mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1653 lines
61 KiB
1653 lines
61 KiB
\section{Feature detection and description} |
|
|
|
\ifCPy |
|
|
|
\ifPy |
|
\cvclass{CvSURFPoint} |
|
A SURF keypoint, represented as a tuple \texttt{((x, y), laplacian, size, dir, hessian)}. |
|
|
|
\begin{description} |
|
\cvarg{x}{x-coordinate of the feature within the image} |
|
\cvarg{y}{y-coordinate of the feature within the image} |
|
\cvarg{laplacian}{-1, 0 or +1. sign of the laplacian at the point. Can be used to speedup feature comparison since features with laplacians of different signs can not match} |
|
\cvarg{size}{size of the feature} |
|
\cvarg{dir}{orientation of the feature: 0..360 degrees} |
|
\cvarg{hessian}{value of the hessian (can be used to approximately estimate the feature strengths; see also params.hessianThreshold)} |
|
\end{description} |
|
\fi |
|
|
|
\cvCPyFunc{ExtractSURF} |
|
Extracts Speeded Up Robust Features from an image. |
|
|
|
\cvdefC{ |
|
void cvExtractSURF( \par const CvArr* image,\par const CvArr* mask,\par CvSeq** keypoints,\par CvSeq** descriptors,\par CvMemStorage* storage,\par CvSURFParams params ); |
|
} |
|
\cvdefPy{ExtractSURF(image,mask,storage,params)-> (keypoints,descriptors)} |
|
|
|
\begin{description} |
|
\cvarg{image}{The input 8-bit grayscale image} |
|
\cvarg{mask}{The optional input 8-bit mask. The features are only found in the areas that contain more than 50\% of non-zero mask pixels} |
|
\ifC |
|
\cvarg{keypoints}{The output parameter; double pointer to the sequence of keypoints. The sequence of CvSURFPoint structures is as follows:} |
|
\begin{lstlisting} |
|
typedef struct CvSURFPoint |
|
{ |
|
CvPoint2D32f pt; // position of the feature within the image |
|
int laplacian; // -1, 0 or +1. sign of the laplacian at the point. |
|
// can be used to speedup feature comparison |
|
// (normally features with laplacians of different |
|
// signs can not match) |
|
int size; // size of the feature |
|
float dir; // orientation of the feature: 0..360 degrees |
|
float hessian; // value of the hessian (can be used to |
|
// approximately estimate the feature strengths; |
|
// see also params.hessianThreshold) |
|
} |
|
CvSURFPoint; |
|
\end{lstlisting} |
|
\cvarg{descriptors}{The optional output parameter; double pointer to the sequence of descriptors. Depending on the params.extended value, each element of the sequence will be either a 64-element or a 128-element floating-point (\texttt{CV\_32F}) vector. If the parameter is NULL, the descriptors are not computed} |
|
\else |
|
\cvarg{keypoints}{sequence of keypoints.} |
|
\cvarg{descriptors}{sequence of descriptors. Each SURF descriptor is a list of floats, of length 64 or 128.} |
|
\fi |
|
\cvarg{storage}{Memory storage where keypoints and descriptors will be stored} |
|
\ifC |
|
\cvarg{params}{Various algorithm parameters put to the structure CvSURFParams:} |
|
\begin{lstlisting} |
|
typedef struct CvSURFParams |
|
{ |
|
int extended; // 0 means basic descriptors (64 elements each), |
|
// 1 means extended descriptors (128 elements each) |
|
double hessianThreshold; // only features with keypoint.hessian |
|
// larger than that are extracted. |
|
// good default value is ~300-500 (can depend on the |
|
// average local contrast and sharpness of the image). |
|
// user can further filter out some features based on |
|
// their hessian values and other characteristics. |
|
int nOctaves; // the number of octaves to be used for extraction. |
|
// With each next octave the feature size is doubled |
|
// (3 by default) |
|
int nOctaveLayers; // The number of layers within each octave |
|
// (4 by default) |
|
} |
|
CvSURFParams; |
|
|
|
CvSURFParams cvSURFParams(double hessianThreshold, int extended=0); |
|
// returns default parameters |
|
\end{lstlisting} |
|
\else |
|
\cvarg{params}{Various algorithm parameters in a tuple \texttt{(extended, hessianThreshold, nOctaves, nOctaveLayers)}: |
|
\begin{description} |
|
\cvarg{extended}{0 means basic descriptors (64 elements each), 1 means extended descriptors (128 elements each)} |
|
\cvarg{hessianThreshold}{only features with hessian larger than that are extracted. good default value is ~300-500 (can depend on the average local contrast and sharpness of the image). user can further filter out some features based on their hessian values and other characteristics.} |
|
\cvarg{nOctaves}{the number of octaves to be used for extraction. With each next octave the feature size is doubled (3 by default)} |
|
\cvarg{nOctaveLayers}{The number of layers within each octave (4 by default)} |
|
\end{description}} |
|
\fi |
|
\end{description} |
|
|
|
The function cvExtractSURF finds robust features in the image, as |
|
described in \cite{Bay06}. For each feature it returns its location, size, |
|
orientation and optionally the descriptor, basic or extended. The function |
|
can be used for object tracking and localization, image stitching etc. |
|
|
|
\ifC |
|
See the |
|
\texttt{find\_obj.cpp} demo in OpenCV samples directory. |
|
\else |
|
To extract strong SURF features from an image |
|
|
|
\begin{lstlisting} |
|
>>> import cv |
|
>>> im = cv.LoadImageM("building.jpg", cv.CV_LOAD_IMAGE_GRAYSCALE) |
|
>>> (keypoints, descriptors) = cv.ExtractSURF(im, None, cv.CreateMemStorage(), (0, 30000, 3, 1)) |
|
>>> print len(keypoints), len(descriptors) |
|
6 6 |
|
>>> for ((x, y), laplacian, size, dir, hessian) in keypoints: |
|
... print "x=\%d y=\%d laplacian=\%d size=\%d dir=\%f hessian=\%f" \% (x, y, laplacian, size, dir, hessian) |
|
x=30 y=27 laplacian=-1 size=31 dir=69.778503 hessian=36979.789062 |
|
x=296 y=197 laplacian=1 size=33 dir=111.081039 hessian=31514.349609 |
|
x=296 y=266 laplacian=1 size=32 dir=107.092300 hessian=31477.908203 |
|
x=254 y=284 laplacian=1 size=31 dir=279.137360 hessian=34169.800781 |
|
x=498 y=525 laplacian=-1 size=33 dir=278.006592 hessian=31002.759766 |
|
x=777 y=281 laplacian=1 size=70 dir=167.940964 hessian=35538.363281 |
|
\end{lstlisting} |
|
|
|
\fi |
|
|
|
\cvCPyFunc{GetStarKeypoints} |
|
Retrieves keypoints using the StarDetector algorithm. |
|
|
|
\cvdefC{ |
|
CvSeq* cvGetStarKeypoints( \par const CvArr* image,\par CvMemStorage* storage,\par CvStarDetectorParams params=cvStarDetectorParams() ); |
|
} |
|
\cvdefPy{GetStarKeypoints(image,storage,params)-> keypoints} |
|
|
|
\begin{description} |
|
\cvarg{image}{The input 8-bit grayscale image} |
|
\cvarg{storage}{Memory storage where the keypoints will be stored} |
|
\ifC |
|
\cvarg{params}{Various algorithm parameters given to the structure CvStarDetectorParams:} |
|
\begin{lstlisting} |
|
typedef struct CvStarDetectorParams |
|
{ |
|
int maxSize; // maximal size of the features detected. The following |
|
// values of the parameter are supported: |
|
// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128 |
|
int responseThreshold; // threshold for the approximatd laplacian, |
|
// used to eliminate weak features |
|
int lineThresholdProjected; // another threshold for laplacian to |
|
// eliminate edges |
|
int lineThresholdBinarized; // another threshold for the feature |
|
// scale to eliminate edges |
|
int suppressNonmaxSize; // linear size of a pixel neighborhood |
|
// for non-maxima suppression |
|
} |
|
CvStarDetectorParams; |
|
\end{lstlisting} |
|
\else |
|
\cvarg{params}{Various algorithm parameters in a tuple \texttt{(maxSize, responseThreshold, lineThresholdProjected, lineThresholdBinarized, suppressNonmaxSize)}: |
|
\begin{description} |
|
\cvarg{maxSize}{maximal size of the features detected. The following values of the parameter are supported: 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128} |
|
