CV_Assert(0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows); |
|
|
|
rows = _rowRange.size(); |
|
data += step*_rowRange.start; |
|
} |
|
|
|
if (_colRange == Range::all()) |
|
cols = m.cols; |
|
else |
|
{ |
|
CV_Assert(0 <= _colRange.start && _colRange.start <= _colRange.end && _colRange.end <= m.cols); |
|
|
|
cols = _colRange.size(); |
|
data += _colRange.start*elemSize(); |
|
flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; |
|
} |
|
|
|
if (rows == 1) |
|
flags |= Mat::CONTINUOUS_FLAG; |
|
|
|
if (refcount) |
|
CV_XADD(refcount, 1); |
|
|
|
if (rows <= 0 || cols <= 0) |
|
rows = cols = 0; |
|
} |
|
|
|
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) : |
|
flags(m.flags), rows(roi.height), cols(roi.width), |
|
step(m.step), data(m.data + roi.y*step), refcount(m.refcount), |
|
datastart(m.datastart), dataend(m.dataend) |
|
{ |
|
flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; |
|
data += roi.x * elemSize(); |
|
|
|
CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows); |
|
|
|
if (refcount) |
|
CV_XADD(refcount, 1); |
|
|
|
if (rows <= 0 || cols <= 0) |
|
rows = cols = 0; |
|
} |
|
|
|
cv::gpu::GpuMat::GpuMat(const Mat& m) : |
|
flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) |
|
{ |
|
upload(m); |
|
} |
|
|
|
GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m) |
|
{ |
|
if (this != &m) |
|
{ |
|
GpuMat temp(m); |
|
swap(temp); |
|
} |
|
|
|
return *this; |
|
} |
|
|
|
void cv::gpu::GpuMat::swap(GpuMat& b) |
|
{ |
|
std::swap(flags, b.flags); |
|
std::swap(rows, b.rows); |
|
std::swap(cols, b.cols); |
|
std::swap(step, b.step); |
|
std::swap(data, b.data); |
|
std::swap(datastart, b.datastart); |
|
std::swap(dataend, b.dataend); |
|
std::swap(refcount, b.refcount); |
|
} |
|
|
|
void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const |
|
{ |
|
size_t esz = elemSize(); |
|
ptrdiff_t delta1 = data - datastart; |
|
ptrdiff_t delta2 = dataend - datastart; |
|
|
|
CV_DbgAssert(step > 0); |
|
|
|
if (delta1 == 0) |
|
ofs.x = ofs.y = 0; |
|
else |
|
{ |
|
ofs.y = static_cast<int>(delta1 / step); |
|
ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz); |
|
|
|
CV_DbgAssert(data == datastart + ofs.y * step + ofs.x * esz); |
|
} |
|
|
|
size_t minstep = (ofs.x + cols) * esz; |
|
|
|
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows); |
|
wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols); |
|
} |
|
|
|
GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright) |
|
{ |
|
Size wholeSize; |
|
Point ofs; |
|
locateROI(wholeSize, ofs); |
|
|
|
size_t esz = elemSize(); |
|
|
|
int row1 = std::max(ofs.y - dtop, 0); |
|
int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height); |
|
|
|
int col1 = std::max(ofs.x - dleft, 0); |
|
int col2 = std::min(ofs.x + cols + dright, wholeSize.width); |
|
|
|
data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz; |
|
rows = row2 - row1; |
|
cols = col2 - col1; |
|
|
|
if (esz * cols == step || rows == 1) |
|
flags |= Mat::CONTINUOUS_FLAG; |
|
else |
|
flags &= ~Mat::CONTINUOUS_FLAG; |
|
|
|
return *this; |
|
} |
|
|
|
GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const |
|
{ |
|
GpuMat hdr = *this; |
|
|
|
int cn = channels(); |
|
if (new_cn == 0) |
|
new_cn = cn; |
|
|
|
int total_width = cols * cn; |
|
|
|
if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0) |
|
new_rows = rows * total_width / new_cn; |
|
|
|
if (new_rows != 0 && new_rows != rows) |
|
{ |
|
int total_size = total_width * rows; |
|
|
|
if (!isContinuous()) |
|
CV_Error(CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed"); |
|
|
|
if ((unsigned)new_rows > (unsigned)total_size) |
|
CV_Error(CV_StsOutOfRange, "Bad new number of rows"); |
|
|
|
total_width = total_size / new_rows; |
|
|
|
if (total_width * new_rows != total_size) |
|
CV_Error(CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows"); |
|
|
|
hdr.rows = new_rows; |
|
hdr.step = total_width * elemSize1(); |
|
} |
|
|
|
int new_width = total_width / new_cn; |
|
|
|
if (new_width * new_cn != total_width) |
|
CV_Error(CV_BadNumChannels, "The total width is not divisible by the new number of channels"); |
|
|
|
hdr.cols = new_width; |
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT); |
|
|
|
return hdr; |
|
} |
|
|
|
cv::Mat::Mat(const GpuMat& m) : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows) |
