Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1138 lines
38 KiB
1138 lines
38 KiB
#include "precomp.hpp" |
|
|
|
#if ANDROID |
|
# include <sys/time.h> |
|
#endif |
|
|
|
using namespace perf; |
|
|
|
int64 TestBase::timeLimitDefault = 0; |
|
unsigned int TestBase::iterationsLimitDefault = (unsigned int)(-1); |
|
int64 TestBase::_timeadjustment = 0; |
|
|
|
const char *command_line_keys = |
|
{ |
|
"{ |perf_max_outliers |8 |percent of allowed outliers}" |
|
"{ |perf_min_samples |10 |minimal required numer of samples}" |
|
"{ |perf_force_samples |100 |force set maximum number of samples for all tests}" |
|
"{ |perf_seed |809564 |seed for random numbers generator}" |
|
"{ |perf_tbb_nthreads |-1 |if TBB is enabled, the number of TBB threads}" |
|
"{ |perf_write_sanity |false |allow to create new records for sanity checks}" |
|
#if ANDROID |
|
"{ |perf_time_limit |6.0 |default time limit for a single test (in seconds)}" |
|
"{ |perf_affinity_mask |0 |set affinity mask for the main thread}" |
|
"{ |perf_log_power_checkpoints |false |additional xml logging for power measurement}" |
|
#else |
|
"{ |perf_time_limit |3.0 |default time limit for a single test (in seconds)}" |
|
#endif |
|
"{ |perf_max_deviation |1.0 |}" |
|
"{h |help |false |}" |
|
}; |
|
|
|
static double param_max_outliers; |
|
static double param_max_deviation; |
|
static unsigned int param_min_samples; |
|
static unsigned int param_force_samples; |
|
static uint64 param_seed; |
|
static double param_time_limit; |
|
static int param_tbb_nthreads; |
|
static bool param_write_sanity; |
|
#if ANDROID |
|
static int param_affinity_mask; |
|
static bool log_power_checkpoints; |
|
|
|
#include <sys/syscall.h> |
|
#include <pthread.h> |
|
static void setCurrentThreadAffinityMask(int mask) |
|
{ |
|
pid_t pid=gettid(); |
|
int syscallres=syscall(__NR_sched_setaffinity, pid, sizeof(mask), &mask); |
|
if (syscallres) |
|
{ |
|
int err=errno; |
|
err=err;//to avoid warnings about unused variables |
|
LOGE("Error in the syscall setaffinity: mask=%d=0x%x err=%d=0x%x", mask, mask, err, err); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
void randu(cv::Mat& m) |
|
{ |
|
const int bigValue = 0x00000FFF; |
|
if (m.depth() < CV_32F) |
|
{ |
|
int minmax[] = {0, 256}; |
|
cv::Mat mr = cv::Mat(m.rows, (int)(m.cols * m.elemSize()), CV_8U, m.ptr(), m.step[0]); |
|
cv::randu(mr, cv::Mat(1, 1, CV_32S, minmax), cv::Mat(1, 1, CV_32S, minmax + 1)); |
|
} |
|
else if (m.depth() == CV_32F) |
|
{ |
|
//float minmax[] = {-FLT_MAX, FLT_MAX}; |
|
float minmax[] = {-bigValue, bigValue}; |
|
cv::Mat mr = m.reshape(1); |
|
cv::randu(mr, cv::Mat(1, 1, CV_32F, minmax), cv::Mat(1, 1, CV_32F, minmax + 1)); |
|
} |
|
else |
|
{ |
|
//double minmax[] = {-DBL_MAX, DBL_MAX}; |
|
double minmax[] = {-bigValue, bigValue}; |
|
cv::Mat mr = m.reshape(1); |
|
cv::randu(mr, cv::Mat(1, 1, CV_64F, minmax), cv::Mat(1, 1, CV_64F, minmax + 1)); |
|
} |
|
} |
|
|
|
/*****************************************************************************************\ |
|
* inner exception class for early termination |
|
\*****************************************************************************************/ |
|
|
|
class PerfEarlyExitException: public cv::Exception {}; |
|
|
|
/*****************************************************************************************\ |
|
* ::perf::Regression |
|
\*****************************************************************************************/ |
|
|
|
Regression& Regression::instance() |
|
{ |
|
static Regression single; |
|
return single; |
|
} |
|
|
|
Regression& Regression::add(const std::string& name, cv::InputArray array, double eps, ERROR_TYPE err) |
|
{ |
|
return instance()(name, array, eps, err); |
|
} |
|
|
|
void Regression::Init(const std::string& testSuitName, const std::string& ext) |
|
{ |
|
instance().init(testSuitName, ext); |
|
} |
|
|
|
void Regression::init(const std::string& testSuitName, const std::string& ext) |
|
{ |
|
if (!storageInPath.empty()) |
|
{ |
|
LOGE("Subsequent initialisation of Regression utility is not allowed."); |
|
return; |
|
} |
|
|
|
const char *data_path_dir = getenv("OPENCV_TEST_DATA_PATH"); |
|
const char *path_separator = "/"; |
|
|
|
if (data_path_dir) |
|
{ |
|
int len = (int)strlen(data_path_dir)-1; |
|
if (len < 0) len = 0; |
|
std::string path_base = (data_path_dir[0] == 0 ? std::string(".") : std::string(data_path_dir)) |
|
+ (data_path_dir[len] == '/' || data_path_dir[len] == '\\' ? "" : path_separator) |
|
+ "perf" |