\cvarg{responseThreshold}{threshold for the approximatd laplacian, used to eliminate weak features} |
|
\cvarg{lineThresholdProjected}{another threshold for laplacian to eliminate edges} |
|
\cvarg{lineThresholdBinarized}{another threshold for the feature scale to eliminate edges} |
|
\cvarg{suppressNonmaxSize}{linear size of a pixel neighborhood for non-maxima suppression} |
|
\end{description} |
|
} |
|
\fi |
|
\end{description} |
|
|
|
The function GetStarKeypoints extracts keypoints that are local |
|
scale-space extremas. The scale-space is constructed by computing |
|
approximate values of laplacians with different sigma's at each |
|
pixel. Instead of using pyramids, a popular approach to save computing |
|
time, all of the laplacians are computed at each pixel of the original |
|
high-resolution image. But each approximate laplacian value is computed |
|
in O(1) time regardless of the sigma, thanks to the use of integral |
|
images. The algorithm is based on the paper |
|
Agrawal08 |
|
, but instead |
|
of a square, hexagon or octagon it uses an 8-end star shape, hence the name, |
|
consisting of overlapping upright and tilted squares. |
|
|
|
\ifC |
|
Each computed feature is represented by the following structure: |
|
|
|
\begin{lstlisting} |
|
typedef struct CvStarKeypoint |
|
{ |
|
CvPoint pt; // coordinates of the feature |
|
int size; // feature size, see CvStarDetectorParams::maxSize |
|
float response; // the approximated laplacian value at that point. |
|
} |
|
CvStarKeypoint; |
|
|
|
inline CvStarKeypoint cvStarKeypoint(CvPoint pt, int size, float response); |
|
\end{lstlisting} |
|
\else |
|
Each keypoint is represented by a tuple \texttt{((x, y), size, response)}: |
|
\begin{description} |
|
\cvarg{x, y}{Screen coordinates of the keypoint} |
|
\cvarg{size}{feature size, up to \texttt{maxSize}} |
|
\cvarg{response}{approximated laplacian value for the keypoint} |
|
\end{description} |
|
\fi |
|
|
|
\ifC |
|
Below is the small usage sample: |
|
|
|
\begin{lstlisting} |
|
#include "cv.h" |
|
#include "highgui.h" |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
const char* filename = argc > 1 ? argv[1] : "lena.jpg"; |
|
IplImage* img = cvLoadImage( filename, 0 ), *cimg; |
|
CvMemStorage* storage = cvCreateMemStorage(0); |
|
CvSeq* keypoints = 0; |
|
int i; |
|
|
|
if( !img ) |
|
return 0; |
|
cvNamedWindow( "image", 1 ); |
|
cvShowImage( "image", img ); |
|
cvNamedWindow( "features", 1 ); |
|
cimg = cvCreateImage( cvGetSize(img), 8, 3 ); |
|
cvCvtColor( img, cimg, CV_GRAY2BGR ); |
|
|
|
keypoints = cvGetStarKeypoints( img, storage, cvStarDetectorParams(45) ); |
|
|
|
for( i = 0; i < (keypoints ? keypoints->total : 0); i++ ) |
|
{ |
|
CvStarKeypoint kpt = *(CvStarKeypoint*)cvGetSeqElem(keypoints, i); |
|
int r = kpt.size/2; |
|
cvCircle( cimg, kpt.pt, r, CV_RGB(0,255,0)); |
|
cvLine( cimg, cvPoint(kpt.pt.x + r, kpt.pt.y + r), |
|
cvPoint(kpt.pt.x - r, kpt.pt.y - r), CV_RGB(0,255,0)); |
|
cvLine( cimg, cvPoint(kpt.pt.x - r, kpt.pt.y + r), |
|
cvPoint(kpt.pt.x + r, kpt.pt.y - r), CV_RGB(0,255,0)); |
|
} |
|
cvShowImage( "features", cimg ); |
|
cvWaitKey(); |
|
} |
|
\end{lstlisting} |
|
\fi |
|
|
|
\fi |
|
\ifCpp |
|
|
|
\cvclass{KeyPoint} |
|
Data structure for salient point detectors |
|
|
|
\begin{lstlisting} |
|
class KeyPoint |
|
{ |
|
public: |
|
// the default constructor |
|
KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), |
|
class_id(-1) {} |
|
// the full constructor |
|
KeyPoint(Point2f _pt, float _size, float _angle=-1, |
|
float _response=0, int _octave=0, int _class_id=-1) |
|
: pt(_pt), size(_size), angle(_angle), response(_response), |
|
octave(_octave), class_id(_class_id) {} |
|
// another form of the full constructor |
|
KeyPoint(float x, float y, float _size, float _angle=-1, |
|
float _response=0, int _octave=0, int _class_id=-1) |
|
: pt(x, y), size(_size), angle(_angle), response(_response), |
|
octave(_octave), class_id(_class_id) {} |
|
// converts vector of keypoints to vector of points |
|
static void convert(const std::vector<KeyPoint>& keypoints, |
|
std::vector<Point2f>& points2f, |
|
const std::vector<int>& keypointIndexes=std::vector<int>()); |
|
// converts vector of points to the vector of keypoints, where each |
|
// keypoint is assigned the same size and the same orientation |
|
static void convert(const std::vector<Point2f>& points2f, |
|
std::vector<KeyPoint>& keypoints, |
|
float size=1, float response=1, int octave=0, |
|
int class_id=-1); |
|
|
|
// computes overlap for pair of keypoints; |
|
// overlap is a ratio between area of keypoint regions intersection and |
|
// area of keypoint regions union (now keypoint region is circle) |
|
static float overlap(const KeyPoint& kp1, const KeyPoint& kp2); |
|
|
|
Point2f pt; // coordinates of the keypoints |
|
float size; // diameter of the meaningfull keypoint neighborhood |
|
float angle; // computed orientation of the keypoint (-1 if not applicable) |
|
float response; // the response by which the most strong keypoints |
|
// have been selected. Can be used for the further sorting |
|
// or subsampling |
|
int octave; // octave (pyramid layer) from which the keypoint has been extracted |
|
int class_id; // object class (if the keypoints need to be clustered by |
|
// an object they belong to) |
|
}; |
|
|
|
// writes vector of keypoints to the file storage |
|
void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints); |
|
// reads vector of keypoints from the specified file storage node |
|
void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints); |
|
\end{lstlisting} |
|
|
|
|
|
\cvclass{MSER} |
|
Maximally-Stable Extremal Region Extractor |
|
|
|
\begin{lstlisting} |
|
class MSER : public CvMSERParams |
|
{ |
|
public: |
|
// default constructor |
|
MSER(); |
|
// constructor that initializes all the algorithm parameters |
|
MSER( int _delta, int _min_area, int _max_area, |
|
float _max_variation, float _min_diversity, |
|
int _max_evolution, double _area_threshold, |
|
double _min_margin, int _edge_blur_size ); |
|
// runs the extractor on the specified image; returns the MSERs, |
|
// each encoded as a contour (vector<Point>, see findContours) |
|
// the optional mask marks the area where MSERs are searched for |
|
void operator()( const Mat& image, vector<vector<Point> >& msers, const Mat& mask ) const; |
|
}; |
|
\end{lstlisting} |
|
|
|
The class encapsulates all the parameters of MSER (see \url{http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions}) extraction algorithm. |
|
|
|
\cvclass{StarDetector} |
|
Implements Star keypoint detector |
|
|
|
\begin{lstlisting} |
|
class StarDetector : CvStarDetectorParams |
|
{ |
|
public: |
|
// default constructor |
|
StarDetector(); |
|
// the full constructor initialized all the algorithm parameters: |
|
// maxSize - maximum size of the features. The following |
|
// values of the parameter are supported: |
|
// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128 |
|
// responseThreshold - threshold for the approximated laplacian, |
|
// used to eliminate weak features. The larger it is, |
|
// the less features will be retrieved |
|
// lineThresholdProjected - another threshold for the laplacian to |
|
// eliminate edges |
|
// lineThresholdBinarized - another threshold for the feature |
|
// size to eliminate edges. |
|
// The larger the 2 threshold, the more points you get. |
|
StarDetector(int maxSize, int responseThreshold, |
|
int lineThresholdProjected, |
|
int lineThresholdBinarized, |
|
int suppressNonmaxSize); |
|
|
|
// finds keypoints in an image |
|
void operator()(const Mat& image, vector<KeyPoint>& keypoints) const; |
|
}; |
|
\end{lstlisting} |
|
|
|