|
{ |
|
m.download(*this); |
|
} |
|
|
|
void cv::gpu::createContinuous(int rows, int cols, int type, GpuMat& m) |
|
{ |
|
int area = rows * cols; |
|
if (m.empty() || m.type() != type || !m.isContinuous() || m.size().area() < area) |
|
m.create(1, area, type); |
|
|
|
m.cols = cols; |
|
m.rows = rows; |
|
m.step = m.elemSize() * cols; |
|
m.flags |= Mat::CONTINUOUS_FLAG; |
|
} |
|
|
|
void cv::gpu::ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m) |
|
{ |
|
if (m.empty() || m.type() != type || m.data != m.datastart) |
|
m.create(rows, cols, type); |
|
else |
|
{ |
|
const size_t esz = m.elemSize(); |
|
const ptrdiff_t delta2 = m.dataend - m.datastart; |
|
|
|
const size_t minstep = m.cols * esz; |
|
|
|
Size wholeSize; |
|
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / m.step + 1), m.rows); |
|
wholeSize.width = std::max(static_cast<int>((delta2 - m.step * (wholeSize.height - 1)) / esz), m.cols); |
|
|
|
if (wholeSize.height < rows || wholeSize.width < cols) |
|
m.create(rows, cols, type); |
|
else |
|
{ |
|
m.cols = cols; |
|
m.rows = rows; |
|
} |
|
} |
|
} |
|
|
|
GpuMat cv::gpu::allocMatFromBuf(int rows, int cols, int type, GpuMat &mat) |
|
{ |
|
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols) |
|
return mat(Rect(0, 0, cols, rows)); |
|
return mat = GpuMat(rows, cols, type); |
|
} |
|
|
|
namespace |
|
{ |
|
class GpuFuncTable |
|
{ |
|
public: |
|
virtual ~GpuFuncTable() {} |
|
|
|
virtual void copy(const Mat& src, GpuMat& dst) const = 0; |
|
virtual void copy(const GpuMat& src, Mat& dst) const = 0; |
|
virtual void copy(const GpuMat& src, GpuMat& dst) const = 0; |
|
|
|
virtual void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const = 0; |
|
|
|
virtual void convert(const GpuMat& src, GpuMat& dst) const = 0; |
|
virtual void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const = 0; |
|
|
|
virtual void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const = 0; |
|
|
|
virtual void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const = 0; |
|
virtual void free(void* devPtr) const = 0; |
|
}; |
|
} |
|
|
|
#ifndef HAVE_CUDA |
|
|
|
namespace |
|
{ |
|
class EmptyFuncTable : public GpuFuncTable |
|
{ |
|
public: |
|
void copy(const Mat&, GpuMat&) const { throw_no_cuda(); } |
|
void copy(const GpuMat&, Mat&) const { throw_no_cuda(); } |
|
void copy(const GpuMat&, GpuMat&) const { throw_no_cuda(); } |
|
|
|
void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { throw_no_cuda(); } |
|
|
|
void convert(const GpuMat&, GpuMat&) const { throw_no_cuda(); } |
|
void convert(const GpuMat&, GpuMat&, double, double) const { throw_no_cuda(); } |
|
|
|
void setTo(GpuMat&, Scalar, const GpuMat&) const { throw_no_cuda(); } |
|
|
|
void mallocPitch(void**, size_t*, size_t, size_t) const { throw_no_cuda(); } |
|
void free(void*) const {} |
|
}; |
|
|
|
const GpuFuncTable* gpuFuncTable() |
|
{ |
|
static EmptyFuncTable empty; |
|
return ∅ |
|
} |
|
} |
|
|
|
#else // HAVE_CUDA |
|
|
|
namespace cv { namespace gpu { namespace cudev |
|
{ |
|
void copyToWithMask_gpu(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream); |
|
|
|
template <typename T> |
|
void set_to_gpu(PtrStepSzb mat, const T* scalar, int channels, cudaStream_t stream); |
|
|
|
template <typename T> |
|
void set_to_gpu(PtrStepSzb mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream); |
|
|
|
void convert_gpu(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream); |
|
}}} |
|
|
|
namespace |
|
{ |
|
template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, cudaStream_t stream) |
|
{ |
|
Scalar_<T> sf = s; |
|
cv::gpu::cudev::set_to_gpu(src, sf.val, src.channels(), stream); |
|
} |
|
|
|
template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) |
|
{ |
|
Scalar_<T> sf = s; |
|
cv::gpu::cudev::set_to_gpu(src, sf.val, mask, src.channels(), stream); |
|
} |
|
} |
|
|
|
|
|
namespace cv { namespace gpu |
|
{ |
|
CV_EXPORTS void copyWithMask(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, const cv::gpu::GpuMat&, CUstream_st*); |
|
CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&); |
|
CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, double, double, CUstream_st*); |
|
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, CUstream_st*); |
|
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&, CUstream_st*); |
|