|
+ path_separator; |
|
|
|
storageInPath = path_base + testSuitName + ext; |
|
storageOutPath = path_base + testSuitName; |
|
} |
|
else |
|
{ |
|
storageInPath = testSuitName + ext; |
|
storageOutPath = testSuitName; |
|
} |
|
|
|
try |
|
{ |
|
if (storageIn.open(storageInPath, cv::FileStorage::READ)) |
|
{ |
|
rootIn = storageIn.root(); |
|
if (storageInPath.length() > 3 && storageInPath.substr(storageInPath.length()-3) == ".gz") |
|
storageOutPath += "_new"; |
|
storageOutPath += ext; |
|
} |
|
} |
|
catch(cv::Exception& ex) |
|
{ |
|
LOGE("Failed to open sanity data for reading: %s", storageInPath.c_str()); |
|
} |
|
|
|
if(!storageIn.isOpened()) |
|
storageOutPath = storageInPath; |
|
} |
|
|
|
Regression::Regression() : regRNG(cv::getTickCount())//this rng should be really random |
|
{ |
|
} |
|
|
|
Regression::~Regression() |
|
{ |
|
if (storageIn.isOpened()) |
|
storageIn.release(); |
|
if (storageOut.isOpened()) |
|
{ |
|
if (!currentTestNodeName.empty()) |
|
storageOut << "}"; |
|
storageOut.release(); |
|
} |
|
} |
|
|
|
cv::FileStorage& Regression::write() |
|
{ |
|
if (!storageOut.isOpened() && !storageOutPath.empty()) |
|
{ |
|
int mode = (storageIn.isOpened() && storageInPath == storageOutPath) |
|
? cv::FileStorage::APPEND : cv::FileStorage::WRITE; |
|
storageOut.open(storageOutPath, mode); |
|
if (!storageOut.isOpened()) |
|
{ |
|
LOGE("Could not open \"%s\" file for writing", storageOutPath.c_str()); |
|
storageOutPath.clear(); |
|
} |
|
else if (mode == cv::FileStorage::WRITE && !rootIn.empty()) |
|
{ |
|
//TODO: write content of rootIn node into the storageOut |
|
} |
|
} |
|
return storageOut; |
|
} |
|
|
|
std::string Regression::getCurrentTestNodeName() |
|
{ |
|
const ::testing::TestInfo* const test_info = |
|
::testing::UnitTest::GetInstance()->current_test_info(); |
|
|
|
if (test_info == 0) |
|
return "undefined"; |
|
|
|
std::string nodename = std::string(test_info->test_case_name()) + "--" + test_info->name(); |
|
size_t idx = nodename.find_first_of('/'); |
|
if (idx != std::string::npos) |
|
nodename.erase(idx); |
|
|
|
const char* type_param = test_info->type_param(); |
|
if (type_param != 0) |
|
(nodename += "--") += type_param; |
|
|
|
const char* value_param = test_info->value_param(); |
|
if (value_param != 0) |
|
(nodename += "--") += value_param; |
|
|
|
for(size_t i = 0; i < nodename.length(); ++i) |
|
if (!isalnum(nodename[i]) && '_' != nodename[i]) |
|
nodename[i] = '-'; |
|
|
|
return nodename; |
|
} |
|
|
|
bool Regression::isVector(cv::InputArray a) |
|
{ |
|
return a.kind() == cv::_InputArray::STD_VECTOR_MAT || a.kind() == cv::_InputArray::STD_VECTOR_VECTOR; |
|
} |
|
|
|
double Regression::getElem(cv::Mat& m, int y, int x, int cn) |
|
{ |
|
switch (m.depth()) |
|
{ |
|
case CV_8U: return *(m.ptr<unsigned char>(y, x) + cn); |
|
case CV_8S: return *(m.ptr<signed char>(y, x) + cn); |
|
case CV_16U: return *(m.ptr<unsigned short>(y, x) + cn); |
|
case CV_16S: return *(m.ptr<signed short>(y, x) + cn); |
|
case CV_32S: return *(m.ptr<signed int>(y, x) + cn); |
|
case CV_32F: return *(m.ptr<float>(y, x) + cn); |
|
case CV_64F: return *(m.ptr<double>(y, x) + cn); |
|
default: return 0; |
|
} |
|
} |
|
|
|
void Regression::write(cv::Mat m) |
|
{ |
|
double min, max; |
|
cv::minMaxLoc(m, &min, &max); |
|
write() << "min" << min << "max" << max; |
|
|
|
write() << "last" << "{" << "x" << m.cols-1 << "y" << m.rows-1 |
|
<< "val" << getElem(m, m.rows-1, m.cols-1, m.channels()-1) << "}"; |
|
|
|
int x, y, cn; |
|
x = regRNG.uniform(0, m.cols); |
|
y = regRNG.uniform(0, m.rows); |
|
cn = regRNG.uniform(0, m.channels()); |
|
write() << "rng1" << "{" << "x" << x << "y" << y; |
|
if(cn > 0) write() << "cn" << cn; |
|
write() << "val" << getElem(m, y, x, cn) << "}"; |
|
|
|
x = regRNG.uniform(0, m.cols); |
|
y = regRNG.uniform(0, m.rows); |
|
cn = regRNG.uniform(0, m.channels()); |
|
write() << "rng2" << "{" << "x" << x << "y" << y; |
|
if (cn > 0) write() << "cn" << cn; |
|
write() << "val" << getElem(m, y, x, cn) << "}"; |
|
} |
|
|
|
static double evalEps(double expected, double actual, double _eps, ERROR_TYPE err) |
|
{ |
|
if (err == ERROR_ABSOLUTE) |
|
return _eps; |
|
else if (err == ERROR_RELATIVE) |
|
return std::max(std::abs(expected), std::abs(actual)) * err; |
|
return 0; |
|
} |
|
|
|
void Regression::verify(cv::FileNode node, cv::Mat actual, double _eps, std::string argname, ERROR_TYPE err) |
|
{ |
|
double actual_min, actual_max; |
|
cv::minMaxLoc(actual, &actual_min, &actual_max); |