The class implements a modified version of CenSurE keypoint detector described in |
|
\cite{Agrawal08} |
|
|
|
\cvclass{SIFT} |
|
Class for extracting keypoints and computing descriptors using approach named Scale Invariant Feature Transform (SIFT). |
|
|
|
\begin{lstlisting} |
|
class CV_EXPORTS SIFT |
|
{ |
|
public: |
|
struct CommonParams |
|
{ |
|
static const int DEFAULT_NOCTAVES = 4; |
|
static const int DEFAULT_NOCTAVE_LAYERS = 3; |
|
static const int DEFAULT_FIRST_OCTAVE = -1; |
|
enum{ FIRST_ANGLE = 0, AVERAGE_ANGLE = 1 }; |
|
|
|
CommonParams(); |
|
CommonParams( int _nOctaves, int _nOctaveLayers, int _firstOctave, |
|
int _angleMode ); |
|
int nOctaves, nOctaveLayers, firstOctave; |
|
int angleMode; |
|
}; |
|
|
|
struct DetectorParams |
|
{ |
|
static double GET_DEFAULT_THRESHOLD() |
|
{ return 0.04 / SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS / 2.0; } |
|
static double GET_DEFAULT_EDGE_THRESHOLD() { return 10.0; } |
|
|
|
DetectorParams(); |
|
DetectorParams( double _threshold, double _edgeThreshold ); |
|
double threshold, edgeThreshold; |
|
}; |
|
|
|
struct DescriptorParams |
|
{ |
|
static double GET_DEFAULT_MAGNIFICATION() { return 3.0; } |
|
static const bool DEFAULT_IS_NORMALIZE = true; |
|
static const int DESCRIPTOR_SIZE = 128; |
|
|
|
DescriptorParams(); |
|
DescriptorParams( double _magnification, bool _isNormalize, |
|
bool _recalculateAngles ); |
|
double magnification; |
|
bool isNormalize; |
|
bool recalculateAngles; |
|
}; |
|
|
|
SIFT(); |
|
//! sift-detector constructor |
|
SIFT( double _threshold, double _edgeThreshold, |
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES, |
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int _angleMode=CommonParams::FIRST_ANGLE ); |
|
//! sift-descriptor constructor |
|
SIFT( double _magnification, bool _isNormalize=true, |
|
bool _recalculateAngles = true, |
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES, |
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int _angleMode=CommonParams::FIRST_ANGLE ); |
|
SIFT( const CommonParams& _commParams, |
|
const DetectorParams& _detectorParams = DetectorParams(), |
|
const DescriptorParams& _descriptorParams = DescriptorParams() ); |
|
|
|
//! returns the descriptor size in floats (128) |
|
int descriptorSize() const { return DescriptorParams::DESCRIPTOR_SIZE; } |
|
//! finds the keypoints using SIFT algorithm |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints) const; |
|
//! finds the keypoints and computes descriptors for them using SIFT algorithm. |
|
//! Optionally it can compute descriptors for the user-provided keypoints |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints, |
|
Mat& descriptors, |
|
bool useProvidedKeypoints=false) const; |
|
|
|
CommonParams getCommonParams () const { return commParams; } |
|
DetectorParams getDetectorParams () const { return detectorParams; } |
|
DescriptorParams getDescriptorParams () const { return descriptorParams; } |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{SURF} |
|
Class for extracting Speeded Up Robust Features from an image. |
|
|
|
\begin{lstlisting} |
|
class SURF : public CvSURFParams |
|
{ |
|
public: |
|
// default constructor |
|
SURF(); |
|
// constructor that initializes all the algorithm parameters |
|
SURF(double _hessianThreshold, int _nOctaves=4, |
|
int _nOctaveLayers=2, bool _extended=false); |
|
// returns the number of elements in each descriptor (64 or 128) |
|
int descriptorSize() const; |
|
// detects keypoints using fast multi-scale Hessian detector |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints) const; |
|
// detects keypoints and computes the SURF descriptors for them |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints, |
|
vector<float>& descriptors, |
|
bool useProvidedKeypoints=false) const; |
|
}; |
|
\end{lstlisting} |
|
|
|
The class \texttt{SURF} implements Speeded Up Robust Features descriptor \cite{Bay06}. |
|
There is fast multi-scale Hessian keypoint detector that can be used to find the keypoints |
|
(which is the default option), but the descriptors can be also computed for the user-specified keypoints. |
|
The function can be used for object tracking and localization, image stitching etc. See the |
|
\texttt{find\_obj.cpp} demo in OpenCV samples directory. |
|
|
|
\section{Common Interfaces for Feature Detection and Descriptor Extraction} |
|
Both detectors and descriptors in OpenCV have wrappers with common interface that enables to switch easily |
|
between different algorithms solving the same problem. All objects that implement keypoint detectors inherit |
|
FeatureDetector interface. Descriptors that are represented as vectors in a multidimensional space can be |
|
computed with DescriptorExtractor interface. DescriptorMatcher interface can be used to find matches between |
|
two sets of descriptors. GenericDescriptorMatcher is a more generic interface for descriptors. It does not make any |
|
assumptions about descriptor representation. Every descriptor with DescriptorExtractor interface has a wrapper with |
|
GenericDescriptorMatcher interface (see VectorDescriptorMatch). There are descriptors such as one way descriptor and |
|
ferns that have GenericDescriptorMatcher interface implemented, but do not support DescriptorExtractor. |
|
|
|
\cvclass{FeatureDetector} |
|
Abstract base class for 2D image feature detectors. |
|
|
|
\begin{lstlisting} |
|
class CV_EXPORTS FeatureDetector |
|
{ |
|
public: |
|
virtual ~FeatureDetector() {} |
|
|
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, |
|
const Mat& mask=Mat() ) const = 0; |
|
|
|
void detect( const vector<Mat>& imageCollection, |
|
vector<vector<KeyPoint> >& pointCollection, |
|
const vector<Mat>& masks=vector<Mat>() ) const; |
|
|
|
virtual void read(const FileNode&) {} |
|
virtual void write(FileStorage&) const {} |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{FeatureDetector::detect} |
|
Detect keypoints in an image (first variant) or image set (second variant). |
|
|
|
\cvdefCpp{ |
|
void FeatureDetector::detect( const Mat\& image, |
|
\par vector<KeyPoint>\& keypoints, |
|
\par const Mat\& mask=Mat() ) const;\\ |
|
void FeatureDetector::detect( const vector<Mat>\& imageCollection, |
|
\par vector<vector<KeyPoint> >\& pointCollection, |
|
\par const vector<Mat>\& masks=vector<Mat>() ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{image}{The image.} |
|
\cvarg{keypoints}{The detected keypoints.} |
|
\cvarg{mask}{Mask specifying where to look for keypoints (optional). Must be a char matrix |
|
with non-zero values in the region of interest.} |
|
\end{description} |
|
|
|
\begin{description} |
|
\cvarg{imageCollection}{Image collection.} |
|
\cvarg{pointCollection}{Collection of keypoints detected in an input images.} |
|
\cvarg{masks}{Masks for each input image specifying where to look for keypoints (optional). |
|
Each element of \texttt{masks} vector must be a char matrix with non-zero values in the region of interest.} |
|
\end{description} |
|
|
|
\cvCppFunc{FeatureDetector::read} |
|
Read feature detector from file node. |
|
|
|
\cvdefCpp{ |
|
void FeatureDetector::read( const FileNode\& fn ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{fn}{File node from which detector will be read.} |
|
\end{description} |
|
|
|
\cvCppFunc{FeatureDetector::write} |
|
Write feature detector to file storage. |
|
|
|
\cvdefCpp{ |
|
void FeatureDetector::write( FileStorage\& fs ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{fs}{File storage in which detector will be written.} |
|
\end{description} |
|
|
|
\cvclass{FastFeatureDetector} |
|
Wrapping class for feature detection using \cvCppCross{FAST} method. |
|
|
|
