Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

148 lines
4.9 KiB

///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma, jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_OPENCL
using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
using namespace testing;
using namespace std;
//////////////////////////////////////////////////////////////////////////
PARAM_TEST_CASE(Kalman, int, int)
{
int size_;
int iteration;
virtual void SetUp()
{
size_ = GET_PARAM(0);
iteration = GET_PARAM(1);
}
};
OCL_TEST_P(Kalman, Accuracy)
{
const int Dim = size_;
const int Steps = iteration;
const double max_init = 1;
const double max_noise = 0.1;
Mat sample_mat(Dim, 1, CV_32F), temp_mat;
oclMat Sample(Dim, 1, CV_32F);
oclMat Temp(Dim, 1, CV_32F);
Mat Temp_cpu(Dim, 1, CV_32F);
Size size(Sample.cols, Sample.rows);
sample_mat = randomMat(size, Sample.type(), -max_init, max_init, false);
Sample.upload(sample_mat);
//ocl start
cv::ocl::KalmanFilter kalman_filter_ocl;
kalman_filter_ocl.init(Dim, Dim);
cv::ocl::setIdentity(kalman_filter_ocl.errorCovPre, 1);
cv::ocl::setIdentity(kalman_filter_ocl.measurementMatrix, 1);
cv::ocl::setIdentity(kalman_filter_ocl.errorCovPost, 1);
kalman_filter_ocl.measurementNoiseCov.setTo(Scalar::all(0));
kalman_filter_ocl.statePre.setTo(Scalar::all(0));
kalman_filter_ocl.statePost.setTo(Scalar::all(0));
kalman_filter_ocl.correct(Sample);
//ocl end
//cpu start
cv::KalmanFilter kalman_filter_cpu;
kalman_filter_cpu.init(Dim, Dim);
cv::setIdentity(kalman_filter_cpu.errorCovPre, 1);
cv::setIdentity(kalman_filter_cpu.measurementMatrix, 1);
cv::setIdentity(kalman_filter_cpu.errorCovPost, 1);
kalman_filter_cpu.measurementNoiseCov.setTo(Scalar::all(0));
kalman_filter_cpu.statePre.setTo(Scalar::all(0));
kalman_filter_cpu.statePost.setTo(Scalar::all(0));
kalman_filter_cpu.correct(sample_mat);
//cpu end
//test begin
for(int i = 0; i<Steps; i++)
{
kalman_filter_ocl.predict();
kalman_filter_cpu.predict();
cv::gemm(kalman_filter_cpu.transitionMatrix, sample_mat, 1, cv::Mat(), 0, Temp_cpu);
Size size1(Temp.cols, Temp.rows);
Mat temp = randomMat(size1, Temp.type(), 0, 0xffff, false);
cv::multiply(2, temp, temp);
cv::subtract(temp, 1, temp);
cv::multiply(max_noise, temp, temp);
cv::add(temp, Temp_cpu, Temp_cpu);
Temp.upload(Temp_cpu);
Temp.copyTo(Sample);
Temp_cpu.copyTo(sample_mat);
kalman_filter_ocl.correct(Temp);
kalman_filter_cpu.correct(Temp_cpu);
}
//test end
EXPECT_MAT_NEAR(kalman_filter_cpu.statePost, kalman_filter_ocl.statePost, 0);
}
INSTANTIATE_TEST_CASE_P(OCL_Video, Kalman, Combine(Values(3, 7), Values(30)));
#endif // HAVE_OPENCL