|
|
|
double eps = evalEps((double)node["min"], actual_min, _eps, err); |
|
ASSERT_NEAR((double)node["min"], actual_min, eps) |
|
<< " " << argname << " has unexpected minimal value"; |
|
|
|
eps = evalEps((double)node["max"], actual_max, _eps, err); |
|
ASSERT_NEAR((double)node["max"], actual_max, eps) |
|
<< " " << argname << " has unexpected maximal value"; |
|
|
|
cv::FileNode last = node["last"]; |
|
double actualLast = getElem(actual, actual.rows - 1, actual.cols - 1, actual.channels() - 1); |
|
ASSERT_EQ((int)last["x"], actual.cols - 1) |
|
<< " " << argname << " has unexpected number of columns"; |
|
ASSERT_EQ((int)last["y"], actual.rows - 1) |
|
<< " " << argname << " has unexpected number of rows"; |
|
|
|
eps = evalEps((double)last["val"], actualLast, _eps, err); |
|
ASSERT_NEAR((double)last["val"], actualLast, eps) |
|
<< " " << argname << " has unexpected value of last element"; |
|
|
|
cv::FileNode rng1 = node["rng1"]; |
|
int x1 = rng1["x"]; |
|
int y1 = rng1["y"]; |
|
int cn1 = rng1["cn"]; |
|
|
|
eps = evalEps((double)rng1["val"], getElem(actual, y1, x1, cn1), _eps, err); |
|
ASSERT_NEAR((double)rng1["val"], getElem(actual, y1, x1, cn1), eps) |
|
<< " " << argname << " has unexpected value of ["<< x1 << ":" << y1 << ":" << cn1 <<"] element"; |
|
|
|
cv::FileNode rng2 = node["rng2"]; |
|
int x2 = rng2["x"]; |
|
int y2 = rng2["y"]; |
|
int cn2 = rng2["cn"]; |
|
|
|
eps = evalEps((double)rng2["val"], getElem(actual, y2, x2, cn2), _eps, err); |
|
ASSERT_NEAR((double)rng2["val"], getElem(actual, y2, x2, cn2), eps) |
|
<< " " << argname << " has unexpected value of ["<< x2 << ":" << y2 << ":" << cn2 <<"] element"; |
|
} |
|
|
|
void Regression::write(cv::InputArray array) |
|
{ |
|
write() << "kind" << array.kind(); |
|
write() << "type" << array.type(); |
|
if (isVector(array)) |
|
{ |
|
int total = (int)array.total(); |
|
int idx = regRNG.uniform(0, total); |
|
write() << "len" << total; |
|
write() << "idx" << idx; |
|
|
|
cv::Mat m = array.getMat(idx); |
|
|
|
if (m.total() * m.channels() < 26) //5x5 or smaller |
|
write() << "val" << m; |
|
else |
|
write(m); |
|
} |
|
else |
|
{ |
|
if (array.total() * array.channels() < 26) //5x5 or smaller |
|
write() << "val" << array.getMat(); |
|
else |
|
write(array.getMat()); |
|
} |
|
} |
|
|
|
static int countViolations(const cv::Mat& expected, const cv::Mat& actual, const cv::Mat& diff, double eps, double* max_violation = 0, double* max_allowed = 0) |
|
{ |
|
cv::Mat diff64f; |
|
diff.reshape(1).convertTo(diff64f, CV_64F); |
|
|
|
cv::Mat expected_abs = cv::abs(expected.reshape(1)); |
|
cv::Mat actual_abs = cv::abs(actual.reshape(1)); |
|
cv::Mat maximum, mask; |
|
cv::max(expected_abs, actual_abs, maximum); |
|
cv::multiply(maximum, cv::Vec<double, 1>(eps), maximum, CV_64F); |
|
cv::compare(diff64f, maximum, mask, cv::CMP_GT); |
|
|
|
int v = cv::countNonZero(mask); |
|
|
|
if (v > 0 && max_violation != 0 && max_allowed != 0) |
|
{ |
|
int loc[10]; |
|
cv::minMaxIdx(maximum, 0, max_allowed, 0, loc, mask); |
|
*max_violation = diff64f.at<double>(loc[1], loc[0]); |
|
} |
|
|
|
return v; |
|
} |
|
|
|
void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERROR_TYPE err) |
|
{ |
|
ASSERT_EQ((int)node["kind"], array.kind()) << " Argument \"" << node.name() << "\" has unexpected kind"; |
|
ASSERT_EQ((int)node["type"], array.type()) << " Argument \"" << node.name() << "\" has unexpected type"; |
|
|
|
cv::FileNode valnode = node["val"]; |
|
if (isVector(array)) |
|
{ |
|
ASSERT_EQ((int)node["len"], (int)array.total()) << " Vector \"" << node.name() << "\" has unexpected length"; |
|
int idx = node["idx"]; |
|
|
|
cv::Mat actual = array.getMat(idx); |
|
|
|
if (valnode.isNone()) |
|
{ |
|
ASSERT_LE((size_t)26, actual.total() * (size_t)actual.channels()) |
|
<< " \"" << node.name() << "[" << idx << "]\" has unexpected number of elements"; |
|
verify(node, actual, eps, cv::format("%s[%d]", node.name().c_str(), idx), err); |
|
} |
|
else |
|
{ |
|
cv::Mat expected; |
|
valnode >> expected; |
|
|
|
ASSERT_EQ(expected.size(), actual.size()) |
|
<< " " << node.name() << "[" << idx<< "] has unexpected size"; |
|
|
|
cv::Mat diff; |
|
cv::absdiff(expected, actual, diff); |
|
|
|
if (err == ERROR_ABSOLUTE) |
|
{ |
|
if (!cv::checkRange(diff, true, 0, 0, eps)) |
|
{ |
|
double max; |
|
cv::minMaxLoc(diff.reshape(1), 0, &max); |
|
FAIL() << " Absolute difference (=" << max << ") between argument \"" |
|
<< node.name() << "[" << idx << "]\" and expected value is bugger than " << eps; |
