mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
736 lines
28 KiB
736 lines
28 KiB
# This file is part of OpenCV project. |
|
# It is subject to the license terms in the LICENSE file found in the top-level directory |
|
# of this distribution and at http://opencv.org/license.html. |
|
|
|
import argparse |
|
import glob |
|
import json |
|
import multiprocessing |
|
import os |
|
import sys |
|
import time |
|
|
|
from datetime import datetime |
|
|
|
import cv2 as cv |
|
import joblib |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import yaml |
|
|
|
|
|
def getDimBox(pts): |
|
return np.array([[pts[...,k].min(), pts[...,k].max()] for k in range(pts.shape[-1])]) |
|
|
|
|
|
def plotCamerasPosition(R, t, image_sizes, pairs, pattern, frame_idx, cam_ids): |
|
cam_box = np.array([ |
|
[ 1, 1, 3], |
|
[ 1, -1, 3], |
|
[-1, -1, 3], |
|
[-1, 1, 3] |
|
], dtype=np.float32) |
|
dist_to_pattern = np.linalg.norm(pattern.mean(0)) |
|
cam_box *= 0.1 * dist_to_pattern |
|
fig = plt.figure() |
|
ax = fig.add_subplot(111, projection='3d') |
|
|
|
ax_lines = [None] * len(R) |
|
ax.set_title(f'Cameras position and pattern of frame {frame_idx}', |
|
loc='center', wrap=True, fontsize=20) |
|
all_pts = [pattern] |
|
colors = np.random.RandomState(0).rand(len(R), 3) |
|
|
|
for i in range(len(R)): |
|
cam_box_i = cam_box.copy() |
|
cam_box_i[:,0] *= image_sizes[i][0] / max(image_sizes[i][1], image_sizes[i][0]) |
|
cam_box_i[:,1] *= image_sizes[i][1] / max(image_sizes[i][1], image_sizes[i][0]) |
|
cam_box_Rt = (R[i] @ cam_box_i.T + t[i]).T |
|
all_pts.append(np.concatenate((cam_box_Rt, t[i].T))) |
|
|
|
ax_lines[i] = ax.plot([t[i][0,0], cam_box_Rt[0,0]], |
|
[t[i][1,0], cam_box_Rt[0,1]], |
|
[t[i][2,0], cam_box_Rt[0,2]], |
|
'-', color=colors[i])[0] |
|
|
|
ax.plot([t[i][0,0], cam_box_Rt[1,0]], |
|
[t[i][1,0], cam_box_Rt[1,1]], |
|
[t[i][2,0], cam_box_Rt[1,2]], |
|
'-', color=colors[i]) |
|
ax.plot([t[i][0,0], cam_box_Rt[2,0]], |
|
[t[i][1,0], cam_box_Rt[2,1]], |
|
[t[i][2,0], cam_box_Rt[2,2]], |
|
'-', color=colors[i]) |
|
ax.plot([t[i][0,0], cam_box_Rt[3,0]], |
|
[t[i][1,0], cam_box_Rt[3,1]], |
|
[t[i][2,0], cam_box_Rt[3,2]], |
|
'-', color=colors[i]) |
|
|
|
ax.plot([cam_box_Rt[0,0], cam_box_Rt[1,0]], |
|
[cam_box_Rt[0,1], cam_box_Rt[1,1]], |
|
[cam_box_Rt[0,2], cam_box_Rt[1,2]], |
|
'-', color=colors[i]) |
|
ax.plot([cam_box_Rt[1,0], cam_box_Rt[2,0]], |
|
[cam_box_Rt[1,1], cam_box_Rt[2,1]], |
|
[cam_box_Rt[1,2], cam_box_Rt[2,2]], |
|
'-', color=colors[i]) |
|
ax.plot([cam_box_Rt[2,0], cam_box_Rt[3,0]], |
|
[cam_box_Rt[2,1], cam_box_Rt[3,1]], |
|
[cam_box_Rt[2,2], cam_box_Rt[3,2]], |
|
'-', color=colors[i]) |
|
ax.plot([cam_box_Rt[3,0], cam_box_Rt[0,0]], |
|
[cam_box_Rt[3,1], cam_box_Rt[0,1]], |
|
[cam_box_Rt[3,2], cam_box_Rt[0,2]], |
|
'-', color=colors[i]) |
|
|
|
# Plot lines between cameras |
|
for (i, j) in pairs: |
