mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1484 lines
56 KiB
1484 lines
56 KiB
// Copyright 2011 Google Inc. All Rights Reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style license |
|
// that can be found in the COPYING file in the root of the source |
|
// tree. An additional intellectual property rights grant can be found |
|
// in the file PATENTS. All contributing project authors may |
|
// be found in the AUTHORS file in the root of the source tree. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// SSE2 version of speed-critical encoding functions. |
|
// |
|
// Author: Christian Duvivier (cduvivier@google.com) |
|
|
|
#include "./dsp.h" |
|
|
|
#if defined(WEBP_USE_SSE2) |
|
#include <assert.h> |
|
#include <stdlib.h> // for abs() |
|
#include <emmintrin.h> |
|
|
|
#include "./common_sse2.h" |
|
#include "../enc/cost_enc.h" |
|
#include "../enc/vp8i_enc.h" |
|
|
|
//------------------------------------------------------------------------------ |
|
// Transforms (Paragraph 14.4) |
|
|
|
// Does one or two inverse transforms. |
|
static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst, |
|
int do_two) { |
|
// This implementation makes use of 16-bit fixed point versions of two |
|
// multiply constants: |
|
// K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 |
|
// K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 |
|
// |
|
// To be able to use signed 16-bit integers, we use the following trick to |
|
// have constants within range: |
|
// - Associated constants are obtained by subtracting the 16-bit fixed point |
|
// version of one: |
|
// k = K - (1 << 16) => K = k + (1 << 16) |
|
// K1 = 85267 => k1 = 20091 |
|
// K2 = 35468 => k2 = -30068 |
|
// - The multiplication of a variable by a constant become the sum of the |
|
// variable and the multiplication of that variable by the associated |
|
// constant: |
|
// (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x |
|
const __m128i k1 = _mm_set1_epi16(20091); |
|
const __m128i k2 = _mm_set1_epi16(-30068); |
|
__m128i T0, T1, T2, T3; |
|
|
|
// Load and concatenate the transform coefficients (we'll do two inverse |
|
// transforms in parallel). In the case of only one inverse transform, the |
|
// second half of the vectors will just contain random value we'll never |
|
// use nor store. |
|
__m128i in0, in1, in2, in3; |
|
{ |
|
in0 = _mm_loadl_epi64((const __m128i*)&in[0]); |
|
in1 = _mm_loadl_epi64((const __m128i*)&in[4]); |
|
in2 = _mm_loadl_epi64((const __m128i*)&in[8]); |
|
in3 = _mm_loadl_epi64((const __m128i*)&in[12]); |
|
// a00 a10 a20 a30 x x x x |
|
// a01 a11 a21 a31 x x x x |
|
// a02 a12 a22 a32 x x x x |
|
// a03 a13 a23 a33 x x x x |
|
if (do_two) { |
|
const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); |
|
const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); |
|
const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); |
|
const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); |
|
in0 = _mm_unpacklo_epi64(in0, inB0); |
|
in1 = _mm_unpacklo_epi64(in1, inB1); |
|
in2 = _mm_unpacklo_epi64(in2, inB2); |
|
in3 = _mm_unpacklo_epi64(in3, inB3); |
|
// a00 a10 a20 a30 b00 b10 b20 b30 |
|
// a01 a11 a21 a31 b01 b11 b21 b31 |
|
// a02 a12 a22 a32 b02 b12 b22 b32 |
|
// a03 a13 a23 a33 b03 b13 b23 b33 |
|
} |
|
} |
|
|
|
// Vertical pass and subsequent transpose. |
|
{ |
|
// First pass, c and d calculations are longer because of the "trick" |
|
// multiplications. |
|
const __m128i a = _mm_add_epi16(in0, in2); |
|
const __m128i b = _mm_sub_epi16(in0, in2); |
|
// c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 |
|
const __m128i c1 = _mm_mulhi_epi16(in1, k2); |
|
const __m128i c2 = _mm_mulhi_epi16(in3, k1); |
|
const __m128i c3 = _mm_sub_epi16(in1, in3); |
|
const __m128i c4 = _mm_sub_epi16(c1, c2); |
|
const __m128i c = _mm_add_epi16(c3, c4); |
|
// d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 |
|
const __m128i d1 = _mm_mulhi_epi16(in1, k1); |
|
const __m128i d2 = _mm_mulhi_epi16(in3, k2); |
|
const __m128i d3 = _mm_add_epi16(in1, in3); |
|
const __m128i d4 = _mm_add_epi16(d1, d2); |
|
const __m128i d = _mm_add_epi16(d3, d4); |
|
|
|
// Second pass. |
|
const __m128i tmp0 = _mm_add_epi16(a, d); |
|
const __m128i tmp1 = _mm_add_epi16(b, c); |
|
const __m128i tmp2 = _mm_sub_epi16(b, c); |
|
const __m128i tmp3 = _mm_sub_epi16(a, d); |
|
|
|
// Transpose the two 4x4. |
|
VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3); |
|
} |
|
|
|
// Horizontal pass and subsequent transpose. |
|
{ |
|
// First pass, c and d calculations are longer because of the "trick" |
|
// multiplications. |
|
const __m128i four = _mm_set1_epi16(4); |
|
const __m128i dc = _mm_add_epi16(T0, four); |
|
const __m128i a = _mm_add_epi16(dc, T2); |
|
const __m128i b = _mm_sub_epi16(dc, T2); |
|
// c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 |
|
const __m128i c1 = _mm_mulhi_epi16(T1, k2); |
|
const __m128i c2 = _mm_mulhi_epi16(T3, k1); |
|
const __m128i c3 = _mm_sub_epi16(T1, T3); |
|
const __m128i c4 = _mm_sub_epi16(c1, c2); |
|
const __m128i c = _mm_add_epi16(c3, c4); |
|
// d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 |
|
const __m128i d1 = _mm_mulhi_epi16(T1, k1); |
|
const __m128i d2 = _mm_mulhi_epi16(T3, k2); |
|
const __m128i d3 = _mm_add_epi16(T1, T3); |
|
const __m128i d4 = _mm_add_epi16(d1, d2); |
|
const __m128i d = _mm_add_epi16(d3, d4); |
|
|
|
// Second pass. |
|
const __m128i tmp0 = _mm_add_epi16(a, d); |
|
const __m128i tmp1 = _mm_add_epi16(b, c); |
|
const __m128i tmp2 = _mm_sub_epi16(b, c); |
|
const __m128i tmp3 = _mm_sub_epi16(a, d); |
|
const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); |
|
const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); |
|
const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); |
|
const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); |
|
|
|
// Transpose the two 4x4. |
|
VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1, |
|
&T2, &T3); |
|
} |
|
|
|
// Add inverse transform to 'ref' and store. |
|
{ |
|
const __m128i zero = _mm_setzero_si128(); |
|
// Load the reference(s). |
|
__m128i ref0, ref1, ref2, ref3; |
|
if (do_two) { |
|
// Load eight bytes/pixels per line. |
|
ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
|
ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
|
ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
|
ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
|
} else { |
|
// Load four bytes/pixels per line. |
|
ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS])); |
|
ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS])); |
|
ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS])); |
|
ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS])); |
|
} |
|
// Convert to 16b. |
|
ref0 = _mm_unpacklo_epi8(ref0, zero); |
|
ref1 = _mm_unpacklo_epi8(ref1, zero); |
|
ref2 = _mm_unpacklo_epi8(ref2, zero); |
|
ref3 = _mm_unpacklo_epi8(ref3, zero); |
|
// Add the inverse transform(s). |
|
ref0 = _mm_add_epi16(ref0, T0); |
|
ref1 = _mm_add_epi16(ref1, T1); |
|
ref2 = _mm_add_epi16(ref2, T2); |
|
ref3 = _mm_add_epi16(ref3, T3); |
|
// Unsigned saturate to 8b. |