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar); |
|
CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&); |
|
}} |
|
|
|
|
|
namespace cv { namespace gpu |
|
{ |
|
void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0) |
|
{ |
|
CV_Assert(src.size() == dst.size() && src.type() == dst.type()); |
|
CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels())); |
|
|
|
cv::gpu::cudev::copyToWithMask_gpu(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream); |
|
} |
|
|
|
void convertTo(const GpuMat& src, GpuMat& dst) |
|
{ |
|
cv::gpu::cudev::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, 0); |
|
} |
|
|
|
void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0) |
|
{ |
|
cv::gpu::cudev::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream); |
|
} |
|
|
|
void setTo(GpuMat& src, Scalar s, cudaStream_t stream) |
|
{ |
|
typedef void (*caller_t)(GpuMat& src, Scalar s, cudaStream_t stream); |
|
|
|
static const caller_t callers[] = |
|
{ |
|
kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>, |
|
kernelSetCaller<float>, kernelSetCaller<double> |
|
}; |
|
|
|
callers[src.depth()](src, s, stream); |
|
} |
|
|
|
void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) |
|
{ |
|
typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream); |
|
|
|
static const caller_t callers[] = |
|
{ |
|
kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>, |
|
kernelSetCaller<float>, kernelSetCaller<double> |
|
}; |
|
|
|
callers[src.depth()](src, s, mask, stream); |
|
} |
|
|
|
void setTo(GpuMat& src, Scalar s) |
|
{ |
|
setTo(src, s, 0); |
|
} |
|
|
|
void setTo(GpuMat& src, Scalar s, const GpuMat& mask) |
|
{ |
|
setTo(src, s, mask, 0); |
|
} |
|
}} |
|
|
|
namespace |
|
{ |
|
template<int n> struct NPPTypeTraits; |
|
template<> struct NPPTypeTraits<CV_8U> { typedef Npp8u npp_type; }; |
|
template<> struct NPPTypeTraits<CV_8S> { typedef Npp8s npp_type; }; |
|
template<> struct NPPTypeTraits<CV_16U> { typedef Npp16u npp_type; }; |
|
template<> struct NPPTypeTraits<CV_16S> { typedef Npp16s npp_type; }; |
|
template<> struct NPPTypeTraits<CV_32S> { typedef Npp32s npp_type; }; |
|
template<> struct NPPTypeTraits<CV_32F> { typedef Npp32f npp_type; }; |
|
template<> struct NPPTypeTraits<CV_64F> { typedef Npp64f npp_type; }; |
|
|
|
////////////////////////////////////////////////////////////////////////// |
|
// Convert |
|
|
|
template<int SDEPTH, int DDEPTH> struct NppConvertFunc |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t; |
|
|
|
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI); |
|
}; |
|
template<int DDEPTH> struct NppConvertFunc<CV_32F, DDEPTH> |
|
{ |
|
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t; |
|
|
|
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode); |
|
}; |
|
|
|
template<int SDEPTH, int DDEPTH, typename NppConvertFunc<SDEPTH, DDEPTH>::func_ptr func> struct NppCvt |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t; |
|
|
|
static void call(const GpuMat& src, GpuMat& dst) |
|
{ |
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz) ); |
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
template<int DDEPTH, typename NppConvertFunc<CV_32F, DDEPTH>::func_ptr func> struct NppCvt<CV_32F, DDEPTH, func> |
|
{ |
|
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t; |
|
|
|
static void call(const GpuMat& src, GpuMat& dst) |
|
{ |
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( func(src.ptr<Npp32f>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz, NPP_RND_NEAR) ); |
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
|
|
////////////////////////////////////////////////////////////////////////// |
|
// Set |
|
|
|
template<int SDEPTH, int SCN> struct NppSetFunc |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
|
|
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI); |
|
}; |
|
template<int SDEPTH> struct NppSetFunc<SDEPTH, 1> |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
|
|
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI); |
|
}; |
|
template<int SCN> struct NppSetFunc<CV_8S, SCN> |
|
{ |
|
typedef NppStatus (*func_ptr)(Npp8s values[], Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI); |
|
}; |
|
template<> struct NppSetFunc<CV_8S, 1> |
|
{ |
|
typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI); |
|
}; |
|
|
|