\begin{lstlisting} |
|
class FastFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
FastFeatureDetector( int _threshold=1, bool _nonmaxSuppression=true ); |
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, |
|
const Mat& mask=Mat() ) const; |
|
|
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{GoodFeaturesToTrackDetector} |
|
Wrapping class for feature detection using \cvCppCross{goodFeaturesToTrack} method. |
|
|
|
\begin{lstlisting} |
|
class GoodFeaturesToTrackDetector : public FeatureDetector |
|
{ |
|
public: |
|
GoodFeaturesToTrackDetector( int _maxCorners, double _qualityLevel, |
|
double _minDistance, int _blockSize=3, |
|
bool _useHarrisDetector=false, double _k=0.04 ); |
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, |
|
const Mat& mask=Mat() ) const; |
|
|
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{MserFeatureDetector} |
|
Wrapping class for feature detection using \cvCppCross{MSER} class. |
|
|
|
\begin{lstlisting} |
|
class MserFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
MserFeatureDetector( CvMSERParams params=cvMSERParams () ); |
|
MserFeatureDetector( int delta, int minArea, int maxArea, |
|
double maxVariation, double minDiversity, |
|
int maxEvolution, double areaThreshold, |
|
double minMargin, int edgeBlurSize ); |
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, |
|
const Mat& mask=Mat() ) const; |
|
|
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{StarFeatureDetector} |
|
Wrapping class for feature detection using \cvCppCross{StarDetector} class. |
|
|
|
\begin{lstlisting} |
|
class StarFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
StarFeatureDetector( int maxSize=16, int responseThreshold=30, |
|
int lineThresholdProjected = 10, |
|
int lineThresholdBinarized=8, int suppressNonmaxSize=5 ); |
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, |
|
const Mat& mask=Mat() ) const; |
|
|
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{SiftFeatureDetector} |
|
Wrapping class for feature detection using \cvCppCross{SIFT} class. |
|
|
|
\begin{lstlisting} |
|
class SiftFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
SiftFeatureDetector( double threshold=SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(), |
|
double edgeThreshold=SIFT::DetectorParams::GET_DEFAULT_EDGE_THRESHOLD(), |
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES, |
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE ); |
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, |
|
const Mat& mask=Mat() ) const; |
|
|
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{SurfFeatureDetector} |
|
Wrapping class for feature detection using \cvCppCross{SURF} class. |
|
|
|
\begin{lstlisting} |
|
class SurfFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
SurfFeatureDetector( double hessianThreshold = 400., int octaves = 3, |
|
int octaveLayers = 4 ); |
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, |
|
const Mat& mask=Mat() ) const; |
|
|
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{GridAdaptedFeatureDetector} |
|
Adapts a detector to partition the source image into a grid and detect |
|
points in each cell. |
|
|
|
\begin{lstlisting} |
|
class GridAdaptedFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
/* |
|
* detector Detector that will be adapted. |
|
* maxTotalKeypoints Maximum count of keypoints detected on the image. |
|
* Only the strongest keypoints will be keeped. |
|
* gridRows Grid rows count. |
|
* gridCols Grid column count. |
|
*/ |
|
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, |
|
int maxTotalKeypoints, int gridRows=4, |
|
int gridCols=4 ); |
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, |
|
const Mat& mask=Mat() ) const; |
|
|
|
// todo read/write |
|
virtual void read( const FileNode& fn ) {} |
|
virtual void write( FileStorage& fs ) const {} |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{PyramidAdaptedFeatureDetector} |
|
Adapts a detector to detect points over multiple levels of a Gaussian |
|
pyramid. Useful for detectors that are not inherently scaled. |
|
|
|
\begin{lstlisting} |
|
class PyramidAdaptedFeatureDetector : public FeatureDetector |
|
{ |
|
public: |
|
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, |
|
int levels=2 ); |
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, |
|
const Mat& mask=Mat() ) const; |
|
|
|
// todo read/write |
|
virtual void read( const FileNode& fn ) {} |
|
virtual void write( FileStorage& fs ) const {} |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{createFeatureDetector} |
|
Feature detector factory that creates \cvCppCross{FeatureDetector} of given type with |
|
default parameters (rather using default constructor). |
|
|
|
\begin{lstlisting} |
|
Ptr<FeatureDetector> createFeatureDetector( const string& detectorType ); |
|
\end{lstlisting} |
|
|
|
\begin{description} |
|
\cvarg{detectorType}{Feature detector type, e.g. ''SURF'', ''FAST'', ...} |
|
\end{description} |
|
|
|
\cvclass{DescriptorExtractor} |
|
Abstract base class for computing descriptors for image keypoints. |
|
|
|
\begin{lstlisting} |
|
class CV_EXPORTS DescriptorExtractor |
|
{ |
|
public: |
|
virtual ~DescriptorExtractor() {} |
|
|
|
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints, |
|
Mat& descriptors ) const = 0; |
|
|
|
void compute( const vector<Mat>& imageCollection, |
|
vector<vector<KeyPoint> >& pointCollection, |
|
vector<Mat>& descCollection ) const; |
|
|
|
virtual void read( const FileNode& ) {} |
|
virtual void write( FileStorage& ) const {} |
|
|
|
virtual int descriptorSize() const = 0; |
|
virtual int descriptorType() const = 0; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
In this interface we assume a keypoint descriptor can be represented as a |
|
dense, fixed-dimensional vector of some basic type. Most descriptors used |
|
in practice follow this pattern, as it makes it very easy to compute |
|
distances between descriptors. Therefore we represent a collection of |
|
descriptors as a \cvCppCross{Mat}, where each row is one keypoint descriptor. |
|
|
|
\cvCppFunc{DescriptorExtractor::compute} |
|
Compute the descriptors for a set of keypoints detected in an image or image collection. |
|
|
|
\cvdefCpp{ |
|
void DescriptorExtractor::compute( const Mat\& image, |
|
\par vector<KeyPoint>\& keypoints, |
|
\par Mat\& descriptors ) const;\\ |
|
void DescriptorExtractor::compute( const vector<Mat>\& imageCollection, |
|
\par vector<vector<KeyPoint> >\& pointCollection, |
|
\par vector<Mat>\& descCollection ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{image}{The image.} |
|
\cvarg{keypoints}{The keypoints. Keypoints for which a descriptor cannot be computed are removed.} |
|
\cvarg{descriptors}{The descriptors. Row i is the descriptor for keypoint i.} |
|
\end{description} |
|
|
|
\begin{description} |
|
\cvarg{imageCollection}{Image collection.} |
|
\cvarg{pointCollection}{Keypoints collection. pointCollection[i] is keypoints |
|
detected in imageCollection[i]. Keypoints for which a descriptor |
|
cannot be computed are removed.} |
|
\cvarg{descCollection}{Descriptor collection. descCollection[i] is descriptors |
|
computed for pointCollection[i].} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorExtractor::read} |
|
Read descriptor extractor from file node. |
|
|
|
\cvdefCpp{ |
|
void DescriptorExtractor::read( const FileNode\& fn ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{fn}{File node from which detector will be read.} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorExtractor::write} |
|
Write descriptor extractor to file storage. |
|
|
|
\cvdefCpp{ |
|
void DescriptorExtractor::write( FileStorage\& fs ) const; |
|
} |
|