|
ref0 = _mm_packus_epi16(ref0, ref0); |
|
ref1 = _mm_packus_epi16(ref1, ref1); |
|
ref2 = _mm_packus_epi16(ref2, ref2); |
|
ref3 = _mm_packus_epi16(ref3, ref3); |
|
// Store the results. |
|
if (do_two) { |
|
// Store eight bytes/pixels per line. |
|
_mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); |
|
_mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); |
|
_mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); |
|
_mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); |
|
} else { |
|
// Store four bytes/pixels per line. |
|
WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0)); |
|
WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1)); |
|
WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2)); |
|
WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3)); |
|
} |
|
} |
|
} |
|
|
|
static void FTransformPass1(const __m128i* const in01, |
|
const __m128i* const in23, |
|
__m128i* const out01, |
|
__m128i* const out32) { |
|
const __m128i k937 = _mm_set1_epi32(937); |
|
const __m128i k1812 = _mm_set1_epi32(1812); |
|
|
|
const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); |
|
const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); |
|
const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, |
|
2217, 5352, 2217, 5352); |
|
const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, |
|
-5352, 2217, -5352, 2217); |
|
|
|
// *in01 = 00 01 10 11 02 03 12 13 |
|
// *in23 = 20 21 30 31 22 23 32 33 |
|
const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1)); |
|
const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1)); |
|
// 00 01 10 11 03 02 13 12 |
|
// 20 21 30 31 23 22 33 32 |
|
const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); |
|
const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); |
|
// 00 01 10 11 20 21 30 31 |
|
// 03 02 13 12 23 22 33 32 |
|
const __m128i a01 = _mm_add_epi16(s01, s32); |
|
const __m128i a32 = _mm_sub_epi16(s01, s32); |
|
// [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] |
|
// [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] |
|
|
|
const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] |
|
const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] |
|
const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); |
|
const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); |
|
const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); |
|
const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); |
|
const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); |
|
const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); |
|
const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); |
|
const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); |
|
const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... |
|
const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 |
|
const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); |
|
*out01 = _mm_unpacklo_epi32(s_lo, s_hi); |
|
*out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. |
|
} |
|
|
|
static void FTransformPass2(const __m128i* const v01, const __m128i* const v32, |
|
int16_t* out) { |
|
const __m128i zero = _mm_setzero_si128(); |
|
const __m128i seven = _mm_set1_epi16(7); |
|
const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, |
|
5352, 2217, 5352, 2217); |
|
const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, |
|
2217, -5352, 2217, -5352); |
|
const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); |
|
const __m128i k51000 = _mm_set1_epi32(51000); |
|
|
|
// Same operations are done on the (0,3) and (1,2) pairs. |
|
// a3 = v0 - v3 |
|
// a2 = v1 - v2 |
|
const __m128i a32 = _mm_sub_epi16(*v01, *v32); |
|
const __m128i a22 = _mm_unpackhi_epi64(a32, a32); |
|
|
|
const __m128i b23 = _mm_unpacklo_epi16(a22, a32); |
|
const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); |
|
const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); |
|
const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); |
|
const __m128i d3 = _mm_add_epi32(c3, k51000); |
|
const __m128i e1 = _mm_srai_epi32(d1, 16); |
|
const __m128i e3 = _mm_srai_epi32(d3, 16); |
|
// f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) |
|
// f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) |
|
const __m128i f1 = _mm_packs_epi32(e1, e1); |
|
const __m128i f3 = _mm_packs_epi32(e3, e3); |
|
// g1 = f1 + (a3 != 0); |
|
// The compare will return (0xffff, 0) for (==0, !=0). To turn that into the |
|
// desired (0, 1), we add one earlier through k12000_plus_one. |
|
// -> g1 = f1 + 1 - (a3 == 0) |
|
const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); |
|
|
|
// a0 = v0 + v3 |
|
// a1 = v1 + v2 |
|
const __m128i a01 = _mm_add_epi16(*v01, *v32); |
|
const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); |
|
const __m128i a11 = _mm_unpackhi_epi64(a01, a01); |
|
const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); |
|
const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); |
|
// d0 = (a0 + a1 + 7) >> 4; |
|
// d2 = (a0 - a1 + 7) >> 4; |
|
const __m128i d0 = _mm_srai_epi16(c0, 4); |
|
const __m128i d2 = _mm_srai_epi16(c2, 4); |
|
|
|
const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1); |
|
const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3); |
|
_mm_storeu_si128((__m128i*)&out[0], d0_g1); |
|
_mm_storeu_si128((__m128i*)&out[8], d2_f3); |
|
} |
|
|
|
static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) { |
|
const __m128i zero = _mm_setzero_si128(); |
|
// Load src. |
|
const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); |
|
const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); |
|
const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); |
|
const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); |
|
// 00 01 02 03 * |
|
// 10 11 12 13 * |
|
// 20 21 22 23 * |
|
// 30 31 32 33 * |
|
// Shuffle. |
|
const __m128i src_0 = _mm_unpacklo_epi16(src0, src1); |
|
const __m128i src_1 = _mm_unpacklo_epi16(src2, src3); |
|
// 00 01 10 11 02 03 12 13 * * ... |
|
// 20 21 30 31 22 22 32 33 * * ... |
|
|
|
// Load ref. |
|
const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
|
const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
|
const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
|
const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
|
const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1); |
|
const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3); |
|
|
|
// Convert both to 16 bit. |
|
const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero); |
|
const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero); |
|
const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero); |
|
const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero); |
|
|
|
// Compute the difference. |
|
const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b); |
|
const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b); |
|
__m128i v01, v32; |
|
|
|
// First pass |
|
FTransformPass1(&row01, &row23, &v01, &v32); |
|
|
|
// Second pass |
|
FTransformPass2(&v01, &v32, out); |
|
} |
|
|
|