template<int SDEPTH, int SCN, typename NppSetFunc<SDEPTH, SCN>::func_ptr func> struct NppSet |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
|
|
static void call(GpuMat& src, Scalar s) |
|
{ |
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
Scalar_<src_t> nppS = s; |
|
|
|
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz) ); |
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
template<int SDEPTH, typename NppSetFunc<SDEPTH, 1>::func_ptr func> struct NppSet<SDEPTH, 1, func> |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
|
|
static void call(GpuMat& src, Scalar s) |
|
{ |
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
Scalar_<src_t> nppS = s; |
|
|
|
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz) ); |
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
|
|
template<int SDEPTH, int SCN> struct NppSetMaskFunc |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
|
|
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); |
|
}; |
|
template<int SDEPTH> struct NppSetMaskFunc<SDEPTH, 1> |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
|
|
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); |
|
}; |
|
|
|
template<int SDEPTH, int SCN, typename NppSetMaskFunc<SDEPTH, SCN>::func_ptr func> struct NppSetMask |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
|
|
static void call(GpuMat& src, Scalar s, const GpuMat& mask) |
|
{ |
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
Scalar_<src_t> nppS = s; |
|
|
|
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) ); |
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
template<int SDEPTH, typename NppSetMaskFunc<SDEPTH, 1>::func_ptr func> struct NppSetMask<SDEPTH, 1, func> |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
|
|
static void call(GpuMat& src, Scalar s, const GpuMat& mask) |
|
{ |
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
Scalar_<src_t> nppS = s; |
|
|
|
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) ); |
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
|
|
////////////////////////////////////////////////////////////////////////// |
|
// CopyMasked |
|
|
|
template<int SDEPTH> struct NppCopyMaskedFunc |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
|
|
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); |
|
}; |
|
|
|
template<int SDEPTH, typename NppCopyMaskedFunc<SDEPTH>::func_ptr func> struct NppCopyMasked |
|
{ |
|
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t; |
|
|
|
static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/) |
|
{ |
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<src_t>(), static_cast<int>(dst.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) ); |
|
|
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
|
|
template <typename T> static inline bool isAligned(const T* ptr, size_t size) |
|
{ |
|
return reinterpret_cast<size_t>(ptr) % size == 0; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////// |
|
// CudaFuncTable |
|
|
|
class CudaFuncTable : public GpuFuncTable |
|
{ |
|
public: |
|
void copy(const Mat& src, GpuMat& dst) const |
|
{ |
|
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyHostToDevice) ); |
|
} |
|
void copy(const GpuMat& src, Mat& dst) const |
|
{ |
|
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToHost) ); |
|
} |
|
void copy(const GpuMat& src, GpuMat& dst) const |
|
{ |
|
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToDevice) ); |
|
} |
|
|
|
void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const |
|
{ |
|
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); |
|
CV_Assert(src.size() == dst.size() && src.type() == dst.type()); |
|
CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels())); |
|
|
|
if (src.depth() == CV_64F) |
|
{ |
|
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) |
|
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream); |
|
static const func_t funcs[7][4] = |
|
{ |
|
/* 8U */ {NppCopyMasked<CV_8U , nppiCopy_8u_C1MR >::call, cv::gpu::copyWithMask, NppCopyMasked<CV_8U , nppiCopy_8u_C3MR >::call, NppCopyMasked<CV_8U , nppiCopy_8u_C4MR >::call}, |
|
/* 8S */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask }, |
|
/* 16U */ {NppCopyMasked<CV_16U, nppiCopy_16u_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16U, nppiCopy_16u_C3MR>::call, NppCopyMasked<CV_16U, nppiCopy_16u_C4MR>::call}, |
|