|
|
\begin{description} |
|
\cvarg{fs}{File storage in which detector will be written.} |
|
\end{description} |
|
|
|
|
|
\cvclass{SiftDescriptorExtractor} |
|
Wrapping class for descriptors computing using \cvCppCross{SIFT} class. |
|
|
|
\begin{lstlisting} |
|
class SiftDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
SiftDescriptorExtractor( |
|
double magnification=SIFT::DescriptorParams::GET_DEFAULT_MAGNIFICATION(), |
|
bool isNormalize=true, bool recalculateAngles=true, |
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES, |
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE ); |
|
|
|
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints, |
|
Mat& descriptors) const; |
|
|
|
virtual void read (const FileNode &fn); |
|
virtual void write (FileStorage &fs) const; |
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
protected: |
|
... |
|
} |
|
\end{lstlisting} |
|
|
|
\cvclass{SurfDescriptorExtractor} |
|
Wrapping class for descriptors computing using \cvCppCross{SURF} class. |
|
|
|
\begin{lstlisting} |
|
class SurfDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
SurfDescriptorExtractor( int nOctaves=4, |
|
int nOctaveLayers=2, bool extended=false ); |
|
|
|
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints, |
|
Mat& descriptors) const; |
|
|
|
virtual void read (const FileNode &fn); |
|
virtual void write (FileStorage &fs) const; |
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
protected: |
|
... |
|
} |
|
\end{lstlisting} |
|
|
|
\cvclass{CalonderDescriptorExtractor} |
|
Wrapping class for descriptors computing using \cvCppCross{RTreeClassifier} class. |
|
|
|
\begin{lstlisting} |
|
template<typename T> |
|
class CalonderDescriptorExtractor : public DescriptorExtractor |
|
{ |
|
public: |
|
CalonderDescriptorExtractor( const string& classifierFile ); |
|
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints, |
|
Mat& descriptors ) const; |
|
|
|
virtual void read( const FileNode &fn ); |
|
virtual void write( FileStorage &fs ) const; |
|
virtual int descriptorSize() const; |
|
virtual int descriptorType() const; |
|
protected: |
|
... |
|
} |
|
\end{lstlisting} |
|
|
|
\cvclass{DMatch} |
|
Match between two keypoint descriptors: query descriptor index, |
|
train descriptor index, train image index and distance between descriptors. |
|
|
|
\begin{lstlisting} |
|
struct DMatch |
|
{ |
|
DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), |
|
distance(std::numeric_limits<float>::max()) {} |
|
DMatch( int _queryIdx, int _trainIdx, float _distance ) : |
|
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), |
|
distance(_distance) {} |
|
DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) : |
|
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), |
|
distance(_distance) {} |
|
|
|
int queryIdx; // query descriptor index |
|
int trainIdx; // train descriptor index |
|
int imgIdx; // train image index |
|
|
|
float distance; |
|
|
|
// less is better |
|
bool operator<( const DMatch &m) const; |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{DescriptorMatcher} |
|
Abstract base class for matching keypoint descriptors. It has two groups |
|
of match methods: for matching descriptors of one image with other image or |
|
with image set. |
|
|
|
\begin{lstlisting} |
|
class DescriptorMatcher |
|
{ |
|
public: |
|
virtual ~DescriptorMatcher() {} |
|
|
|
virtual void add( const vector<Mat>& descCollection ); |
|
const vector<Mat>& getTrainDescCollection() const; |
|
virtual void clear(); |
|
virtual bool supportMask() = 0; |
|
|
|
virtual void train() = 0; |
|
/* |
|
* Group of methods to match descriptors from image pair. |
|
*/ |
|
void match( const Mat& queryDescs, const Mat& trainDescs, |
|
vector<DMatch>& matches, const Mat& mask=Mat() ) const; |
|
void knnMatch( const Mat& queryDescs, const Mat& trainDescs, |
|
vector<vector<DMatch> >& matches, int knn, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
void radiusMatch( const Mat& queryDescs, const Mat& trainDescs, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
/* |
|
* Group of methods to match descriptors from one image to image set. |
|
*/ |
|
void match( const Mat& queryDescs, vector<DMatch>& matches, |
|
const vector<Mat>& masks=vector<Mat>() ); |
|
void knnMatch( const Mat& queryDescs, vector<vector<DMatch> >& matches, |
|
int knn, const vector<Mat>& masks=vector<Mat>(), |
|
bool compactResult=false ); |
|
void radiusMatch( const Mat& queryDescs, vector<vector<DMatch> >& matches, |
|
float maxDistance, const vector<Mat>& masks=vector<Mat>(), |
|
bool compactResult=false ); |
|
|
|
virtual void read( const FileNode& ) {} |
|
virtual void write( FileStorage& ) const {} |
|
|
|
protected: |
|
|
|
vector<Mat> trainDescCollection; |
|
|
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{DescriptorMatcher::add} |
|
Add descriptors to train descriptor collection. If collection \texttt{trainDescCollection} is not empty |
|
the new descriptors are added to existing train descriptors. |
|
|
|
\cvdefCpp{ |
|
void add( const vector<Mat>\& descCollection ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{descCollection}{Descriptors to add. Each \texttt{trainDescCollection[i]} is from the same train image.} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorMatcher::getTrainDescCollection} |
|
Returns constant link to the train descriptor collection (i.e. \texttt{trainDescCollection}). |
|
|
|
\cvdefCpp{ |
|
const vector<Mat>\& getTrainDescCollection() const; |
|
} |
|
|
|
\cvCppFunc{DescriptorMatcher::clear} |
|
Clear train descriptor collection. |
|
|
|
\cvdefCpp{ |
|
void DescriptorMatcher::clear(); |
|
} |
|
|
|
\cvCppFunc{DescriptorMatcher::supportMask} |
|
Returns true if descriptor matcher supports masking permissible matches. |
|
|
|
\cvdefCpp{ |
|
bool DescriptorMatcher::supportMask(); |
|
} |
|
|
|
\cvCppFunc{DescriptorMatcher::train} |
|
Train descriptor matcher (e.g. train flann index). |
|
|
|
\cvdefCpp{ |
|
void DescriptorMatcher::train(); |
|
} |
|
|
|
\cvCppFunc{DescriptorMatcher::match} |
|
Find the best match for each descriptor from a query set with train descriptors. |
|
Supposed that the query descriptors are of keypoints detected on the same query image. |
|
In first variant of this method train descriptors are set as input argument and |
|
supposed that they are of keypoints detected on the same train image. In second variant |
|
of the method train descriptors collection that was set using \texttt{add} method is used. |
|
Optional mask (or masks) can be set to describe which descriptors can be matched. |
|
\texttt{descriptors\_1[i]} can be matched with \texttt{descriptors\_2[j]} only if \texttt{mask.at<uchar>(i,j)} is non-zero. |
|
|
|
\cvdefCpp{ |
|
void DescriptorMatcher::match( const Mat\& queryDescs, |
|
\par const Mat\& trainDescs, |
|
\par vector<DMatch>\& matches, |
|
\par const Mat\& mask=Mat() ) const; |
|
} |
|
\cvdefCpp{ |
|
void DescriptorMatcher::match( const Mat\& queryDescs, |
|
\par vector<DMatch>\& matches, |
|
\par const vector<Mat>\& masks=vector<Mat>() ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{queryDescs}{Query set of descriptors.} |
|
\cvarg{trainDescs}{Train set of descriptors.} |
|
\cvarg{matches}{Matches. If some query descriptor masked out in \texttt{mask} no match will be added for this descriptor. |
|
So \texttt{matches} size may be less query descriptors count.} |
|
\cvarg{mask}{Mask specifying permissible matches between input query and train matrices of descriptors.} |
|
\cvarg{masks}{The set of masks. Each \texttt{masks[i]} specifies permissible matches between input query descriptors |
|