static void FTransform2(const uint8_t* src, const uint8_t* ref, int16_t* out) { |
|
const __m128i zero = _mm_setzero_si128(); |
|
|
|
// Load src and convert to 16b. |
|
const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); |
|
const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); |
|
const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); |
|
const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); |
|
const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); |
|
const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); |
|
const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); |
|
const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); |
|
// Load ref and convert to 16b. |
|
const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
|
const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
|
const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
|
const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
|
const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); |
|
const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); |
|
const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); |
|
const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); |
|
// Compute difference. -> 00 01 02 03 00' 01' 02' 03' |
|
const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); |
|
const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); |
|
const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); |
|
const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); |
|
|
|
// Unpack and shuffle |
|
// 00 01 02 03 0 0 0 0 |
|
// 10 11 12 13 0 0 0 0 |
|
// 20 21 22 23 0 0 0 0 |
|
// 30 31 32 33 0 0 0 0 |
|
const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1); |
|
const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3); |
|
const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1); |
|
const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3); |
|
__m128i v01l, v32l; |
|
__m128i v01h, v32h; |
|
|
|
// First pass |
|
FTransformPass1(&shuf01l, &shuf23l, &v01l, &v32l); |
|
FTransformPass1(&shuf01h, &shuf23h, &v01h, &v32h); |
|
|
|
// Second pass |
|
FTransformPass2(&v01l, &v32l, out + 0); |
|
FTransformPass2(&v01h, &v32h, out + 16); |
|
} |
|
|
|
static void FTransformWHTRow(const int16_t* const in, __m128i* const out) { |
|
const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1); |
|
const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]); |
|
const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]); |
|
const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]); |
|
const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]); |
|
const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ... |
|
const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ... |
|
const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ... |
|
const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ... |
|
const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2 | ... |
|
const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1 | ... |
|
const __m128i D = _mm_unpacklo_epi64(C0, C1); // a0 a1 a3 a2 a3 a2 a0 a1 |
|
*out = _mm_madd_epi16(D, kMult); |
|
} |
|
|
|
static void FTransformWHT(const int16_t* in, int16_t* out) { |
|
// Input is 12b signed. |
|
__m128i row0, row1, row2, row3; |
|
// Rows are 14b signed. |
|
FTransformWHTRow(in + 0 * 64, &row0); |
|
FTransformWHTRow(in + 1 * 64, &row1); |
|
FTransformWHTRow(in + 2 * 64, &row2); |
|
FTransformWHTRow(in + 3 * 64, &row3); |
|
|
|
{ |
|
// The a* are 15b signed. |
|
const __m128i a0 = _mm_add_epi32(row0, row2); |
|
const __m128i a1 = _mm_add_epi32(row1, row3); |
|
const __m128i a2 = _mm_sub_epi32(row1, row3); |
|
const __m128i a3 = _mm_sub_epi32(row0, row2); |
|
const __m128i a0a3 = _mm_packs_epi32(a0, a3); |
|
const __m128i a1a2 = _mm_packs_epi32(a1, a2); |
|
|
|
// The b* are 16b signed. |
|
const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2); |
|
const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2); |
|
const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2); |
|
const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2); |
|
|
|
_mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1)); |
|
_mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1)); |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Compute susceptibility based on DCT-coeff histograms: |
|
// the higher, the "easier" the macroblock is to compress. |
|
|
|
static void CollectHistogram(const uint8_t* ref, const uint8_t* pred, |
|
int start_block, int end_block, |
|
VP8Histogram* const histo) { |
|
const __m128i zero = _mm_setzero_si128(); |
|
const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); |
|
int j; |
|
int distribution[MAX_COEFF_THRESH + 1] = { 0 }; |
|
for (j = start_block; j < end_block; ++j) { |
|
int16_t out[16]; |
|
int k; |
|
|
|
FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); |
|
|
|
// Convert coefficients to bin (within out[]). |
|
{ |
|
// Load. |
|
const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); |
|
const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); |
|
const __m128i d0 = _mm_sub_epi16(zero, out0); |
|
const __m128i d1 = _mm_sub_epi16(zero, out1); |
|
const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b |
|
const __m128i abs1 = _mm_max_epi16(out1, d1); |
|
// v = abs(out) >> 3 |
|
const __m128i v0 = _mm_srai_epi16(abs0, 3); |
|
const __m128i v1 = _mm_srai_epi16(abs1, 3); |
|
// bin = min(v, MAX_COEFF_THRESH) |
|
const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); |
|
const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); |
|
// Store. |
|
_mm_storeu_si128((__m128i*)&out[0], bin0); |
|
_mm_storeu_si128((__m128i*)&out[8], bin1); |
|
} |
|
|
|
// Convert coefficients to bin. |
|
for (k = 0; k < 16; ++k) { |
|
++distribution[out[k]]; |
|
} |
|
} |
|
VP8SetHistogramData(distribution, histo); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Intra predictions |
|
|
|
// helper for chroma-DC predictions |
|
static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) { |
|
int j; |
|
const __m128i values = _mm_set1_epi8(v); |
|
for (j = 0; j < 8; ++j) { |
|
_mm_storel_epi64((__m128i*)(dst + j * BPS), values); |
|
} |
|
} |
|
|
|
static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) { |
|
int j; |
|
const __m128i values = _mm_set1_epi8(v); |
|
for (j = 0; j < 16; ++j) { |
|
_mm_store_si128((__m128i*)(dst + j * BPS), values); |
|
} |
|
} |
|
|
|
static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) { |
|
if (size == 4) { |
|
int j; |
|
for (j = 0; j < 4; ++j) { |
|
memset(dst + j * BPS, value, 4); |
|
} |
|
} else if (size == 8) { |
|
Put8x8uv(value, dst); |
|
} else { |
|
Put16(value, dst); |
|
} |
|
} |
|
|
|
static WEBP_INLINE void VE8uv(uint8_t* dst, const uint8_t* top) { |
|
int j; |
|
const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
|
for (j = 0; j < 8; ++j) { |
|
_mm_storel_epi64((__m128i*)(dst + j * BPS), top_values); |
|
} |
|
} |
|
|
|
static WEBP_INLINE void VE16(uint8_t* dst, const uint8_t* top) { |
|
const __m128i top_values = _mm_load_si128((const __m128i*)top); |
|
int j; |
|