/* 16S */ {NppCopyMasked<CV_16S, nppiCopy_16s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16S, nppiCopy_16s_C3MR>::call, NppCopyMasked<CV_16S, nppiCopy_16s_C4MR>::call}, |
|
/* 32S */ {NppCopyMasked<CV_32S, nppiCopy_32s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32S, nppiCopy_32s_C3MR>::call, NppCopyMasked<CV_32S, nppiCopy_32s_C4MR>::call}, |
|
/* 32F */ {NppCopyMasked<CV_32F, nppiCopy_32f_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32F, nppiCopy_32f_C3MR>::call, NppCopyMasked<CV_32F, nppiCopy_32f_C4MR>::call}, |
|
/* 64F */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask } |
|
}; |
|
|
|
const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cv::gpu::copyWithMask; |
|
|
|
func(src, dst, mask, 0); |
|
} |
|
|
|
void convert(const GpuMat& src, GpuMat& dst) const |
|
{ |
|
typedef void (*func_t)(const GpuMat& src, GpuMat& dst); |
|
static const func_t funcs[7][7][4] = |
|
{ |
|
{ |
|
/* 8U -> 8U */ {0, 0, 0, 0}, |
|
/* 8U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, |
|
/* 8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::call}, |
|
/* 8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::call}, |
|
/* 8U -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, |
|
/* 8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, |
|
/* 8U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo } |
|
}, |
|
{ |
|
/* 8S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 8S -> 8S */ {0,0,0,0}, |
|
/* 8S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 8S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 8S -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 8S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 8S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo} |
|
}, |
|
{ |
|
/* 16U -> 8U */ {NppCvt<CV_16U, CV_8U , nppiConvert_16u8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::call}, |
|
/* 16U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, |
|
/* 16U -> 16U */ {0,0,0,0}, |
|
/* 16U -> 16S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, |
|
/* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, |
|
/* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, |
|
/* 16U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo } |
|
}, |
|
{ |
|
/* 16S -> 8U */ {NppCvt<CV_16S, CV_8U , nppiConvert_16s8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::call}, |
|
/* 16S -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, |
|
/* 16S -> 16U */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, |
|
/* 16S -> 16S */ {0,0,0,0}, |
|
/* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, |
|
/* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, |
|
/* 16S -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo } |
|
}, |
|
{ |
|
/* 32S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 32S -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 32S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 32S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 32S -> 32S */ {0,0,0,0}, |
|
/* 32S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 32S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo} |
|
}, |
|
{ |
|
/* 32F -> 8U */ {NppCvt<CV_32F, CV_8U , nppiConvert_32f8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 32F -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 32F -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 32F -> 32F */ {0,0,0,0}, |
|
/* 32F -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo} |
|
}, |
|
{ |
|
/* 64F -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 64F -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 64F -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 64F -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 64F -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 64F -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, |
|
/* 64F -> 64F */ {0,0,0,0} |
|
} |
|
}; |
|
|
|
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); |
|
CV_Assert(dst.depth() <= CV_64F); |
|
CV_Assert(src.size() == dst.size() && src.channels() == dst.channels()); |
|
|
|
if (src.depth() == CV_64F || dst.depth() == CV_64F) |
|
{ |
|
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) |
|
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
bool aligned = isAligned(src.data, 16) && isAligned(dst.data, 16); |
|
if (!aligned) |
|
{ |
|
