mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
148 lines
4.9 KiB
148 lines
4.9 KiB
/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Jin Ma, jin@multicorewareinc.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
using namespace cv; |
|
using namespace cv::ocl; |
|
using namespace cvtest; |
|
using namespace testing; |
|
using namespace std; |
|
|
|
////////////////////////////////////////////////////////////////////////// |
|
|
|
PARAM_TEST_CASE(Kalman, int, int) |
|
{ |
|
int size_; |
|
int iteration; |
|
virtual void SetUp() |
|
{ |
|
size_ = GET_PARAM(0); |
|
iteration = GET_PARAM(1); |
|
} |
|
}; |
|
|
|
OCL_TEST_P(Kalman, Accuracy) |
|
{ |
|
const int Dim = size_; |
|
const int Steps = iteration; |
|
const double max_init = 1; |
|
const double max_noise = 0.1; |
|
|
|
Mat sample_mat(Dim, 1, CV_32F), temp_mat; |
|
oclMat Sample(Dim, 1, CV_32F); |
|
oclMat Temp(Dim, 1, CV_32F); |
|
Mat Temp_cpu(Dim, 1, CV_32F); |
|
|
|
Size size(Sample.cols, Sample.rows); |
|
|
|
sample_mat = randomMat(size, Sample.type(), -max_init, max_init, false); |
|
Sample.upload(sample_mat); |
|
|
|
//ocl start |
|
cv::ocl::KalmanFilter kalman_filter_ocl; |
|
kalman_filter_ocl.init(Dim, Dim); |
|
|
|
cv::ocl::setIdentity(kalman_filter_ocl.errorCovPre, 1); |
|
cv::ocl::setIdentity(kalman_filter_ocl.measurementMatrix, 1); |
|
cv::ocl::setIdentity(kalman_filter_ocl.errorCovPost, 1); |
|
|
|
kalman_filter_ocl.measurementNoiseCov.setTo(Scalar::all(0)); |
|
kalman_filter_ocl.statePre.setTo(Scalar::all(0)); |
|
kalman_filter_ocl.statePost.setTo(Scalar::all(0)); |
|
|
|
kalman_filter_ocl.correct(Sample); |
|
//ocl end |
|
|
|
//cpu start |
|
cv::KalmanFilter kalman_filter_cpu; |
|
|
|
kalman_filter_cpu.init(Dim, Dim); |
|
|
|
cv::setIdentity(kalman_filter_cpu.errorCovPre, 1); |
|
cv::setIdentity(kalman_filter_cpu.measurementMatrix, 1); |
|
cv::setIdentity(kalman_filter_cpu.errorCovPost, 1); |
|
|
|
kalman_filter_cpu.measurementNoiseCov.setTo(Scalar::all(0)); |
|
kalman_filter_cpu.statePre.setTo(Scalar::all(0)); |
|
kalman_filter_cpu.statePost.setTo(Scalar::all(0)); |
|
|
|
kalman_filter_cpu.correct(sample_mat); |
|
//cpu end |
|
//test begin |
|
for(int i = 0; i<Steps; i++) |
|
{ |
|
kalman_filter_ocl.predict(); |
|
kalman_filter_cpu.predict(); |
|
|
|
cv::gemm(kalman_filter_cpu.transitionMatrix, sample_mat, 1, cv::Mat(), 0, Temp_cpu); |
|
|
|
Size size1(Temp.cols, Temp.rows); |
|
Mat temp = randomMat(size1, Temp.type(), 0, 0xffff, false); |
|
|
|
|
|
cv::multiply(2, temp, temp); |
|
|
|
cv::subtract(temp, 1, temp); |
|
|
|
cv::multiply(max_noise, temp, temp); |
|
|
|
cv::add(temp, Temp_cpu, Temp_cpu); |
|
|
|
Temp.upload(Temp_cpu); |
|
Temp.copyTo(Sample); |
|
Temp_cpu.copyTo(sample_mat); |
|
|
|
kalman_filter_ocl.correct(Temp); |
|
kalman_filter_cpu.correct(Temp_cpu); |
|
} |
|
//test end |
|
EXPECT_MAT_NEAR(kalman_filter_cpu.statePost, kalman_filter_ocl.statePost, 0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_Video, Kalman, Combine(Values(3, 7), Values(30))); |
|
|
|
#endif // HAVE_OPENCL
|
|
|