for (j = 0; j < 16; ++j) { |
|
_mm_store_si128((__m128i*)(dst + j * BPS), top_values); |
|
} |
|
} |
|
|
|
static WEBP_INLINE void VerticalPred(uint8_t* dst, |
|
const uint8_t* top, int size) { |
|
if (top != NULL) { |
|
if (size == 8) { |
|
VE8uv(dst, top); |
|
} else { |
|
VE16(dst, top); |
|
} |
|
} else { |
|
Fill(dst, 127, size); |
|
} |
|
} |
|
|
|
static WEBP_INLINE void HE8uv(uint8_t* dst, const uint8_t* left) { |
|
int j; |
|
for (j = 0; j < 8; ++j) { |
|
const __m128i values = _mm_set1_epi8(left[j]); |
|
_mm_storel_epi64((__m128i*)dst, values); |
|
dst += BPS; |
|
} |
|
} |
|
|
|
static WEBP_INLINE void HE16(uint8_t* dst, const uint8_t* left) { |
|
int j; |
|
for (j = 0; j < 16; ++j) { |
|
const __m128i values = _mm_set1_epi8(left[j]); |
|
_mm_store_si128((__m128i*)dst, values); |
|
dst += BPS; |
|
} |
|
} |
|
|
|
static WEBP_INLINE void HorizontalPred(uint8_t* dst, |
|
const uint8_t* left, int size) { |
|
if (left != NULL) { |
|
if (size == 8) { |
|
HE8uv(dst, left); |
|
} else { |
|
HE16(dst, left); |
|
} |
|
} else { |
|
Fill(dst, 129, size); |
|
} |
|
} |
|
|
|
static WEBP_INLINE void TM(uint8_t* dst, const uint8_t* left, |
|
const uint8_t* top, int size) { |
|
const __m128i zero = _mm_setzero_si128(); |
|
int y; |
|
if (size == 8) { |
|
const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
|
const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
|
for (y = 0; y < 8; ++y, dst += BPS) { |
|
const int val = left[y] - left[-1]; |
|
const __m128i base = _mm_set1_epi16(val); |
|
const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
|
_mm_storel_epi64((__m128i*)dst, out); |
|
} |
|
} else { |
|
const __m128i top_values = _mm_load_si128((const __m128i*)top); |
|
const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); |
|
const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); |
|
for (y = 0; y < 16; ++y, dst += BPS) { |
|
const int val = left[y] - left[-1]; |
|
const __m128i base = _mm_set1_epi16(val); |
|
const __m128i out_0 = _mm_add_epi16(base, top_base_0); |
|
const __m128i out_1 = _mm_add_epi16(base, top_base_1); |
|
const __m128i out = _mm_packus_epi16(out_0, out_1); |
|
_mm_store_si128((__m128i*)dst, out); |
|
} |
|
} |
|
} |
|
|
|
static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left, |
|
const uint8_t* top, int size) { |
|
if (left != NULL) { |
|
if (top != NULL) { |
|
TM(dst, left, top, size); |
|
} else { |
|
HorizontalPred(dst, left, size); |
|
} |
|
} else { |
|
// true motion without left samples (hence: with default 129 value) |
|
// is equivalent to VE prediction where you just copy the top samples. |
|
// Note that if top samples are not available, the default value is |
|
// then 129, and not 127 as in the VerticalPred case. |
|
if (top != NULL) { |
|
VerticalPred(dst, top, size); |
|
} else { |
|
Fill(dst, 129, size); |
|
} |
|
} |
|
} |
|
|
|
static WEBP_INLINE void DC8uv(uint8_t* dst, const uint8_t* left, |
|
const uint8_t* top) { |
|
const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
|
const __m128i left_values = _mm_loadl_epi64((const __m128i*)left); |
|
const __m128i combined = _mm_unpacklo_epi64(top_values, left_values); |
|
const int DC = VP8HorizontalAdd8b(&combined) + 8; |
|
Put8x8uv(DC >> 4, dst); |
|
} |
|
|
|
static WEBP_INLINE void DC8uvNoLeft(uint8_t* dst, const uint8_t* top) { |
|
const __m128i zero = _mm_setzero_si128(); |
|
const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
|
const __m128i sum = _mm_sad_epu8(top_values, zero); |
|
const int DC = _mm_cvtsi128_si32(sum) + 4; |
|
Put8x8uv(DC >> 3, dst); |
|
} |
|
|
|
static WEBP_INLINE void DC8uvNoTop(uint8_t* dst, const uint8_t* left) { |
|
// 'left' is contiguous so we can reuse the top summation. |
|
DC8uvNoLeft(dst, left); |
|
} |
|
|
|
static WEBP_INLINE void DC8uvNoTopLeft(uint8_t* dst) { |
|
Put8x8uv(0x80, dst); |
|
} |
|
|
|
static WEBP_INLINE void DC8uvMode(uint8_t* dst, const uint8_t* left, |
|
const uint8_t* top) { |
|
if (top != NULL) { |
|
if (left != NULL) { // top and left present |
|
DC8uv(dst, left, top); |
|
} else { // top, but no left |
|
DC8uvNoLeft(dst, top); |
|
} |
|
} else if (left != NULL) { // left but no top |
|
DC8uvNoTop(dst, left); |
|
} else { // no top, no left, nothing. |
|
DC8uvNoTopLeft(dst); |
|
} |
|
} |
|
|
|
static WEBP_INLINE void DC16(uint8_t* dst, const uint8_t* left, |
|
const uint8_t* top) { |
|
const __m128i top_row = _mm_load_si128((const __m128i*)top); |
|
const __m128i left_row = _mm_load_si128((const __m128i*)left); |
|
const int DC = |
|
VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16; |
|
Put16(DC >> 5, dst); |
|
} |
|
|
|
static WEBP_INLINE void DC16NoLeft(uint8_t* dst, const uint8_t* top) { |
|
const __m128i top_row = _mm_load_si128((const __m128i*)top); |
|
const int DC = VP8HorizontalAdd8b(&top_row) + 8; |
|
Put16(DC >> 4, dst); |
|
} |
|
|
|
static WEBP_INLINE void DC16NoTop(uint8_t* dst, const uint8_t* left) { |
|
// 'left' is contiguous so we can reuse the top summation. |
|
DC16NoLeft(dst, left); |
|
} |
|
|
|
static WEBP_INLINE void DC16NoTopLeft(uint8_t* dst) { |
|
Put16(0x80, dst); |
|
} |
|
|
|
static WEBP_INLINE void DC16Mode(uint8_t* dst, const uint8_t* left, |
|
const uint8_t* top) { |
|
if (top != NULL) { |
|
if (left != NULL) { // top and left present |
|
DC16(dst, left, top); |
|
} else { // top, but no left |
|
DC16NoLeft(dst, top); |
|
} |
|
} else if (left != NULL) { // left but no top |
|
DC16NoTop(dst, left); |
|
} else { // no top, no left, nothing. |
|
DC16NoTopLeft(dst); |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// 4x4 predictions |
|
|
|
#define DST(x, y) dst[(x) + (y) * BPS] |
|
#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) |
|
#define AVG2(a, b) (((a) + (b) + 1) >> 1) |
|
|
|
// We use the following 8b-arithmetic tricks: |
|
// (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 |
|
// where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] |
|
// and: |
|
// (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb |
|
// where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 |
|
// and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 |
|
|
|
static WEBP_INLINE void VE4(uint8_t* dst, const uint8_t* top) { // vertical |
|
const __m128i one = _mm_set1_epi8(1); |
|
const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1)); |
|
const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
|
const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
|
const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); |
|
const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); |
|
const __m128i b = _mm_subs_epu8(a, lsb); |
|
const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); |
|
const uint32_t vals = _mm_cvtsi128_si32(avg); |
|
int i; |
|
for (i = 0; i < 4; ++i) { |
|
WebPUint32ToMem(dst + i * BPS, vals); |
|
} |
|
} |
|
|
|
static WEBP_INLINE void HE4(uint8_t* dst, const uint8_t* top) { // horizontal |
|
const int X = top[-1]; |
|
const int I = top[-2]; |
|
const int J = top[-3]; |
|
const int K = top[-4]; |
|
const int L = top[-5]; |
|
WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J)); |
|
WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K)); |