cv::gpu::convertTo(src, dst); |
|
return; |
|
} |
|
|
|
const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1]; |
|
CV_DbgAssert(func != 0); |
|
|
|
func(src, dst); |
|
} |
|
|
|
void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const |
|
{ |
|
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); |
|
CV_Assert(dst.depth() <= CV_64F); |
|
|
|
if (src.depth() == CV_64F || dst.depth() == CV_64F) |
|
{ |
|
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) |
|
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
cv::gpu::convertTo(src, dst, alpha, beta); |
|
} |
|
|
|
void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const |
|
{ |
|
if (mask.empty()) |
|
{ |
|
if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0) |
|
{ |
|
cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) ); |
|
return; |
|
} |
|
|
|
if (m.depth() == CV_8U) |
|
{ |
|
int cn = m.channels(); |
|
|
|
if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3])) |
|
{ |
|
int val = saturate_cast<uchar>(s[0]); |
|
cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) ); |
|
return; |
|
} |
|
} |
|
|
|
typedef void (*func_t)(GpuMat& src, Scalar s); |
|
static const func_t funcs[7][4] = |
|
{ |
|
{NppSet<CV_8U , 1, nppiSet_8u_C1R >::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_8U , 4, nppiSet_8u_C4R >::call}, |
|
{NppSet<CV_8S , 1, nppiSet_8s_C1R >::call, NppSet<CV_8S , 2, nppiSet_8s_C2R >::call, NppSet<CV_8S, 3, nppiSet_8s_C3R>::call, NppSet<CV_8S , 4, nppiSet_8s_C4R >::call}, |
|
{NppSet<CV_16U, 1, nppiSet_16u_C1R>::call, NppSet<CV_16U, 2, nppiSet_16u_C2R>::call, cv::gpu::setTo , NppSet<CV_16U, 4, nppiSet_16u_C4R>::call}, |
|
{NppSet<CV_16S, 1, nppiSet_16s_C1R>::call, NppSet<CV_16S, 2, nppiSet_16s_C2R>::call, cv::gpu::setTo , NppSet<CV_16S, 4, nppiSet_16s_C4R>::call}, |
|
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_32S, 4, nppiSet_32s_C4R>::call}, |
|
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_32F, 4, nppiSet_32f_C4R>::call}, |
|
{cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo } |
|
}; |
|
|
|
CV_Assert(m.depth() <= CV_64F && m.channels() <= 4); |
|
|
|
if (m.depth() == CV_64F) |
|
{ |
|
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) |
|
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
funcs[m.depth()][m.channels() - 1](m, s); |
|
} |
|
else |
|
{ |
|
typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask); |
|
static const func_t funcs[7][4] = |
|
{ |
|
{NppSetMask<CV_8U , 1, nppiSet_8u_C1MR >::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_8U , 4, nppiSet_8u_C4MR >::call}, |
|
{cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo }, |
|
{NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::call}, |
|
{NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::call}, |
|
{NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::call}, |
|
{NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::call}, |
|
{cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo } |
|
}; |
|
|
|
CV_Assert(m.depth() <= CV_64F && m.channels() <= 4); |
|
|
|
if (m.depth() == CV_64F) |
|
{ |
|
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) |
|
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); |
|
} |
|
|
|
funcs[m.depth()][m.channels() - 1](m, s, mask); |
|
} |
|
} |
|
|
|
void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const |
|
{ |
|
cudaSafeCall( cudaMallocPitch(devPtr, step, width, height) ); |
|
} |
|
|
|
void free(void* devPtr) const |
|
{ |
|
cudaFree(devPtr); |
|
} |
|
}; |
|
|
|
const GpuFuncTable* gpuFuncTable() |
|
{ |
|
static CudaFuncTable funcTable; |
|
return &funcTable; |
|
} |
|
} |
|
|
|
#endif // HAVE_CUDA |
|
|
|
void cv::gpu::GpuMat::upload(const Mat& m) |
|
{ |
|
CV_DbgAssert(!m.empty()); |
|
|
|
create(m.size(), m.type()); |
|
|
|
gpuFuncTable()->copy(m, *this); |
|
} |
|
|
|
void cv::gpu::GpuMat::download(Mat& m) const |
|
{ |
|
CV_DbgAssert(!empty()); |
|
|
|
m.create(size(), type()); |
|
|
|
gpuFuncTable()->copy(*this, m); |
|
} |
|
|
|
void cv::gpu::GpuMat::copyTo(GpuMat& m) const |
|
{ |
|
CV_DbgAssert(!empty()); |
|
|
|
m.create(size(), type()); |
|
|
|
gpuFuncTable()->copy(*this, m); |
|
} |
|
|
|
void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const |
|
{ |
|
if (mask.empty()) |
|
copyTo(mat); |
|
else |
|
{ |
|
mat.create(size(), type()); |
|
|
|