|
} |
|
} |
|
else if (err == ERROR_RELATIVE) |
|
{ |
|
double maxv, maxa; |
|
int violations = countViolations(expected, actual, diff, eps, &maxv, &maxa); |
|
if (violations > 0) |
|
{ |
|
FAIL() << " Relative difference (" << maxv << " of " << maxa << " allowed) between argument \"" |
|
<< node.name() << "[" << idx << "]\" and expected value is bugger than " << eps << " in " << violations << " points"; |
|
} |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
if (valnode.isNone()) |
|
{ |
|
ASSERT_LE((size_t)26, array.total() * (size_t)array.channels()) |
|
<< " Argument \"" << node.name() << "\" has unexpected number of elements"; |
|
verify(node, array.getMat(), eps, "Argument " + node.name(), err); |
|
} |
|
else |
|
{ |
|
cv::Mat expected; |
|
valnode >> expected; |
|
cv::Mat actual = array.getMat(); |
|
|
|
ASSERT_EQ(expected.size(), actual.size()) |
|
<< " Argument \"" << node.name() << "\" has unexpected size"; |
|
|
|
cv::Mat diff; |
|
cv::absdiff(expected, actual, diff); |
|
|
|
if (err == ERROR_ABSOLUTE) |
|
{ |
|
if (!cv::checkRange(diff, true, 0, 0, eps)) |
|
{ |
|
double max; |
|
cv::minMaxLoc(diff.reshape(1), 0, &max); |
|
FAIL() << " Difference (=" << max << ") between argument \"" << node.name() |
|
<< "\" and expected value is bugger than " << eps; |
|
} |
|
} |
|
else if (err == ERROR_RELATIVE) |
|
{ |
|
double maxv, maxa; |
|
int violations = countViolations(expected, actual, diff, eps, &maxv, &maxa); |
|
if (violations > 0) |
|
{ |
|
FAIL() << " Relative difference (" << maxv << " of " << maxa << " allowed) between argument \"" << node.name() |
|
<< "\" and expected value is bugger than " << eps << " in " << violations << " points"; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
Regression& Regression::operator() (const std::string& name, cv::InputArray array, double eps, ERROR_TYPE err) |
|
{ |
|
std::string nodename = getCurrentTestNodeName(); |
|
|
|
cv::FileNode n = rootIn[nodename]; |
|
if(n.isNone()) |
|
{ |
|
if(param_write_sanity) |
|
{ |
|
if (nodename != currentTestNodeName) |
|
{ |
|
if (!currentTestNodeName.empty()) |
|
write() << "}"; |
|
currentTestNodeName = nodename; |
|
|
|
write() << nodename << "{"; |
|
} |
|
write() << name << "{"; |
|
write(array); |
|
write() << "}"; |
|
} |
|
} |
|
else |
|
{ |
|
cv::FileNode this_arg = n[name]; |
|
if (!this_arg.isMap()) |
|
ADD_FAILURE() << " No regression data for " << name << " argument"; |
|
else |
|
verify(this_arg, array, eps, err); |
|
} |
|
return *this; |
|
} |
|
|
|
|
|
/*****************************************************************************************\ |
|
* ::perf::performance_metrics |
|
\*****************************************************************************************/ |
|
performance_metrics::performance_metrics() |
|
{ |
|
bytesIn = 0; |
|
bytesOut = 0; |
|
samples = 0; |
|
outliers = 0; |
|
gmean = 0; |
|
gstddev = 0; |
|
mean = 0; |
|
stddev = 0; |
|
median = 0; |
|
min = 0; |
|
frequency = 0; |
|
terminationReason = TERM_UNKNOWN; |
|
} |
|
|
|
|
|
/*****************************************************************************************\ |
|
* ::perf::TestBase |
|
\*****************************************************************************************/ |
|
|
|
|
|
void TestBase::Init(int argc, const char* const argv[]) |
|
{ |
|
cv::CommandLineParser args(argc, argv, command_line_keys); |
|
param_max_outliers = std::min(100., std::max(0., args.get<double>("perf_max_outliers"))); |
|
param_min_samples = std::max(1u, args.get<unsigned int>("perf_min_samples")); |
|
param_max_deviation = std::max(0., args.get<double>("perf_max_deviation")); |
|
param_seed = args.get<uint64>("perf_seed"); |
|
param_time_limit = std::max(0., args.get<double>("perf_time_limit")); |
|
param_force_samples = args.get<unsigned int>("perf_force_samples"); |
|
param_write_sanity = args.get<bool>("perf_write_sanity"); |
|
param_tbb_nthreads = args.get<int>("perf_tbb_nthreads"); |
|
#if ANDROID |
|
param_affinity_mask = args.get<int>("perf_affinity_mask"); |
|
log_power_checkpoints = args.get<bool>("perf_log_power_checkpoints"); |
|
#endif |
|
|
|
if (args.get<bool>("help")) |
|
{ |
|
args.printParams(); |
|
printf("\n\n"); |
|
return; |
|
} |
|
|
|
timeLimitDefault = param_time_limit == 0.0 ? 1 : (int64)(param_time_limit * cv::getTickFrequency()); |
|
iterationsLimitDefault = param_force_samples == 0 ? (unsigned)(-1) : param_force_samples; |
|
_timeadjustment = _calibrate(); |
|
} |
|
|
|
int64 TestBase::_calibrate() |
|