|
WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L)); |
|
WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L)); |
|
} |
|
|
|
static WEBP_INLINE void DC4(uint8_t* dst, const uint8_t* top) { |
|
uint32_t dc = 4; |
|
int i; |
|
for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i]; |
|
Fill(dst, dc >> 3, 4); |
|
} |
|
|
|
static WEBP_INLINE void LD4(uint8_t* dst, const uint8_t* top) { // Down-Left |
|
const __m128i one = _mm_set1_epi8(1); |
|
const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); |
|
const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
|
const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
|
const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3); |
|
const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); |
|
const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); |
|
const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
|
const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); |
|
WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); |
|
WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
|
WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
|
WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
|
} |
|
|
|
static WEBP_INLINE void VR4(uint8_t* dst, |
|
const uint8_t* top) { // Vertical-Right |
|
const __m128i one = _mm_set1_epi8(1); |
|
const int I = top[-2]; |
|
const int J = top[-3]; |
|
const int K = top[-4]; |
|
const int X = top[-1]; |
|
const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1)); |
|
const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); |
|
const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); |
|
const __m128i _XABCD = _mm_slli_si128(XABCD, 1); |
|
const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0); |
|
const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); |
|
const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); |
|
const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
|
const __m128i efgh = _mm_avg_epu8(avg2, XABCD); |
|
WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); |
|
WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); |
|
WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); |
|
WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); |
|
|
|
// these two are hard to implement in SSE2, so we keep the C-version: |
|
DST(0, 2) = AVG3(J, I, X); |
|
DST(0, 3) = AVG3(K, J, I); |
|
} |
|
|
|
static WEBP_INLINE void VL4(uint8_t* dst, |
|
const uint8_t* top) { // Vertical-Left |
|
const __m128i one = _mm_set1_epi8(1); |
|
const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); |
|
const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); |
|
const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); |
|
const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); |
|
const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); |
|
const __m128i avg3 = _mm_avg_epu8(avg1, avg2); |
|
const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); |
|
const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); |
|
const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); |
|
const __m128i abbc = _mm_or_si128(ab, bc); |
|
const __m128i lsb2 = _mm_and_si128(abbc, lsb1); |
|
const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); |
|
const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); |
|
WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); |
|
WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); |
|
WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); |
|
WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); |
|
|
|
// these two are hard to get and irregular |
|
DST(3, 2) = (extra_out >> 0) & 0xff; |
|
DST(3, 3) = (extra_out >> 8) & 0xff; |
|
} |
|
|
|
static WEBP_INLINE void RD4(uint8_t* dst, const uint8_t* top) { // Down-right |
|
const __m128i one = _mm_set1_epi8(1); |
|
const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5)); |
|
const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4); |
|
const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); |
|
const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); |
|
const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); |
|
const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); |
|
const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
|
const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); |
|
WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); |
|
WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
|
WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
|
WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
|
} |
|
|
|
static WEBP_INLINE void HU4(uint8_t* dst, const uint8_t* top) { |
|
const int I = top[-2]; |
|
const int J = top[-3]; |
|
const int K = top[-4]; |
|
const int L = top[-5]; |
|
DST(0, 0) = AVG2(I, J); |
|
DST(2, 0) = DST(0, 1) = AVG2(J, K); |
|
DST(2, 1) = DST(0, 2) = AVG2(K, L); |
|
DST(1, 0) = AVG3(I, J, K); |
|
DST(3, 0) = DST(1, 1) = AVG3(J, K, L); |
|
DST(3, 1) = DST(1, 2) = AVG3(K, L, L); |
|
DST(3, 2) = DST(2, 2) = |
|
DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; |
|
} |
|
|
|
static WEBP_INLINE void HD4(uint8_t* dst, const uint8_t* top) { |
|
const int X = top[-1]; |
|
const int I = top[-2]; |
|
const int J = top[-3]; |
|
const int K = top[-4]; |
|
const int L = top[-5]; |
|
const int A = top[0]; |
|
const int B = top[1]; |
|
const int C = top[2]; |
|
|
|
DST(0, 0) = DST(2, 1) = AVG2(I, X); |
|
DST(0, 1) = DST(2, 2) = AVG2(J, I); |
|
DST(0, 2) = DST(2, 3) = AVG2(K, J); |
|
DST(0, 3) = AVG2(L, K); |
|
|
|
DST(3, 0) = AVG3(A, B, C); |
|
DST(2, 0) = AVG3(X, A, B); |
|
DST(1, 0) = DST(3, 1) = AVG3(I, X, A); |
|
DST(1, 1) = DST(3, 2) = AVG3(J, I, X); |
|
DST(1, 2) = DST(3, 3) = AVG3(K, J, I); |
|
DST(1, 3) = AVG3(L, K, J); |
|
} |
|
|
|
static WEBP_INLINE void TM4(uint8_t* dst, const uint8_t* top) { |
|
const __m128i zero = _mm_setzero_si128(); |
|
const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top)); |
|
const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
|
int y; |
|
for (y = 0; y < 4; ++y, dst += BPS) { |
|
const int val = top[-2 - y] - top[-1]; |
|
const __m128i base = _mm_set1_epi16(val); |
|
const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
|
WebPUint32ToMem(dst, _mm_cvtsi128_si32(out)); |
|
} |
|
} |
|
|
|
#undef DST |
|
#undef AVG3 |
|
#undef AVG2 |
|
|
|
//------------------------------------------------------------------------------ |
|
// luma 4x4 prediction |
|
|
|
// Left samples are top[-5 .. -2], top_left is top[-1], top are |
|
// located at top[0..3], and top right is top[4..7] |
|
static void Intra4Preds(uint8_t* dst, const uint8_t* top) { |
|
DC4(I4DC4 + dst, top); |
|
TM4(I4TM4 + dst, top); |
|
VE4(I4VE4 + dst, top); |
|
HE4(I4HE4 + dst, top); |
|
RD4(I4RD4 + dst, top); |
|
VR4(I4VR4 + dst, top); |
|
LD4(I4LD4 + dst, top); |
|
VL4(I4VL4 + dst, top); |
|
HD4(I4HD4 + dst, top); |
|
HU4(I4HU4 + dst, top); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Chroma 8x8 prediction (paragraph 12.2) |
|
|
|
static void IntraChromaPreds(uint8_t* dst, const uint8_t* left, |
|
const uint8_t* top) { |
|
// U block |
|