and stored train descriptors from i-th image (i.e. \texttt{trainDescCollection[i])}.} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorMatcher::knnMatch} |
|
Find the knn best matches for each descriptor from a query set with train descriptors. |
|
Found knn (or less if not possible) matches are returned in distance increasing order. |
|
Details about query and train descriptors see in \cvCppCross{DescriptorMatcher::match}. |
|
|
|
\cvdefCpp{ |
|
void DescriptorMatcher::knnMatch( const Mat\& queryDescs, |
|
\par const Mat\& trainDescs, vector<vector<DMatch> >\& matches, |
|
\par int knn, const Mat\& mask=Mat(), |
|
\par bool compactResult=false ) const; |
|
} |
|
\cvdefCpp{ |
|
void DescriptorMatcher::knnMatch( const Mat\& queryDescs, |
|
\par vector<vector<DMatch> >\& matches, int knn, |
|
\par const vector<Mat>\& masks=vector<Mat>(), |
|
\par bool compactResult=false ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{queryDescs, trainDescs, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.} |
|
\cvarg{matches}{Mathes. Each \texttt{matches[i]} is knn or less matches for the same query descriptor.} |
|
\cvarg{knn}{Count of best matches will be found per each query descriptor (or less if it's not possible).} |
|
\cvarg{compactResult}{It's used when mask (or masks) is not empty. If \texttt{compactResult} is false |
|
\texttt{matches} vector will have the same size as \texttt{queryDescs} rows. If \texttt{compactResult} |
|
is true \texttt{matches} vector will not contain matches for fully masked out query descriptors.} |
|
\end{description} |
|
|
|
\cvCppFunc{DescriptorMatcher::radiusMatch} |
|
Find the best matches for each query descriptor which have distance less than given threshold. |
|
Found matches are returned in distance increasing order. Details about query and train |
|
descriptors see in \cvCppCross{DescriptorMatcher::match}. |
|
|
|
\cvdefCpp{ |
|
void DescriptorMatcher::radiusMatch( const Mat\& queryDescs, |
|
\par const Mat\& trainDescs, vector<vector<DMatch> >\& matches, |
|
\par float maxDistance, const Mat\& mask=Mat(), |
|
\par bool compactResult=false ) const; |
|
} |
|
\cvdefCpp{ |
|
void DescriptorMatcher::radiusMatch( const Mat\& queryDescs, |
|
\par vector<vector<DMatch> >\& matches, float maxDistance, |
|
\par const vector<Mat>\& masks=vector<Mat>(), |
|
\par bool compactResult=false ); |
|
} |
|
\begin{description} |
|
\cvarg{queryDescs, trainDescs, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.} |
|
\cvarg{matches, compactResult}{See in \cvCppCross{DescriptorMatcher::knnMatch}.} |
|
\cvarg{maxDistance}{The threshold to found match distances.} |
|
\end{description} |
|
|
|
\cvclass{BruteForceMatcher} |
|
Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest |
|
descriptor in the second set by trying each one. This descriptor matcher supports masking |
|
permissible matches between descriptor sets. |
|
|
|
\begin{lstlisting} |
|
template<class Distance> |
|
class BruteForceMatcher : public DescriptorMatcher |
|
{ |
|
public: |
|
BruteForceMatcher( Distance d = Distance() ) : distance(d) {} |
|
virtual ~BruteForceMatcher() {} |
|
|
|
virtual void train() {} |
|
virtual bool supportMask() { return true; } |
|
|
|
protected: |
|
... |
|
} |
|
\end{lstlisting} |
|
|
|
For efficiency, BruteForceMatcher is templated on the distance metric. |
|
For float descriptors, a common choice would be \texttt{L2<float>}. Class \texttt{L2} is defined as: |
|
\begin{lstlisting} |
|
template<typename T> |
|
struct Accumulator |
|
{ |
|
typedef T Type; |
|
}; |
|
|
|
template<> struct Accumulator<unsigned char> { typedef unsigned int Type; }; |
|
template<> struct Accumulator<unsigned short> { typedef unsigned int Type; }; |
|
template<> struct Accumulator<char> { typedef int Type; }; |
|
template<> struct Accumulator<short> { typedef int Type; }; |
|
|
|
/* |
|
* Squared Euclidean distance functor |
|
*/ |
|
template<class T> |
|
struct L2 |
|
{ |
|
typedef T ValueType; |
|
typedef typename Accumulator<T>::Type ResultType; |
|
|
|
ResultType operator()( const T* a, const T* b, int size ) const; |
|
{ |
|
ResultType result = ResultType(); |
|
for( int i = 0; i < size; i++ ) |
|
{ |
|
ResultType diff = a[i] - b[i]; |
|
result += diff*diff; |
|
} |
|
return sqrt(result); |
|
} |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{FlannBasedMatcher} |
|
Flann based descriptor matcher. This matcher trains \cvCppCross{flann::Index} on |
|
train descriptor collection and calls it's nearest search methods to find best matches. |
|
So this matcher may be faster in cases of matching to large train collection than |
|
brute force matcher. \texttt{FlannBasedMatcher} does not support masking permissible |
|
matches between descriptor sets, because \cvCppCross{flann::Index} does not |
|
support this. |
|
|
|
\begin{lstlisting} |
|
class FlannBasedMatcher : public DescriptorMatcher |
|
{ |
|
public: |
|
FlannBasedMatcher( |
|
const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(), |
|
const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() ); |
|
|
|
virtual void add( const vector<Mat>& descCollection ); |
|
virtual void clear(); |
|
|
|
virtual void train(); |
|
virtual bool supportMask() { return false; } |
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{createDescriptorMatcher} |
|
Descriptor matcher factory that creates \cvCppCross{DescriptorMatcher} of |
|
given type with default parameters (rather using default constructor). |
|
|
|
\begin{lstlisting} |
|
Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherType ); |
|
\end{lstlisting} |
|
|
|
\begin{description} |
|
\cvarg{descriptorMatcherType}{Descriptor matcher type, e. g. ''BruteForce'', ''FlannBased'', ...} |
|
\end{description} |
|
|
|
\cvclass{GenericDescriptorMatcher} |
|
Abstract interface for a keypoint descriptor extracting and matching. |
|
There is \cvCppCross{DescriptorExtractor} and \cvCppCross{DescriptorMatcher} |
|
for these purposes too, but their interfaces are intended for descriptors |
|
represented as vectors in a multidimensional space. \texttt{GenericDescriptorMatcher} |
|
is a more generic interface for descriptors. |
|
As \cvCppCross{DescriptorMatcher}, \texttt{GenericDescriptorMatcher} has two groups |
|
of match methods: for matching keypoints of one image with other image or |
|
with image set. |
|
|
|
\begin{lstlisting} |
|
class GenericDescriptorMatcher |
|
{ |
|
public: |
|
GenericDescriptorMatcher() {} |
|
virtual ~GenericDescriptorMatcher() {} |
|
|
|
virtual void add( const vector<Mat>& imgCollection, |
|
vector<vector<KeyPoint> >& pointCollection ); |
|
|
|
const vector<Mat>& getTrainImgCollection() const; |
|
const vector<vector<KeyPoint> >& getTrainPointCollection() const; |
|
virtual void clear(); |
|
|
|
virtual void train() = 0; |
|
|
|
virtual bool supportMask() = 0; |
|
|
|
virtual void classify( const Mat& queryImage, |
|
vector<KeyPoint>& queryPoints, |
|
const Mat& trainImage, |
|
vector<KeyPoint>& trainPoints ) const; |
|
virtual void classify( const Mat& queryImage, |
|
vector<KeyPoint>& queryPoints ); |
|
|
|
/* |
|
* Group of methods to match keypoints from image pair. |
|
*/ |
|
void match( const Mat& queryImg, vector<KeyPoint>& queryPoints, |
|
const Mat& trainImg, vector<KeyPoint>& trainPoints, |
|
vector<DMatch>& matches, const Mat& mask=Mat() ) const; |
|
void knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, |
|
const Mat& trainImg, vector<KeyPoint>& trainPoints, |
|
vector<vector<DMatch> >& matches, int knn, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
void radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, |
|
const Mat& trainImg, vector<KeyPoint>& trainPoints, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const Mat& mask=Mat(), bool compactResult=false ) const; |