{ |
|
class _helper : public ::perf::TestBase |
|
{ |
|
public: |
|
performance_metrics& getMetrics() { return calcMetrics(); } |
|
virtual void TestBody() {} |
|
virtual void PerfTestBody() |
|
{ |
|
//the whole system warmup |
|
SetUp(); |
|
cv::Mat a(2048, 2048, CV_32S, cv::Scalar(1)); |
|
cv::Mat b(2048, 2048, CV_32S, cv::Scalar(2)); |
|
declare.time(30); |
|
double s = 0; |
|
for(declare.iterations(20); startTimer(), next(); stopTimer()) |
|
s+=a.dot(b); |
|
declare.time(s); |
|
|
|
//self calibration |
|
SetUp(); |
|
for(declare.iterations(1000); startTimer(), next(); stopTimer()){} |
|
} |
|
}; |
|
|
|
_timeadjustment = 0; |
|
_helper h; |
|
h.PerfTestBody(); |
|
double compensation = h.getMetrics().min; |
|
LOGD("Time compensation is %.0f", compensation); |
|
return (int64)compensation; |
|
} |
|
|
|
TestBase::TestBase(): declare(this) |
|
{ |
|
} |
|
|
|
void TestBase::declareArray(SizeVector& sizes, cv::InputOutputArray a, int wtype) |
|
{ |
|
if (!a.empty()) |
|
{ |
|
sizes.push_back(std::pair<int, cv::Size>(getSizeInBytes(a), getSize(a))); |
|
warmup(a, wtype); |
|
} |
|
else if (a.kind() != cv::_InputArray::NONE) |
|
ADD_FAILURE() << " Uninitialized input/output parameters are not allowed for performance tests"; |
|
} |
|
|
|
void TestBase::warmup(cv::InputOutputArray a, int wtype) |
|
{ |
|
if (a.empty()) return; |
|
if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR) |
|
warmup_impl(a.getMat(), wtype); |
|
else |
|
{ |
|
size_t total = a.total(); |
|
for (size_t i = 0; i < total; ++i) |
|
warmup_impl(a.getMat((int)i), wtype); |
|
} |
|
} |
|
|
|
int TestBase::getSizeInBytes(cv::InputArray a) |
|
{ |
|
if (a.empty()) return 0; |
|
int total = (int)a.total(); |
|
if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR) |
|
return total * CV_ELEM_SIZE(a.type()); |
|
|
|
int size = 0; |
|
for (int i = 0; i < total; ++i) |
|
size += (int)a.total(i) * CV_ELEM_SIZE(a.type(i)); |
|
|
|
return size; |
|
} |
|
|
|
cv::Size TestBase::getSize(cv::InputArray a) |
|
{ |
|
if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR) |
|
return a.size(); |
|
return cv::Size(); |
|
} |
|
|
|
bool TestBase::next() |
|
{ |
|
bool has_next = ++currentIter < nIters && totalTime < timeLimit; |
|
#if ANDROID |
|
if (log_power_checkpoints) |
|
{ |
|
timeval tim; |
|
gettimeofday(&tim, NULL); |
|
unsigned long long t1 = tim.tv_sec * 1000LLU + (unsigned long long)(tim.tv_usec / 1000.f); |
|
|
|
if (currentIter == 1) RecordProperty("test_start", cv::format("%llu",t1).c_str()); |
|
if (!has_next) RecordProperty("test_complete", cv::format("%llu",t1).c_str()); |
|
} |
|
#endif |
|
return has_next; |
|
} |
|
|
|
void TestBase::warmup_impl(cv::Mat m, int wtype) |
|
{ |
|
switch(wtype) |
|
{ |
|
case WARMUP_READ: |
|
cv::sum(m.reshape(1)); |
|
return; |
|
case WARMUP_WRITE: |
|
m.reshape(1).setTo(cv::Scalar::all(0)); |
|
return; |
|
case WARMUP_RNG: |
|
randu(m); |
|
return; |
|
default: |
|
return; |
|
} |
|
} |
|
|
|
unsigned int TestBase::getTotalInputSize() const |
|
{ |
|
unsigned int res = 0; |
|
for (SizeVector::const_iterator i = inputData.begin(); i != inputData.end(); ++i) |
|
res += i->first; |
|
return res; |
|
} |
|
|
|
unsigned int TestBase::getTotalOutputSize() const |
|
{ |
|
unsigned int res = 0; |
|
for (SizeVector::const_iterator i = outputData.begin(); i != outputData.end(); ++i) |
|
res += i->first; |
|
return res; |
|
} |
|
|
|
void TestBase::startTimer() |
|
{ |
|
lastTime = cv::getTickCount(); |
|
} |
|
|
|
void TestBase::stopTimer() |
|
{ |
|
int64 time = cv::getTickCount(); |
|
if (lastTime == 0) |
|
ADD_FAILURE() << " stopTimer() is called before startTimer()"; |
|
lastTime = time - lastTime; |
|
totalTime += lastTime; |
|
lastTime -= _timeadjustment; |
|
if (lastTime < 0) lastTime = 0; |
|
times.push_back(lastTime); |
|
lastTime = 0; |
|
} |
|
|
|
performance_metrics& TestBase::calcMetrics() |
|
{ |
|
if ((metrics.samples == (unsigned int)currentIter) || times.size() == 0) |
|
return metrics; |
|
|
|
metrics.bytesIn = getTotalInputSize(); |
|
metrics.bytesOut = getTotalOutputSize(); |
|
metrics.frequency = cv::getTickFrequency(); |
|
metrics.samples = (unsigned int)times.size(); |
|
metrics.outliers = 0; |
|
|
|
if (metrics.terminationReason != performance_metrics::TERM_INTERRUPT && metrics.terminationReason != performance_metrics::TERM_EXCEPTION) |
|
{ |
|
if (currentIter == nIters) |
|
metrics.terminationReason = performance_metrics::TERM_ITERATIONS; |
|
else if (totalTime >= timeLimit) |
|