DC8uvMode(C8DC8 + dst, left, top); |
|
VerticalPred(C8VE8 + dst, top, 8); |
|
HorizontalPred(C8HE8 + dst, left, 8); |
|
TrueMotion(C8TM8 + dst, left, top, 8); |
|
// V block |
|
dst += 8; |
|
if (top != NULL) top += 8; |
|
if (left != NULL) left += 16; |
|
DC8uvMode(C8DC8 + dst, left, top); |
|
VerticalPred(C8VE8 + dst, top, 8); |
|
HorizontalPred(C8HE8 + dst, left, 8); |
|
TrueMotion(C8TM8 + dst, left, top, 8); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// luma 16x16 prediction (paragraph 12.3) |
|
|
|
static void Intra16Preds(uint8_t* dst, |
|
const uint8_t* left, const uint8_t* top) { |
|
DC16Mode(I16DC16 + dst, left, top); |
|
VerticalPred(I16VE16 + dst, top, 16); |
|
HorizontalPred(I16HE16 + dst, left, 16); |
|
TrueMotion(I16TM16 + dst, left, top, 16); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Metric |
|
|
|
static WEBP_INLINE void SubtractAndAccumulate(const __m128i a, const __m128i b, |
|
__m128i* const sum) { |
|
// take abs(a-b) in 8b |
|
const __m128i a_b = _mm_subs_epu8(a, b); |
|
const __m128i b_a = _mm_subs_epu8(b, a); |
|
const __m128i abs_a_b = _mm_or_si128(a_b, b_a); |
|
// zero-extend to 16b |
|
const __m128i zero = _mm_setzero_si128(); |
|
const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero); |
|
const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero); |
|
// multiply with self |
|
const __m128i sum1 = _mm_madd_epi16(C0, C0); |
|
const __m128i sum2 = _mm_madd_epi16(C1, C1); |
|
*sum = _mm_add_epi32(sum1, sum2); |
|
} |
|
|
|
static WEBP_INLINE int SSE_16xN(const uint8_t* a, const uint8_t* b, |
|
int num_pairs) { |
|
__m128i sum = _mm_setzero_si128(); |
|
int32_t tmp[4]; |
|
int i; |
|
|
|
for (i = 0; i < num_pairs; ++i) { |
|
const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]); |
|
const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]); |
|
const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]); |
|
const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]); |
|
__m128i sum1, sum2; |
|
SubtractAndAccumulate(a0, b0, &sum1); |
|
SubtractAndAccumulate(a1, b1, &sum2); |
|
sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2)); |
|
a += 2 * BPS; |
|
b += 2 * BPS; |
|
} |
|
_mm_storeu_si128((__m128i*)tmp, sum); |
|
return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
|
} |
|
|
|
static int SSE16x16(const uint8_t* a, const uint8_t* b) { |
|
return SSE_16xN(a, b, 8); |
|
} |
|
|
|
static int SSE16x8(const uint8_t* a, const uint8_t* b) { |
|
return SSE_16xN(a, b, 4); |
|
} |
|
|
|
#define LOAD_8x16b(ptr) \ |
|
_mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero) |
|
|
|
static int SSE8x8(const uint8_t* a, const uint8_t* b) { |
|
const __m128i zero = _mm_setzero_si128(); |
|
int num_pairs = 4; |
|
__m128i sum = zero; |
|
int32_t tmp[4]; |
|
while (num_pairs-- > 0) { |
|
const __m128i a0 = LOAD_8x16b(&a[BPS * 0]); |
|
const __m128i a1 = LOAD_8x16b(&a[BPS * 1]); |
|
const __m128i b0 = LOAD_8x16b(&b[BPS * 0]); |
|
const __m128i b1 = LOAD_8x16b(&b[BPS * 1]); |
|
// subtract |
|
const __m128i c0 = _mm_subs_epi16(a0, b0); |
|
const __m128i c1 = _mm_subs_epi16(a1, b1); |
|
// multiply/accumulate with self |
|
const __m128i d0 = _mm_madd_epi16(c0, c0); |
|
const __m128i d1 = _mm_madd_epi16(c1, c1); |
|
// collect |
|
const __m128i sum01 = _mm_add_epi32(d0, d1); |
|
sum = _mm_add_epi32(sum, sum01); |
|
a += 2 * BPS; |
|
b += 2 * BPS; |
|
} |
|
_mm_storeu_si128((__m128i*)tmp, sum); |
|
return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
|
} |
|
#undef LOAD_8x16b |
|
|
|
static int SSE4x4(const uint8_t* a, const uint8_t* b) { |
|
const __m128i zero = _mm_setzero_si128(); |
|
|
|
// Load values. Note that we read 8 pixels instead of 4, |
|
// but the a/b buffers are over-allocated to that effect. |
|
const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]); |
|
const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]); |
|
const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]); |
|
const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]); |
|
const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]); |
|
const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]); |
|
const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]); |
|
const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]); |
|
// Combine pair of lines. |
|
const __m128i a01 = _mm_unpacklo_epi32(a0, a1); |
|
const __m128i a23 = _mm_unpacklo_epi32(a2, a3); |
|
const __m128i b01 = _mm_unpacklo_epi32(b0, b1); |
|
const __m128i b23 = _mm_unpacklo_epi32(b2, b3); |
|
// Convert to 16b. |
|
const __m128i a01s = _mm_unpacklo_epi8(a01, zero); |
|
const __m128i a23s = _mm_unpacklo_epi8(a23, zero); |
|
const __m128i b01s = _mm_unpacklo_epi8(b01, zero); |
|
const __m128i b23s = _mm_unpacklo_epi8(b23, zero); |
|
// subtract, square and accumulate |
|
const __m128i d0 = _mm_subs_epi16(a01s, b01s); |
|
const __m128i d1 = _mm_subs_epi16(a23s, b23s); |
|
const __m128i e0 = _mm_madd_epi16(d0, d0); |
|
const __m128i e1 = _mm_madd_epi16(d1, d1); |
|
const __m128i sum = _mm_add_epi32(e0, e1); |
|
|
|
int32_t tmp[4]; |
|
_mm_storeu_si128((__m128i*)tmp, sum); |
|
return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
static void Mean16x4(const uint8_t* ref, uint32_t dc[4]) { |
|
const __m128i mask = _mm_set1_epi16(0x00ff); |
|
const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]); |
|
const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]); |
|
const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]); |
|
const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]); |
|
const __m128i b0 = _mm_srli_epi16(a0, 8); // hi byte |
|
const __m128i b1 = _mm_srli_epi16(a1, 8); |
|
const __m128i b2 = _mm_srli_epi16(a2, 8); |
|
const __m128i b3 = _mm_srli_epi16(a3, 8); |
|
const __m128i c0 = _mm_and_si128(a0, mask); // lo byte |
|
const __m128i c1 = _mm_and_si128(a1, mask); |
|
const __m128i c2 = _mm_and_si128(a2, mask); |
|
const __m128i c3 = _mm_and_si128(a3, mask); |
|
const __m128i d0 = _mm_add_epi32(b0, c0); |
|
const __m128i d1 = _mm_add_epi32(b1, c1); |
|
const __m128i d2 = _mm_add_epi32(b2, c2); |
|
const __m128i d3 = _mm_add_epi32(b3, c3); |
|
const __m128i e0 = _mm_add_epi32(d0, d1); |
|
const __m128i e1 = _mm_add_epi32(d2, d3); |
|
const __m128i f0 = _mm_add_epi32(e0, e1); |
|
uint16_t tmp[8]; |
|
_mm_storeu_si128((__m128i*)tmp, f0); |
|
dc[0] = tmp[0] + tmp[1]; |
|
dc[1] = tmp[2] + tmp[3]; |
|
dc[2] = tmp[4] + tmp[5]; |
|
dc[3] = tmp[6] + tmp[7]; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Texture distortion |
|
// |
|
// We try to match the spectral content (weighted) between source and |
|
// reconstructed samples. |
|
|
|
// Hadamard transform |
|
// Returns the weighted sum of the absolute value of transformed coefficients. |
|
// w[] contains a row-major 4 by 4 symmetric matrix. |
|
static int TTransform(const uint8_t* inA, const uint8_t* inB, |
|
const uint16_t* const w) { |
|
int32_t sum[4]; |
|
__m128i tmp_0, tmp_1, tmp_2, tmp_3; |
|
const __m128i zero = _mm_setzero_si128(); |
|
|
|
// Load and combine inputs. |
|
{ |
|
const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]); |
|
const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]); |