gpuFuncTable()->copyWithMask(*this, mat, mask); |
|
} |
|
} |
|
|
|
void cv::gpu::GpuMat::convertTo(GpuMat& dst, int rtype, double alpha, double beta) const |
|
{ |
|
bool noScale = fabs(alpha - 1) < std::numeric_limits<double>::epsilon() && fabs(beta) < std::numeric_limits<double>::epsilon(); |
|
|
|
if (rtype < 0) |
|
rtype = type(); |
|
else |
|
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels()); |
|
|
|
int sdepth = depth(); |
|
int ddepth = CV_MAT_DEPTH(rtype); |
|
if (sdepth == ddepth && noScale) |
|
{ |
|
copyTo(dst); |
|
return; |
|
} |
|
|
|
GpuMat temp; |
|
const GpuMat* psrc = this; |
|
if (sdepth != ddepth && psrc == &dst) |
|
{ |
|
temp = *this; |
|
psrc = &temp; |
|
} |
|
|
|
dst.create(size(), rtype); |
|
|
|
if (noScale) |
|
gpuFuncTable()->convert(*psrc, dst); |
|
else |
|
gpuFuncTable()->convert(*psrc, dst, alpha, beta); |
|
} |
|
|
|
GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask) |
|
{ |
|
CV_Assert(mask.empty() || mask.type() == CV_8UC1); |
|
CV_DbgAssert(!empty()); |
|
|
|
gpuFuncTable()->setTo(*this, s, mask); |
|
|
|
return *this; |
|
} |
|
|
|
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type) |
|
{ |
|
_type &= Mat::TYPE_MASK; |
|
|
|
if (rows == _rows && cols == _cols && type() == _type && data) |
|
return; |
|
|
|
if (data) |
|
release(); |
|
|
|
CV_DbgAssert(_rows >= 0 && _cols >= 0); |
|
|
|
if (_rows > 0 && _cols > 0) |
|
{ |
|
flags = Mat::MAGIC_VAL + _type; |
|
rows = _rows; |
|
cols = _cols; |
|
|
|
size_t esz = elemSize(); |
|
|
|
void* devPtr; |
|
gpuFuncTable()->mallocPitch(&devPtr, &step, esz * cols, rows); |
|
|
|
// Single row must be continuous |
|
if (rows == 1) |
|
step = esz * cols; |
|
|
|
if (esz * cols == step) |
|
flags |= Mat::CONTINUOUS_FLAG; |
|
|
|
int64 _nettosize = static_cast<int64>(step) * rows; |
|
size_t nettosize = static_cast<size_t>(_nettosize); |
|
|
|
datastart = data = static_cast<uchar*>(devPtr); |
|
dataend = data + nettosize; |
|
|
|
refcount = static_cast<int*>(fastMalloc(sizeof(*refcount))); |
|
*refcount = 1; |
|
} |
|
} |
|
|
|
void cv::gpu::GpuMat::release() |
|
{ |
|
if (refcount && CV_XADD(refcount, -1) == 1) |
|
{ |
|
fastFree(refcount); |
|
|
|
gpuFuncTable()->free(datastart); |
|
} |
|
|
|
data = datastart = dataend = 0; |
|
step = rows = cols = 0; |
|
refcount = 0; |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// Error handling |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
namespace |
|
{ |
|
#define error_entry(entry) { entry, #entry } |
|
|
|
struct ErrorEntry |
|
{ |
|
int code; |
|
const char* str; |
|
}; |
|
|
|
struct ErrorEntryComparer |
|
{ |
|
int code; |
|
ErrorEntryComparer(int code_) : code(code_) {} |
|
bool operator()(const ErrorEntry& e) const { return e.code == code; } |
|
}; |
|
|
|
const ErrorEntry npp_errors [] = |
|
{ |
|
error_entry( NPP_NOT_SUPPORTED_MODE_ERROR ), |
|
error_entry( NPP_ROUND_MODE_NOT_SUPPORTED_ERROR ), |
|
error_entry( NPP_RESIZE_NO_OPERATION_ERROR ), |
|
|
|
#if defined (_MSC_VER) |
|
error_entry( NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY ), |
|
#endif |
|
|
|
error_entry( NPP_BAD_ARG_ERROR ), |
|
error_entry( NPP_LUT_NUMBER_OF_LEVELS_ERROR ), |
|
error_entry( NPP_TEXTURE_BIND_ERROR ), |
|
error_entry( NPP_COEFF_ERROR ), |
|
error_entry( NPP_RECT_ERROR ), |
|
error_entry( NPP_QUAD_ERROR ), |
|
error_entry( NPP_WRONG_INTERSECTION_ROI_ERROR ), |
|
error_entry( NPP_NOT_EVEN_STEP_ERROR ), |
|
error_entry( NPP_INTERPOLATION_ERROR ), |
|
error_entry( NPP_RESIZE_FACTOR_ERROR ), |
|
error_entry( NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR ), |
|
error_entry( NPP_MEMFREE_ERR ), |
|
error_entry( NPP_MEMSET_ERR ), |
|
error_entry( NPP_MEMCPY_ERROR ), |
|
error_entry( NPP_MEM_ALLOC_ERR ), |
|
error_entry( NPP_HISTO_NUMBER_OF_LEVELS_ERROR ), |
|
error_entry( NPP_MIRROR_FLIP_ERR ), |
|
error_entry( NPP_INVALID_INPUT ), |
|
error_entry( NPP_ALIGNMENT_ERROR ), |
|
error_entry( NPP_STEP_ERROR ), |
|
error_entry( NPP_SIZE_ERROR ), |
|
error_entry( NPP_POINTER_ERROR ), |
|
error_entry( NPP_NULL_POINTER_ERROR ), |
|
error_entry( NPP_CUDA_KERNEL_EXECUTION_ERROR ), |
|
error_entry( NPP_NOT_IMPLEMENTED_ERROR ), |
|
error_entry( NPP_ERROR ), |
|
error_entry( NPP_NO_ERROR ), |
|
error_entry( NPP_SUCCESS ), |
|
error_entry( NPP_WARNING ), |
|
error_entry( NPP_WRONG_INTERSECTION_QUAD_WARNING ), |
|
error_entry( NPP_MISALIGNED_DST_ROI_WARNING ), |