metrics.terminationReason = performance_metrics::TERM_TIME; |
|
else |
|
metrics.terminationReason = performance_metrics::TERM_UNKNOWN; |
|
} |
|
|
|
std::sort(times.begin(), times.end()); |
|
|
|
//estimate mean and stddev for log(time) |
|
double gmean = 0; |
|
double gstddev = 0; |
|
int n = 0; |
|
for(TimeVector::const_iterator i = times.begin(); i != times.end(); ++i) |
|
{ |
|
double x = (double)*i; |
|
if (x < DBL_EPSILON) continue; |
|
double lx = log(x); |
|
|
|
++n; |
|
double delta = lx - gmean; |
|
gmean += delta / n; |
|
gstddev += delta * (lx - gmean); |
|
} |
|
|
|
gstddev = n > 1 ? sqrt(gstddev / (n - 1)) : 0; |
|
|
|
TimeVector::const_iterator start = times.begin(); |
|
TimeVector::const_iterator end = times.end(); |
|
|
|
//filter outliers assuming log-normal distribution |
|
//http://stackoverflow.com/questions/1867426/modeling-distribution-of-performance-measurements |
|
int offset = 0; |
|
if (gstddev > DBL_EPSILON) |
|
{ |
|
double minout = exp(gmean - 3 * gstddev); |
|
double maxout = exp(gmean + 3 * gstddev); |
|
while(*start < minout) ++start, ++metrics.outliers, ++offset; |
|
do --end, ++metrics.outliers; while(*end > maxout); |
|
++end, --metrics.outliers; |
|
} |
|
|
|
metrics.min = (double)*start; |
|
//calc final metrics |
|
n = 0; |
|
gmean = 0; |
|
gstddev = 0; |
|
double mean = 0; |
|
double stddev = 0; |
|
int m = 0; |
|
for(; start != end; ++start) |
|
{ |
|
double x = (double)*start; |
|
if (x > DBL_EPSILON) |
|
{ |
|
double lx = log(x); |
|
++m; |
|
double gdelta = lx - gmean; |
|
gmean += gdelta / m; |
|
gstddev += gdelta * (lx - gmean); |
|
} |
|
++n; |
|
double delta = x - mean; |
|
mean += delta / n; |
|
stddev += delta * (x - mean); |
|
} |
|
|
|
metrics.mean = mean; |
|
metrics.gmean = exp(gmean); |
|
metrics.gstddev = m > 1 ? sqrt(gstddev / (m - 1)) : 0; |
|
metrics.stddev = n > 1 ? sqrt(stddev / (n - 1)) : 0; |
|
metrics.median = n % 2 |
|
? (double)times[offset + n / 2] |
|
: 0.5 * (times[offset + n / 2] + times[offset + n / 2 - 1]); |
|
|
|
return metrics; |
|
} |
|
|
|
void TestBase::validateMetrics() |
|
{ |
|
performance_metrics& m = calcMetrics(); |
|
|
|
if (HasFailure()) return; |
|
|
|
ASSERT_GE(m.samples, 1u) |
|
<< " No time measurements was performed.\nstartTimer() and stopTimer() commands are required for performance tests."; |
|
|
|
EXPECT_GE(m.samples, param_min_samples) |
|
<< " Only a few samples are collected.\nPlease increase number of iterations or/and time limit to get reliable performance measurements."; |
|
|
|
if (m.gstddev > DBL_EPSILON) |
|
{ |
|
EXPECT_GT(/*m.gmean * */1., /*m.gmean * */ 2 * sinh(m.gstddev * param_max_deviation)) |
|
<< " Test results are not reliable ((mean-sigma,mean+sigma) deviation interval is bigger than measured time interval)."; |
|
} |
|
|
|
EXPECT_LE(m.outliers, std::max((unsigned int)cvCeil(m.samples * param_max_outliers / 100.), 1u)) |
|
<< " Test results are not reliable (too many outliers)."; |
|
} |
|
|
|
void TestBase::reportMetrics(bool toJUnitXML) |
|
{ |
|
performance_metrics& m = calcMetrics(); |
|
|
|
if (toJUnitXML) |
|
{ |
|
RecordProperty("bytesIn", (int)m.bytesIn); |
|
RecordProperty("bytesOut", (int)m.bytesOut); |
|
RecordProperty("term", m.terminationReason); |
|
RecordProperty("samples", (int)m.samples); |
|
RecordProperty("outliers", (int)m.outliers); |
|
RecordProperty("frequency", cv::format("%.0f", m.frequency).c_str()); |
|
RecordProperty("min", cv::format("%.0f", m.min).c_str()); |
|
RecordProperty("median", cv::format("%.0f", m.median).c_str()); |
|
RecordProperty("gmean", cv::format("%.0f", m.gmean).c_str()); |
|
RecordProperty("gstddev", cv::format("%.6f", m.gstddev).c_str()); |
|
RecordProperty("mean", cv::format("%.0f", m.mean).c_str()); |
|
RecordProperty("stddev", cv::format("%.0f", m.stddev).c_str()); |
|
} |
|
else |
|
{ |
|
const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); |
|
const char* type_param = test_info->type_param(); |
|
const char* value_param = test_info->value_param(); |
|
|
|
#if defined(ANDROID) && defined(USE_ANDROID_LOGGING) |
|
LOGD("[ FAILED ] %s.%s", test_info->test_case_name(), test_info->name()); |
|
#endif |
|
|
|
if (type_param) LOGD("type = %11s", type_param); |
|
if (value_param) LOGD("params = %11s", value_param); |
|
|
|
switch (m.terminationReason) |
|
{ |
|
case performance_metrics::TERM_ITERATIONS: |
|
LOGD("termination reason: reached maximum number of iterations"); |
|
break; |
|
case performance_metrics::TERM_TIME: |
|
LOGD("termination reason: reached time limit"); |