|
/* |
|
* Group of methods to match keypoints from one image to image set. |
|
*/ |
|
void match( const Mat& queryImg, vector<KeyPoint>& queryPoints, |
|
vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() ); |
|
void knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, |
|
vector<vector<DMatch> >& matches, int knn, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
void radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, |
|
vector<vector<DMatch> >& matches, float maxDistance, |
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); |
|
|
|
virtual void read( const FileNode& ) {} |
|
virtual void write( FileStorage& ) const {} |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::add} |
|
Adds images and keypoints from them to the train collection (descriptors are supposed to be calculated here). |
|
If train collection is not empty new image and keypoints from them will be added to |
|
existing data. |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::add( const vector<Mat>\& imgCollection, |
|
\par vector<vector<KeyPoint> >\& pointCollection ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{imgCollection}{Image collection.} |
|
\cvarg{pointCollection}{Point collection. Assumes that \texttt{pointCollection[i]} are keypoints |
|
detected in an image \texttt{imgCollection[i]}. } |
|
\end{description} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::getTrainImgCollection} |
|
Returns train image collection. |
|
|
|
\begin{lstlisting} |
|
const vector<Mat>& GenericDescriptorMatcher::getTrainImgCollection() const; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::getTrainPointCollection} |
|
Returns train keypoints collection. |
|
|
|
\begin{lstlisting} |
|
const vector<vector<KeyPoint> >& |
|
GenericDescriptorMatcher::getTrainPointCollection() const; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::clear} |
|
Clear train collection (iamges and keypoints). |
|
|
|
\begin{lstlisting} |
|
void GenericDescriptorMatcher::clear(); |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::train} |
|
Train the object, e.g. tree-based structure to extract descriptors or |
|
to optimize descriptors matching. |
|
|
|
\begin{lstlisting} |
|
void GenericDescriptorMatcher::train(); |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::supportMask} |
|
Returns true if generic descriptor matcher supports masking permissible matches. |
|
|
|
\begin{lstlisting} |
|
void GenericDescriptorMatcher::supportMask(); |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::classify} |
|
Classifies query keypoints under keypoints of one train image qiven as input argument |
|
(first version of the method) or train image collection that set using |
|
\cvCppCross{GenericDescriptorMatcher::add} (second version). |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::classify( \par const Mat\& queryImage, |
|
\par vector<KeyPoint>\& queryPoints, |
|
\par const Mat\& trainImage, |
|
\par vector<KeyPoint>\& trainPoints ) const; |
|
} |
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::classify( const Mat\& queryImage, |
|
\par vector<KeyPoint>\& queryPoints ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{queryImage}{The query image.} |
|
\cvarg{queryPoints}{Keypoints from the query image.} |
|
\cvarg{trainImage}{The train image.} |
|
\cvarg{trainPoints}{Keypoints from the train image.} |
|
\end{description} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::match} |
|
Find best match for query keypoints to the training set. In first version of method |
|
one train image and keypoints detected on it - are input arguments. In second version |
|
query keypoints are matched to training collectin that set using |
|
\cvCppCross{GenericDescriptorMatcher::add}. As in \cvCppCross{DescriptorMatcher::match} |
|
the mask can be set. |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::match( |
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, |
|
\par const Mat\& trainImg, vector<KeyPoint>\& trainPoints, |
|
\par vector<DMatch>\& matches, const Mat\& mask=Mat() ) const; |
|
} |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::match( |
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, |
|
\par vector<DMatch>\& matches, |
|
\par const vector<Mat>\& masks=vector<Mat>() ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{queryImg}{Query image.} |
|
\cvarg{queryPoints}{Keypoint detected in \texttt{queryImg}.} |
|
\cvarg{trainImg}{Train image.} |
|
\cvarg{trainPoints}{Keypoint detected in \texttt{trainImg}.} |
|
\cvarg{matches}{Matches. If some query descriptor (keypoint) masked out in \texttt{mask} |
|
no match will be added for this descriptor. |
|
So \texttt{matches} size may be less query keypoints count.} |
|
\cvarg{mask}{Mask specifying permissible matches between input query and train keypoints.} |
|
\cvarg{masks}{The set of masks. Each \texttt{masks[i]} specifies permissible matches between input query keypoints |
|
and stored train keypointss from i-th image.} |
|
|
|
\end{description} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::knnMatch} |
|
Find the knn best matches for each keypoint from a query set with train keypoints. |
|
Found knn (or less if not possible) matches are returned in distance increasing order. |
|
Details see in \cvCppCross{GenericDescriptorMatcher::match} and \cvCppCross{DescriptorMatcher::knnMatch}. |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::knnMatch( |
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, |
|
\par const Mat\& trainImg, vector<KeyPoint>\& trainPoints, |
|
\par vector<vector<DMatch> >\& matches, int knn, |
|
\par const Mat\& mask=Mat(), bool compactResult=false ) const; |
|
} |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::knnMatch( |
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, |
|
\par vector<vector<DMatch> >\& matches, int knn, |
|
\par const vector<Mat>\& masks=vector<Mat>(), |
|
\par bool compactResult=false ); |
|
} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::radiusMatch} |
|
Find the best matches for each query keypoint which have distance less than given threshold. |
|
Found matches are returned in distance increasing order. Details see in |
|
\cvCppCross{GenericDescriptorMatcher::match} and \cvCppCross{DescriptorMatcher::radiusMatch}. |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::radiusMatch( |
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, |
|
\par const Mat\& trainImg, vector<KeyPoint>\& trainPoints, |
|
\par vector<vector<DMatch> >\& matches, float maxDistance, |
|
\par const Mat\& mask=Mat(), bool compactResult=false ) const; |
|
|
|
|
|
} |
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::radiusMatch( |
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, |
|
\par vector<vector<DMatch> >\& matches, float maxDistance, |
|
\par const vector<Mat>\& masks=vector<Mat>(), |
|
\par bool compactResult=false ); |
|
} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::read} |
|
Reads matcher object from a file node. |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::read( const FileNode\& fn ); |
|
} |
|
|
|
\cvCppFunc{GenericDescriptorMatcher::write} |
|
Writes match object to a file storage |
|
|
|
\cvdefCpp{ |
|
void GenericDescriptorMatcher::write( FileStorage\& fs ) const; |
|
} |
|
|
|
\cvclass{OneWayDescriptorMatcher} |
|
Wrapping class for computing, matching and classification of descriptors using \cvCppCross{OneWayDescriptorBase} class. |
|
|
|
\begin{lstlisting} |
|
class OneWayDescriptorMatcher : public GenericDescriptorMatcher |
|
{ |
|
public: |
|
class Params |
|
{ |
|
public: |
|
static const int POSE_COUNT = 500; |
|
static const int PATCH_WIDTH = 24; |
|