|
error_entry( NPP_AFFINE_QUAD_INCORRECT_WARNING ), |
|
error_entry( NPP_DOUBLE_SIZE_WARNING ), |
|
error_entry( NPP_ODD_ROI_WARNING ) |
|
}; |
|
|
|
const size_t npp_error_num = sizeof(npp_errors) / sizeof(npp_errors[0]); |
|
|
|
const ErrorEntry cu_errors [] = |
|
{ |
|
error_entry( CUDA_SUCCESS ), |
|
error_entry( CUDA_ERROR_INVALID_VALUE ), |
|
error_entry( CUDA_ERROR_OUT_OF_MEMORY ), |
|
error_entry( CUDA_ERROR_NOT_INITIALIZED ), |
|
error_entry( CUDA_ERROR_DEINITIALIZED ), |
|
error_entry( CUDA_ERROR_PROFILER_DISABLED ), |
|
error_entry( CUDA_ERROR_PROFILER_NOT_INITIALIZED ), |
|
error_entry( CUDA_ERROR_PROFILER_ALREADY_STARTED ), |
|
error_entry( CUDA_ERROR_PROFILER_ALREADY_STOPPED ), |
|
error_entry( CUDA_ERROR_NO_DEVICE ), |
|
error_entry( CUDA_ERROR_INVALID_DEVICE ), |
|
error_entry( CUDA_ERROR_INVALID_IMAGE ), |
|
error_entry( CUDA_ERROR_INVALID_CONTEXT ), |
|
error_entry( CUDA_ERROR_CONTEXT_ALREADY_CURRENT ), |
|
error_entry( CUDA_ERROR_MAP_FAILED ), |
|
error_entry( CUDA_ERROR_UNMAP_FAILED ), |
|
error_entry( CUDA_ERROR_ARRAY_IS_MAPPED ), |
|
error_entry( CUDA_ERROR_ALREADY_MAPPED ), |
|
error_entry( CUDA_ERROR_NO_BINARY_FOR_GPU ), |
|
error_entry( CUDA_ERROR_ALREADY_ACQUIRED ), |
|
error_entry( CUDA_ERROR_NOT_MAPPED ), |
|
error_entry( CUDA_ERROR_NOT_MAPPED_AS_ARRAY ), |
|
error_entry( CUDA_ERROR_NOT_MAPPED_AS_POINTER ), |
|
error_entry( CUDA_ERROR_ECC_UNCORRECTABLE ), |
|
error_entry( CUDA_ERROR_UNSUPPORTED_LIMIT ), |
|
error_entry( CUDA_ERROR_CONTEXT_ALREADY_IN_USE ), |
|
error_entry( CUDA_ERROR_INVALID_SOURCE ), |
|
error_entry( CUDA_ERROR_FILE_NOT_FOUND ), |
|
error_entry( CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND ), |
|
error_entry( CUDA_ERROR_SHARED_OBJECT_INIT_FAILED ), |
|
error_entry( CUDA_ERROR_OPERATING_SYSTEM ), |
|
error_entry( CUDA_ERROR_INVALID_HANDLE ), |
|
error_entry( CUDA_ERROR_NOT_FOUND ), |
|
error_entry( CUDA_ERROR_NOT_READY ), |
|
error_entry( CUDA_ERROR_LAUNCH_FAILED ), |
|
error_entry( CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES ), |
|
error_entry( CUDA_ERROR_LAUNCH_TIMEOUT ), |
|
error_entry( CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING ), |
|
error_entry( CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED ), |
|
error_entry( CUDA_ERROR_PEER_ACCESS_NOT_ENABLED ), |
|
error_entry( CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE ), |
|
error_entry( CUDA_ERROR_CONTEXT_IS_DESTROYED ), |
|
error_entry( CUDA_ERROR_ASSERT ), |
|
error_entry( CUDA_ERROR_TOO_MANY_PEERS ), |
|
error_entry( CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED ), |
|
error_entry( CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED ), |
|
error_entry( CUDA_ERROR_UNKNOWN ) |
|
}; |
|
|
|
const size_t cu_errors_num = sizeof(cu_errors) / sizeof(cu_errors[0]); |
|
|
|
cv::String getErrorString(int code, const ErrorEntry* errors, size_t n) |
|
{ |
|
size_t idx = std::find_if(errors, errors + n, ErrorEntryComparer(code)) - errors; |
|
|
|
const char* msg = (idx != n) ? errors[idx].str : "Unknown error code"; |
|
cv::String str = cv::format("%s [Code = %d]", msg, code); |
|
|
|
return str; |
|
} |
|
} |
|
|
|
#endif |
|
|
|
String cv::gpu::getNppErrorMessage(int code) |
|
{ |
|
#ifndef HAVE_CUDA |
|
(void) code; |
|
return String(); |
|
#else |
|
return getErrorString(code, npp_errors, npp_error_num); |
|
#endif |
|
} |
|
|
|
String cv::gpu::getCudaDriverApiErrorMessage(int code) |
|
{ |
|
#ifndef HAVE_CUDA |
|
(void) code; |
|
return String(); |
|
#else |
|
return getErrorString(code, cu_errors, cu_errors_num); |
|
#endif |
|
} |
|
|
|
bool cv::gpu::tryConvertToGpuBorderType(int cpuBorderType, int& gpuBorderType) |
|
{ |
|
#ifndef HAVE_CUDA |
|
(void) cpuBorderType; |
|
(void) gpuBorderType; |
|
return false; |
|
#else |
|
switch (cpuBorderType) |
|
{ |
|
case IPL_BORDER_REFLECT_101: |
|
gpuBorderType = cv::gpu::BORDER_REFLECT101_GPU; |
|
return true; |
|
case IPL_BORDER_REPLICATE: |
|
gpuBorderType = cv::gpu::BORDER_REPLICATE_GPU; |
|
return true; |
|
case IPL_BORDER_CONSTANT: |
|
gpuBorderType = cv::gpu::BORDER_CONSTANT_GPU; |
|
return true; |
|
case IPL_BORDER_REFLECT: |
|
gpuBorderType = cv::gpu::BORDER_REFLECT_GPU; |
|
return true; |
|
case IPL_BORDER_WRAP: |
|
gpuBorderType = cv::gpu::BORDER_WRAP_GPU; |
|
return true; |
|
default: |
|
return false; |
|
}; |
|
#endif |
|
}
|
|
|