|
break; |
|
case performance_metrics::TERM_INTERRUPT: |
|
LOGD("termination reason: aborted by the performance testing framework"); |
|
break; |
|
case performance_metrics::TERM_EXCEPTION: |
|
LOGD("termination reason: unhandled exception"); |
|
break; |
|
case performance_metrics::TERM_UNKNOWN: |
|
default: |
|
LOGD("termination reason: unknown"); |
|
break; |
|
}; |
|
|
|
LOGD("bytesIn =%11lu", (unsigned long)m.bytesIn); |
|
LOGD("bytesOut =%11lu", (unsigned long)m.bytesOut); |
|
if (nIters == (unsigned int)-1 || m.terminationReason == performance_metrics::TERM_ITERATIONS) |
|
LOGD("samples =%11u", m.samples); |
|
else |
|
LOGD("samples =%11u of %u", m.samples, nIters); |
|
LOGD("outliers =%11u", m.outliers); |
|
LOGD("frequency =%11.0f", m.frequency); |
|
if (m.samples > 0) |
|
{ |
|
LOGD("min =%11.0f = %.2fms", m.min, m.min * 1e3 / m.frequency); |
|
LOGD("median =%11.0f = %.2fms", m.median, m.median * 1e3 / m.frequency); |
|
LOGD("gmean =%11.0f = %.2fms", m.gmean, m.gmean * 1e3 / m.frequency); |
|
LOGD("gstddev =%11.8f = %.2fms for 97%% dispersion interval", m.gstddev, m.gmean * 2 * sinh(m.gstddev * 3) * 1e3 / m.frequency); |
|
LOGD("mean =%11.0f = %.2fms", m.mean, m.mean * 1e3 / m.frequency); |
|
LOGD("stddev =%11.0f = %.2fms", m.stddev, m.stddev * 1e3 / m.frequency); |
|
} |
|
} |
|
} |
|
|
|
void TestBase::SetUp() |
|
{ |
|
#ifdef HAVE_TBB |
|
if (param_tbb_nthreads > 0) { |
|
p_tbb_initializer.release(); |
|
p_tbb_initializer=new tbb::task_scheduler_init(param_tbb_nthreads); |
|
} |
|
#endif |
|
#if ANDROID |
|
if (param_affinity_mask) |
|
setCurrentThreadAffinityMask(param_affinity_mask); |
|
#endif |
|
lastTime = 0; |
|
totalTime = 0; |
|
nIters = iterationsLimitDefault; |
|
currentIter = (unsigned int)-1; |
|
timeLimit = timeLimitDefault; |
|
times.clear(); |
|
cv::theRNG().state = param_seed;//this rng should generate same numbers for each run |
|
} |
|
|
|
void TestBase::TearDown() |
|
{ |
|
validateMetrics(); |
|
if (HasFailure()) |
|
reportMetrics(false); |
|
else |
|
{ |
|
const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); |
|
const char* type_param = test_info->type_param(); |
|
const char* value_param = test_info->value_param(); |
|
if (value_param) printf("[ VALUE ] \t%s\n", value_param), fflush(stdout); |
|
if (type_param) printf("[ TYPE ] \t%s\n", type_param), fflush(stdout); |
|
reportMetrics(true); |
|
} |
|
#ifdef HAVE_TBB |
|
p_tbb_initializer.release(); |
|
#endif |
|
} |
|
|
|
std::string TestBase::getDataPath(const std::string& relativePath) |
|
{ |
|
if (relativePath.empty()) |
|
{ |
|
ADD_FAILURE() << " Bad path to test resource"; |
|
throw PerfEarlyExitException(); |
|
} |
|
|
|
const char *data_path_dir = getenv("OPENCV_TEST_DATA_PATH"); |
|
const char *path_separator = "/"; |
|
|
|
std::string path; |
|
if (data_path_dir) |
|
{ |
|
int len = (int)strlen(data_path_dir) - 1; |
|
if (len < 0) len = 0; |
|
path = (data_path_dir[0] == 0 ? std::string(".") : std::string(data_path_dir)) |
|
+ (data_path_dir[len] == '/' || data_path_dir[len] == '\\' ? "" : path_separator); |
|
} |
|
else |
|
{ |
|
path = "."; |
|
path += path_separator; |
|
} |
|
|
|
if (relativePath[0] == '/' || relativePath[0] == '\\') |
|
path += relativePath.substr(1); |
|
else |
|
path += relativePath; |
|
|
|
FILE* fp = fopen(path.c_str(), "r"); |
|
if (fp) |
|
fclose(fp); |
|
else |
|
{ |
|
ADD_FAILURE() << " Requested file \"" << path << "\" does not exist."; |
|
throw PerfEarlyExitException(); |
|
} |
|
return path; |
|
} |
|
|
|
void TestBase::RunPerfTestBody() |
|
{ |
|
try |
|
{ |
|
this->PerfTestBody(); |
|
} |
|
catch(PerfEarlyExitException) |
|
{ |
|
metrics.terminationReason = performance_metrics::TERM_INTERRUPT; |
|
return;//no additional failure logging |
|
} |
|
catch(cv::Exception e) |
|
{ |
|
metrics.terminationReason = performance_metrics::TERM_EXCEPTION; |
|
FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n Actual: it throws:\n " << e.what(); |
|
} |
|
catch(...) |
|
{ |
|
metrics.terminationReason = performance_metrics::TERM_EXCEPTION; |
|
FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n Actual: it throws."; |
|
} |
|
} |
|
|
|
/*****************************************************************************************\ |
|
* ::perf::TestBase::_declareHelper |
|
\*****************************************************************************************/ |
|
TestBase::_declareHelper& TestBase::_declareHelper::iterations(unsigned int n) |
|
{ |
|
test->times.clear(); |
|
test->times.reserve(n); |