static const int PATCH_HEIGHT = 24; |
|
static float GET_MIN_SCALE() { return 0.7f; } |
|
static float GET_MAX_SCALE() { return 1.5f; } |
|
static float GET_STEP_SCALE() { return 1.2f; } |
|
|
|
Params( int _poseCount = POSE_COUNT, |
|
Size _patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT), |
|
string _pcaFilename = string(), |
|
string _trainPath = string(), |
|
string _trainImagesList = string(), |
|
float _minScale = GET_MIN_SCALE(), float _maxScale = GET_MAX_SCALE(), |
|
float _stepScale = GET_STEP_SCALE() ) : |
|
poseCount(_poseCount), patchSize(_patchSize), pcaFilename(_pcaFilename), |
|
trainPath(_trainPath), trainImagesList(_trainImagesList), |
|
minScale(_minScale), maxScale(_maxScale), stepScale(_stepScale) {} |
|
|
|
int poseCount; |
|
Size patchSize; |
|
string pcaFilename; |
|
string trainPath; |
|
string trainImagesList; |
|
|
|
float minScale, maxScale, stepScale; |
|
}; |
|
|
|
// Equivalent to calling PointMatchOneWay() followed by Initialize(_params) |
|
OneWayDescriptorMatcher( const Params& _params=Params() ); |
|
virtual ~OneWayDescriptorMatcher(); |
|
|
|
void initialize( const Params& _params, |
|
const Ptr<OneWayDescriptorBase>& _base=Ptr<OneWayDescriptorBase>() ); |
|
|
|
virtual void clear (); |
|
virtual void train(); |
|
|
|
virtual bool supportMask() { return false; } |
|
|
|
virtual void read( const FileNode &fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{FernDescriptorMatcher} |
|
Wrapping class for computing, matching and classification of descriptors using \cvCppCross{FernClassifier} class. |
|
|
|
\begin{lstlisting} |
|
class FernDescriptorMatcher : public GenericDescriptorMatcher |
|
{ |
|
public: |
|
class Params |
|
{ |
|
public: |
|
Params( int _nclasses=0, |
|
int _patchSize=FernClassifier::PATCH_SIZE, |
|
int _signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE, |
|
int _nstructs=FernClassifier::DEFAULT_STRUCTS, |
|
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE, |
|
int _nviews=FernClassifier::DEFAULT_VIEWS, |
|
int _compressionMethod=FernClassifier::COMPRESSION_NONE, |
|
const PatchGenerator& patchGenerator=PatchGenerator() ); |
|
|
|
Params( const string& _filename ); |
|
|
|
int nclasses; |
|
int patchSize; |
|
int signatureSize; |
|
int nstructs; |
|
int structSize; |
|
int nviews; |
|
int compressionMethod; |
|
PatchGenerator patchGenerator; |
|
|
|
string filename; |
|
}; |
|
|
|
FernDescriptorMatcher( const Params& _params=Params() ); |
|
virtual ~FernDescriptorMatcher(); |
|
|
|
virtual void clear(); |
|
|
|
virtual void train(); |
|
|
|
virtual bool supportMask() { return false; } |
|
|
|
virtual void read( const FileNode &fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvclass{VectorDescriptorMatcher} |
|
Class used for matching descriptors that can be described as vectors in a finite-dimensional space. |
|
|
|
\begin{lstlisting} |
|
class VectorDescriptorMatcher : public GenericDescriptorMatcher |
|
{ |
|
public: |
|
VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& _extractor, |
|
const Ptr<DescriptorMatcher>& _matcher ) |
|
: extractor( _extractor ), matcher( _matcher ) |
|
{ CV_Assert( !extractor.empty() && !matcher.empty() ); } |
|
|
|
virtual ~VectorDescriptorMatcher() {} |
|
|
|
virtual void add( const vector<Mat>& imgCollection, |
|
vector<vector<KeyPoint> >& pointCollection ); |
|
|
|
virtual void clear(); |
|
|
|
virtual void train(); |
|
|
|
virtual bool supportMask() { matcher->supportMask(); } |
|
|
|
virtual void read( const FileNode& fn ); |
|
virtual void write( FileStorage& fs ) const; |
|
|
|
protected: |
|
... |
|
}; |
|
\end{lstlisting} |
|
|
|
Example of creating: |
|
\begin{lstlisting} |
|
VectorDescriptorMatcher matcher( new SurfDescriptorExtractor, |
|
new BruteForceMatcher<L2<float> > ); |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{drawMatches} |
|
This function draws matches of keypints from two images on output image. |
|
Match is a line connecting two keypoints (circles). |
|
|
|
\cvdefCpp{ |
|
void drawMatches( const Mat\& img1, const vector<KeyPoint>\& keypoints1, |
|
\par const Mat\& img2, const vector<KeyPoint>\& keypoints2, |
|
\par const vector<DMatch>\& matches1to2, Mat\& outImg, |
|
\par const Scalar\& matchColor=Scalar::all(-1), |
|
\par const Scalar\& singlePointColor=Scalar::all(-1), |
|
\par const vector<char>\& matchesMask=vector<char>(), |
|
\par int flags=DrawMatchesFlags::DEFAULT ); |
|
} |
|
|
|
\cvdefCpp{ |
|
void drawMatches( const Mat\& img1, const vector<KeyPoint>\& keypoints1, |
|
\par const Mat\& img2, const vector<KeyPoint>\& keypoints2, |
|
\par const vector<vector<DMatch> >\& matches1to2, Mat\& outImg, |
|
\par const Scalar\& matchColor=Scalar::all(-1), |
|
\par const Scalar\& singlePointColor=Scalar::all(-1), |
|
\par const vector<vector<char>>\& matchesMask= |
|
\par vector<vector<char> >(), |
|
\par int flags=DrawMatchesFlags::DEFAULT ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{img1}{First source image.} |
|
\cvarg{keypoints1}{Keypoints from first source image.} |
|
\cvarg{img2}{Second source image.} |
|
\cvarg{keypoints2}{Keypoints from second source image.} |
|
\cvarg{matches}{Matches from first image to second one, i.e. \texttt{keypoints1[i]} |
|
has corresponding point \texttt{keypoints2[matches[i]]}. } |
|
\cvarg{outImg}{Output image. Its content depends on \texttt{flags} value |
|
what is drawn in output image. See below possible \texttt{flags} bit values. } |
|
\cvarg{matchColor}{Color of matches (lines and connected keypoints). |
|
If \texttt{matchColor==Scalar::all(-1)} color will be generated randomly.} |
|
\cvarg{singlePointColor}{Color of single keypoints (circles), i.e. keypoints not having the matches. |
|
If \texttt{singlePointColor==Scalar::all(-1)} color will be generated randomly.} |
|
\cvarg{matchesMask}{Mask determining which matches will be drawn. If mask is empty all matches will be drawn. } |
|
\cvarg{flags}{Each bit of \texttt{flags} sets some feature of drawing. |
|
Possible \texttt{flags} bit values is defined by \texttt{DrawMatchesFlags}, see below. } |
|
\end{description} |
|
|
|
\begin{lstlisting} |
|
struct DrawMatchesFlags |
|
{ |
|
enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create), |
|
// i.e. existing memory of output image may be reused. |
|
// Two source image, matches and single keypoints |
|
// will be drawn. |
|
// For each keypoint only the center point will be |
|
// drawn (without the circle around keypoint with |
|
// keypoint size and orientation). |
|
DRAW_OVER_OUTIMG = 1, // Output image matrix will not be |
|
// created (Mat::create). Matches will be drawn |
|
// on existing content of output image. |
|
NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn. |
|
DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around |
|
// keypoint with keypoint size and orientation will |
|
// be drawn. |
|
}; |
|
}; |
|
\end{lstlisting} |
|
|
|
\cvCppFunc{drawKeypoints} |
|
Draw keypoints. |
|
|
|
\cvdefCpp{ |
|
void drawKeypoints( const Mat\& image, |
|
\par const vector<KeyPoint>\& keypoints, |
|
\par Mat\& outImg, const Scalar\& color=Scalar::all(-1), |
|
\par int flags=DrawMatchesFlags::DEFAULT ); |
|
} |
|
|
|
\begin{description} |
|
\cvarg{image}{Source image.} |
|
\cvarg{keypoints}{Keypoints from source image.} |
|
\cvarg{outImg}{Output image. Its content depends on \texttt{flags} value |
|
what is drawn in output image. See possible \texttt{flags} bit values. } |
|
\cvarg{color}{Color of keypoints}. |
|
\cvarg{flags}{Each bit of \texttt{flags} sets some feature of drawing. |
|
Possible \texttt{flags} bit values is defined by \texttt{DrawMatchesFlags}, |
|
see above in \cvCppCross{drawMatches}. } |
|
\end{description} |
|
|
|
\fi
|
|
|