|
const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]); |
|
const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]); |
|
const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]); |
|
const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]); |
|
const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]); |
|
const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]); |
|
|
|
// Combine inA and inB (we'll do two transforms in parallel). |
|
const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0); |
|
const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1); |
|
const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2); |
|
const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3); |
|
tmp_0 = _mm_unpacklo_epi8(inAB_0, zero); |
|
tmp_1 = _mm_unpacklo_epi8(inAB_1, zero); |
|
tmp_2 = _mm_unpacklo_epi8(inAB_2, zero); |
|
tmp_3 = _mm_unpacklo_epi8(inAB_3, zero); |
|
// a00 a01 a02 a03 b00 b01 b02 b03 |
|
// a10 a11 a12 a13 b10 b11 b12 b13 |
|
// a20 a21 a22 a23 b20 b21 b22 b23 |
|
// a30 a31 a32 a33 b30 b31 b32 b33 |
|
} |
|
|
|
// Vertical pass first to avoid a transpose (vertical and horizontal passes |
|
// are commutative because w/kWeightY is symmetric) and subsequent transpose. |
|
{ |
|
// Calculate a and b (two 4x4 at once). |
|
const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
|
const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
|
const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
|
const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
|
const __m128i b0 = _mm_add_epi16(a0, a1); |
|
const __m128i b1 = _mm_add_epi16(a3, a2); |
|
const __m128i b2 = _mm_sub_epi16(a3, a2); |
|
const __m128i b3 = _mm_sub_epi16(a0, a1); |
|
// a00 a01 a02 a03 b00 b01 b02 b03 |
|
// a10 a11 a12 a13 b10 b11 b12 b13 |
|
// a20 a21 a22 a23 b20 b21 b22 b23 |
|
// a30 a31 a32 a33 b30 b31 b32 b33 |
|
|
|
// Transpose the two 4x4. |
|
VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3); |
|
} |
|
|
|
// Horizontal pass and difference of weighted sums. |
|
{ |
|
// Load all inputs. |
|
const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]); |
|
const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]); |
|
|
|
// Calculate a and b (two 4x4 at once). |
|
const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
|
const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
|
const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
|
const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
|
const __m128i b0 = _mm_add_epi16(a0, a1); |
|
const __m128i b1 = _mm_add_epi16(a3, a2); |
|
const __m128i b2 = _mm_sub_epi16(a3, a2); |
|
const __m128i b3 = _mm_sub_epi16(a0, a1); |
|
|
|
// Separate the transforms of inA and inB. |
|
__m128i A_b0 = _mm_unpacklo_epi64(b0, b1); |
|
__m128i A_b2 = _mm_unpacklo_epi64(b2, b3); |
|
__m128i B_b0 = _mm_unpackhi_epi64(b0, b1); |
|
__m128i B_b2 = _mm_unpackhi_epi64(b2, b3); |
|
|
|
{ |
|
const __m128i d0 = _mm_sub_epi16(zero, A_b0); |
|
const __m128i d1 = _mm_sub_epi16(zero, A_b2); |
|
const __m128i d2 = _mm_sub_epi16(zero, B_b0); |
|
const __m128i d3 = _mm_sub_epi16(zero, B_b2); |
|
A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b |
|
A_b2 = _mm_max_epi16(A_b2, d1); |
|
B_b0 = _mm_max_epi16(B_b0, d2); |
|
B_b2 = _mm_max_epi16(B_b2, d3); |
|
} |
|
|
|
// weighted sums |
|
A_b0 = _mm_madd_epi16(A_b0, w_0); |
|
A_b2 = _mm_madd_epi16(A_b2, w_8); |
|
B_b0 = _mm_madd_epi16(B_b0, w_0); |
|
B_b2 = _mm_madd_epi16(B_b2, w_8); |
|
A_b0 = _mm_add_epi32(A_b0, A_b2); |
|
B_b0 = _mm_add_epi32(B_b0, B_b2); |
|
|
|
// difference of weighted sums |
|
A_b0 = _mm_sub_epi32(A_b0, B_b0); |
|
_mm_storeu_si128((__m128i*)&sum[0], A_b0); |
|
} |
|
return sum[0] + sum[1] + sum[2] + sum[3]; |
|
} |
|
|
|
static int Disto4x4(const uint8_t* const a, const uint8_t* const b, |
|
const uint16_t* const w) { |
|
const int diff_sum = TTransform(a, b, w); |
|
return abs(diff_sum) >> 5; |
|
} |
|
|
|
static int Disto16x16(const uint8_t* const a, const uint8_t* const b, |
|
const uint16_t* const w) { |
|
int D = 0; |
|
int x, y; |
|
for (y = 0; y < 16 * BPS; y += 4 * BPS) { |
|
for (x = 0; x < 16; x += 4) { |
|
D += Disto4x4(a + x + y, b + x + y, w); |
|
} |
|
} |
|
return D; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Quantization |
|
// |
|
|
|
static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16], |
|
const uint16_t* const sharpen, |
|
const VP8Matrix* const mtx) { |
|
const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); |
|
const __m128i zero = _mm_setzero_si128(); |
|
__m128i coeff0, coeff8; |
|
__m128i out0, out8; |
|
__m128i packed_out; |
|
|
|
// Load all inputs. |
|
__m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); |
|
__m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); |
|
const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); |
|
const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); |
|
const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); |
|
const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); |
|
|
|
// extract sign(in) (0x0000 if positive, 0xffff if negative) |
|
const __m128i sign0 = _mm_cmpgt_epi16(zero, in0); |
|
const __m128i sign8 = _mm_cmpgt_epi16(zero, in8); |
|
|
|
// coeff = abs(in) = (in ^ sign) - sign |
|
coeff0 = _mm_xor_si128(in0, sign0); |
|
coeff8 = _mm_xor_si128(in8, sign8); |
|
coeff0 = _mm_sub_epi16(coeff0, sign0); |
|
coeff8 = _mm_sub_epi16(coeff8, sign8); |
|
|
|
// coeff = abs(in) + sharpen |
|
if (sharpen != NULL) { |
|
const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); |
|
const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); |
|
coeff0 = _mm_add_epi16(coeff0, sharpen0); |
|
coeff8 = _mm_add_epi16(coeff8, sharpen8); |
|
} |
|
|
|
// out = (coeff * iQ + B) >> QFIX |
|
{ |
|
// doing calculations with 32b precision (QFIX=17) |
|
// out = (coeff * iQ) |
|
const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); |
|
const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); |
|
const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); |
|
const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); |
|
__m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); |
|
__m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); |
|
__m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); |
|
__m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); |
|
// out = (coeff * iQ + B) |
|
const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); |
|
const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); |
|
const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); |
|
const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); |
|
out_00 = _mm_add_epi32(out_00, bias_00); |
|
out_04 = _mm_add_epi32(out_04, bias_04); |
|
out_08 = _mm_add_epi32(out_08, bias_08); |
|
out_12 = _mm_add_epi32(out_12, bias_12); |
|
// out = QUANTDIV(coeff, iQ, B, QFIX) |
|
out_00 = _mm_srai_epi32(out_00, QFIX); |
|
out_04 = _mm_srai_epi32(out_04, QFIX); |
|
out_08 = _mm_srai_epi32(out_08, QFIX); |
|
out_12 = _mm_srai_epi32(out_12, QFIX); |
|
|
|
// pack result as 16b |
|
out0 = _mm_packs_epi32(out_00, out_04); |
|