|
test->nIters = std::min(n, TestBase::iterationsLimitDefault); |
|
test->currentIter = (unsigned int)-1; |
|
return *this; |
|
} |
|
|
|
TestBase::_declareHelper& TestBase::_declareHelper::time(double timeLimitSecs) |
|
{ |
|
test->times.clear(); |
|
test->currentIter = (unsigned int)-1; |
|
test->timeLimit = (int64)(timeLimitSecs * cv::getTickFrequency()); |
|
return *this; |
|
} |
|
|
|
TestBase::_declareHelper& TestBase::_declareHelper::tbb_threads(int n) |
|
{ |
|
#ifdef HAVE_TBB |
|
test->p_tbb_initializer.release(); |
|
if (n > 0) |
|
test->p_tbb_initializer=new tbb::task_scheduler_init(n); |
|
#endif |
|
(void)n; |
|
return *this; |
|
} |
|
|
|
TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, int wtype) |
|
{ |
|
if (!test->times.empty()) return *this; |
|
TestBase::declareArray(test->inputData, a1, wtype); |
|
return *this; |
|
} |
|
|
|
TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, int wtype) |
|
{ |
|
if (!test->times.empty()) return *this; |
|
TestBase::declareArray(test->inputData, a1, wtype); |
|
TestBase::declareArray(test->inputData, a2, wtype); |
|
return *this; |
|
} |
|
|
|
TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, int wtype) |
|
{ |
|
if (!test->times.empty()) return *this; |
|
TestBase::declareArray(test->inputData, a1, wtype); |
|
TestBase::declareArray(test->inputData, a2, wtype); |
|
TestBase::declareArray(test->inputData, a3, wtype); |
|
return *this; |
|
} |
|
|
|
TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, cv::InputOutputArray a4, int wtype) |
|
{ |
|
if (!test->times.empty()) return *this; |
|
TestBase::declareArray(test->inputData, a1, wtype); |
|
TestBase::declareArray(test->inputData, a2, wtype); |
|
TestBase::declareArray(test->inputData, a3, wtype); |
|
TestBase::declareArray(test->inputData, a4, wtype); |
|
return *this; |
|
} |
|
|
|
TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, int wtype) |
|
{ |
|
if (!test->times.empty()) return *this; |
|
TestBase::declareArray(test->outputData, a1, wtype); |
|
return *this; |
|
} |
|
|
|
TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, int wtype) |
|
{ |
|
if (!test->times.empty()) return *this; |
|
TestBase::declareArray(test->outputData, a1, wtype); |
|
TestBase::declareArray(test->outputData, a2, wtype); |
|
return *this; |
|
} |
|
|
|
TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, int wtype) |
|
{ |
|
if (!test->times.empty()) return *this; |
|
TestBase::declareArray(test->outputData, a1, wtype); |
|
TestBase::declareArray(test->outputData, a2, wtype); |
|
TestBase::declareArray(test->outputData, a3, wtype); |
|
return *this; |
|
} |
|
|
|
TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, cv::InputOutputArray a4, int wtype) |
|
{ |
|
if (!test->times.empty()) return *this; |
|
TestBase::declareArray(test->outputData, a1, wtype); |
|
TestBase::declareArray(test->outputData, a2, wtype); |
|
TestBase::declareArray(test->outputData, a3, wtype); |
|
TestBase::declareArray(test->outputData, a4, wtype); |
|
return *this; |
|
} |
|
|
|
TestBase::_declareHelper::_declareHelper(TestBase* t) : test(t) |
|
{ |
|
} |
|
|
|
/*****************************************************************************************\ |
|
* ::perf::PrintTo |
|
\*****************************************************************************************/ |
|
namespace perf |
|
{ |
|
|
|
void PrintTo(const MatType& t, ::std::ostream* os) |
|
{ |
|
switch( CV_MAT_DEPTH((int)t) ) |
|
{ |
|
case CV_8U: *os << "8U"; break; |
|
case CV_8S: *os << "8S"; break; |
|
case CV_16U: *os << "16U"; break; |
|
case CV_16S: *os << "16S"; break; |
|
case CV_32S: *os << "32S"; break; |
|
case CV_32F: *os << "32F"; break; |
|
case CV_64F: *os << "64F"; break; |
|
case CV_USRTYPE1: *os << "USRTYPE1"; break; |
|
default: *os << "INVALID_TYPE"; break; |
|
} |
|
*os << 'C' << CV_MAT_CN((int)t); |
|
} |
|
|
|
} //namespace perf |
|
|
|
/*****************************************************************************************\ |
|
* ::cv::PrintTo |
|
\*****************************************************************************************/ |
|
namespace cv { |
|
|
|
void PrintTo(const Size& sz, ::std::ostream* os) |
|
{ |
|
*os << /*"Size:" << */sz.width << "x" << sz.height; |
|
} |
|
|
|
} // namespace cv |
|
|
|
|
|
/*****************************************************************************************\ |
|
* ::cv::PrintTo |
|
\*****************************************************************************************/
|
|
|