out8 = _mm_packs_epi32(out_08, out_12); |
|
|
|
// if (coeff > 2047) coeff = 2047 |
|
out0 = _mm_min_epi16(out0, max_coeff_2047); |
|
out8 = _mm_min_epi16(out8, max_coeff_2047); |
|
} |
|
|
|
// get sign back (if (sign[j]) out_n = -out_n) |
|
out0 = _mm_xor_si128(out0, sign0); |
|
out8 = _mm_xor_si128(out8, sign8); |
|
out0 = _mm_sub_epi16(out0, sign0); |
|
out8 = _mm_sub_epi16(out8, sign8); |
|
|
|
// in = out * Q |
|
in0 = _mm_mullo_epi16(out0, q0); |
|
in8 = _mm_mullo_epi16(out8, q8); |
|
|
|
_mm_storeu_si128((__m128i*)&in[0], in0); |
|
_mm_storeu_si128((__m128i*)&in[8], in8); |
|
|
|
// zigzag the output before storing it. |
|
// |
|
// The zigzag pattern can almost be reproduced with a small sequence of |
|
// shuffles. After it, we only need to swap the 7th (ending up in third |
|
// position instead of twelfth) and 8th values. |
|
{ |
|
__m128i outZ0, outZ8; |
|
outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); |
|
outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); |
|
outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); |
|
outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); |
|
outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); |
|
outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); |
|
_mm_storeu_si128((__m128i*)&out[0], outZ0); |
|
_mm_storeu_si128((__m128i*)&out[8], outZ8); |
|
packed_out = _mm_packs_epi16(outZ0, outZ8); |
|
} |
|
{ |
|
const int16_t outZ_12 = out[12]; |
|
const int16_t outZ_3 = out[3]; |
|
out[3] = outZ_12; |
|
out[12] = outZ_3; |
|
} |
|
|
|
// detect if all 'out' values are zeroes or not |
|
return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); |
|
} |
|
|
|
static int QuantizeBlock(int16_t in[16], int16_t out[16], |
|
const VP8Matrix* const mtx) { |
|
return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx); |
|
} |
|
|
|
static int QuantizeBlockWHT(int16_t in[16], int16_t out[16], |
|
const VP8Matrix* const mtx) { |
|
return DoQuantizeBlock(in, out, NULL, mtx); |
|
} |
|
|
|
static int Quantize2Blocks(int16_t in[32], int16_t out[32], |
|
const VP8Matrix* const mtx) { |
|
int nz; |
|
const uint16_t* const sharpen = &mtx->sharpen_[0]; |
|
nz = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0; |
|
nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1; |
|
return nz; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Entry point |
|
|
|
extern void VP8EncDspInitSSE2(void); |
|
|
|
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) { |
|
VP8CollectHistogram = CollectHistogram; |
|
VP8EncPredLuma16 = Intra16Preds; |
|
VP8EncPredChroma8 = IntraChromaPreds; |
|
VP8EncPredLuma4 = Intra4Preds; |
|
VP8EncQuantizeBlock = QuantizeBlock; |
|
VP8EncQuantize2Blocks = Quantize2Blocks; |
|
VP8EncQuantizeBlockWHT = QuantizeBlockWHT; |
|
VP8ITransform = ITransform; |
|
VP8FTransform = FTransform; |
|
VP8FTransform2 = FTransform2; |
|
VP8FTransformWHT = FTransformWHT; |
|
VP8SSE16x16 = SSE16x16; |
|
VP8SSE16x8 = SSE16x8; |
|
VP8SSE8x8 = SSE8x8; |
|
VP8SSE4x4 = SSE4x4; |
|
VP8TDisto4x4 = Disto4x4; |
|
VP8TDisto16x16 = Disto16x16; |
|
VP8Mean16x4 = Mean16x4; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// SSIM / PSNR entry point (TODO(skal): move to its own file later) |
|
|
|
static uint32_t AccumulateSSE_SSE2(const uint8_t* src1, |
|
const uint8_t* src2, int len) { |
|
int i = 0; |
|
uint32_t sse2 = 0; |
|
if (len >= 16) { |
|
const int limit = len - 32; |
|
int32_t tmp[4]; |
|
__m128i sum1; |
|
__m128i sum = _mm_setzero_si128(); |
|
__m128i a0 = _mm_loadu_si128((const __m128i*)&src1[i]); |
|
__m128i b0 = _mm_loadu_si128((const __m128i*)&src2[i]); |
|
i += 16; |
|
while (i <= limit) { |
|
const __m128i a1 = _mm_loadu_si128((const __m128i*)&src1[i]); |
|
const __m128i b1 = _mm_loadu_si128((const __m128i*)&src2[i]); |
|
__m128i sum2; |
|
i += 16; |
|
SubtractAndAccumulate(a0, b0, &sum1); |
|
sum = _mm_add_epi32(sum, sum1); |
|
a0 = _mm_loadu_si128((const __m128i*)&src1[i]); |
|
b0 = _mm_loadu_si128((const __m128i*)&src2[i]); |
|
i += 16; |
|
SubtractAndAccumulate(a1, b1, &sum2); |
|
sum = _mm_add_epi32(sum, sum2); |
|
} |
|
SubtractAndAccumulate(a0, b0, &sum1); |
|
sum = _mm_add_epi32(sum, sum1); |
|
_mm_storeu_si128((__m128i*)tmp, sum); |
|
sse2 += (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
|
} |
|
|
|
for (; i < len; ++i) { |
|
const int32_t diff = src1[i] - src2[i]; |
|
sse2 += diff * diff; |
|
} |
|
return sse2; |
|
} |
|
|
|
static uint32_t HorizontalAdd16b(const __m128i* const m) { |
|
uint16_t tmp[8]; |
|
const __m128i a = _mm_srli_si128(*m, 8); |
|
const __m128i b = _mm_add_epi16(*m, a); |
|
_mm_storeu_si128((__m128i*)tmp, b); |
|
return (uint32_t)tmp[3] + tmp[2] + tmp[1] + tmp[0]; |
|
} |
|
|
|
static uint32_t HorizontalAdd32b(const __m128i* const m) { |
|
const __m128i a = _mm_srli_si128(*m, 8); |
|
const __m128i b = _mm_add_epi32(*m, a); |
|
const __m128i c = _mm_add_epi32(b, _mm_srli_si128(b, 4)); |
|
return (uint32_t)_mm_cvtsi128_si32(c); |
|
} |
|
|
|
static const uint16_t kWeight[] = { 1, 2, 3, 4, 3, 2, 1, 0 }; |
|
|
|
#define ACCUMULATE_ROW(WEIGHT) do { \ |
|
/* compute row weight (Wx * Wy) */ \ |
|
const __m128i Wy = _mm_set1_epi16((WEIGHT)); \ |
|
const __m128i W = _mm_mullo_epi16(Wx, Wy); \ |
|
/* process 8 bytes at a time (7 bytes, actually) */ \ |
|
const __m128i a0 = _mm_loadl_epi64((const __m128i*)src1); \ |
|
const __m128i b0 = _mm_loadl_epi64((const __m128i*)src2); \ |
|
/* convert to 16b and multiply by weight */ \ |
|
const __m128i a1 = _mm_unpacklo_epi8(a0, zero); \ |
|
const __m128i b1 = _mm_unpacklo_epi8(b0, zero); \ |
|
const __m128i wa1 = _mm_mullo_epi16(a1, W); \ |
|
const __m128i wb1 = _mm_mullo_epi16(b1, W); \ |
|
/* accumulate */ \ |
|
xm = _mm_add_epi16(xm, wa1); \ |
|
ym = _mm_add_epi16(ym, wb1); \ |
|
xxm = _mm_add_epi32(xxm, _mm_madd_epi16(a1, wa1)); \ |
|
xym = _mm_add_epi32(xym, _mm_madd_epi16(a1, wb1)); \ |
|
yym = _mm_add_epi32(yym, _mm_madd_epi16(b1, wb1)); \ |
|
src1 += stride1; \ |
|
src2 += stride2; \ |
|
} while (0) |
|
|
|
static double SSIMGet_SSE2(const uint8_t* src1, int stride1, |
|
const uint8_t* src2, int stride2) { |
|
VP8DistoStats stats; |
|
const __m128i zero = _mm_setzero_si128(); |
|
__m128i xm = zero, ym = zero; // 16b accums |
|
__m128i xxm = zero, yym = zero, xym = zero; // 32b accum |
|
const __m128i Wx = _mm_loadu_si128((const __m128i*)kWeight); |
|
assert(2 * VP8_SSIM_KERNEL + 1 == 7); |
|
ACCUMULATE_ROW(1); |
|
ACCUMULATE_ROW(2); |
|
ACCUMULATE_ROW(3); |
|
ACCUMULATE_ROW(4); |
|
ACCUMULATE_ROW(3); |
|
ACCUMULATE_ROW(2); |
|
ACCUMULATE_ROW(1); |
|
stats.xm = HorizontalAdd16b(&xm); |
|
stats.ym = HorizontalAdd16b(&ym); |
|
stats.xxm = HorizontalAdd32b(&xxm); |
|
stats.xym = HorizontalAdd32b(&xym); |
|
stats.yym = HorizontalAdd32b(&yym); |
|
return VP8SSIMFromStats(&stats); |
|
} |
|
|
|
extern void VP8SSIMDspInitSSE2(void); |
|
|
|
WEBP_TSAN_IGNORE_FUNCTION void VP8SSIMDspInitSSE2(void) { |
|
VP8AccumulateSSE = AccumulateSSE_SSE2; |
|
VP8SSIMGet = SSIMGet_SSE2; |
|
} |
|
|
|
#else // !WEBP_USE_SSE2 |
|
|
|
WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2) |
|
WEBP_DSP_INIT_STUB(VP8SSIMDspInitSSE2) |
|
|
|
#endif // WEBP_USE_SSE2
|
|
|