|
xs = [t[i][0,0], t[j][0,0]] |
|
ys = [t[i][1,0], t[j][1,0]] |
|
zs = [t[i][2,0], t[j][2,0]] |
|
edge_line = ax.plot(xs, ys, zs, '-', color='black')[0] |
|
|
|
ax.scatter(pattern[:, 0], pattern[:, 1], pattern[:, 2], color='red', marker='o') |
|
ax.legend(ax_lines + [edge_line], cam_ids + ['stereo pair'], fontsize=6) |
|
|
|
dim_box = getDimBox(np.concatenate((all_pts))) |
|
|
|
ax.set_xlim(dim_box[0]) |
|
ax.set_ylim(dim_box[1]) |
|
ax.set_zlim(dim_box[2]) |
|
|
|
aspect = ( |
|
dim_box[0, 1] - dim_box[0, 0], |
|
dim_box[1, 1] - dim_box[1, 0], |
|
dim_box[2, 1] - dim_box[2, 0], |
|
) |
|
ax.set_box_aspect(aspect) |
|
|
|
ax.set_xlabel('x', fontsize=16) |
|
ax.set_ylabel('y', fontsize=16) |
|
ax.set_zlabel('z', fontsize=16) |
|
|
|
ax.view_init(azim=90, elev=-40) |
|
|
|
|
|
def showUndistorted(image_points, Ks, distortions, image_names): |
|
detection_mask = getDetectionMask(image_points) |
|
for cam in range(len(image_points)): |
|
detected_imgs = np.where(detection_mask[cam])[0] |
|
random_frame = np.random.RandomState(0).choice(detected_imgs, 1, replace=False)[0] |
|
undistorted_pts = cv.undistortPoints( |
|
image_points[cam][random_frame], |
|
Ks[cam], |
|
distortions[cam], |
|
P=Ks[cam] |
|
)[:,0] |
|
|
|
fig = plt.figure() |
|
if image_names is not None: |
|
plt.imshow(cv.cvtColor(cv.undistort( |
|
cv.imread(image_names[cam][random_frame]), |
|
Ks[cam], |
|
distortions[cam] |
|
), cv.COLOR_BGR2RGB)) |
|
else: |
|
ax = fig.add_subplot(111) |
|
ax.set_aspect('equal', 'box') |
|
ax.set_xlabel('x', fontsize=20) |
|
ax.set_ylabel('y', fontsize=20) |
|
|
|
plt.scatter(undistorted_pts[:,0], undistorted_pts[:,1], s=10) |
|
plt.title( |
|
f'Undistorted. Camera {cam_ids[cam]} frame {random_frame}', |
|
loc='center', |
|
wrap=True, |
|
fontsize=16 |
|
) |
|
|
|
save_file = f'undistorted_{cam_ids[cam]}.png' |
|
print('Saving:', save_file) |
|
plt.savefig(save_file) |
|
|
|
|
|
def plotProjection(points_2d, pattern_points, rvec0, tvec0, rvec1, tvec1, |
|
K, dist_coeff, is_fisheye, cam_idx, frame_idx, per_acc, |
|
image=None): |
|
rvec2, tvec2 = cv.composeRT(rvec0, tvec0, rvec1, tvec1)[:2] |
|
|
|
if is_fisheye: |
|
points_2d_est = cv.fisheye.projectPoints( |
|
pattern_points[:, None], rvec2, tvec2, K, dist_coeff.flatten() |
|
)[0].reshape(-1, 2) |
|
else: |
|
points_2d_est = cv.projectPoints( |
|
pattern_points, rvec2, tvec2, K, dist_coeff |
|
)[0].reshape(-1, 2) |
|
|
|
fig = plt.figure() |
|
errs = np.linalg.norm(points_2d - points_2d_est, axis=-1) |
|
mean_err = errs.mean() |
|
|
|
title = f"Comparison of given point (start) and back-projected (end). " \ |
|
f"Cam. {cam_idx} frame {frame_idx} mean err. (px) {mean_err:.1f}. " \ |
|
f"In top {per_acc:.0f}% accurate frames" |
|
|
|
dist_pattern = np.linalg.norm(points_2d_est.min(0) - points_2d_est.max(0)) |
|
width = 2e-3 * dist_pattern |
|
head_width = 5 * width |
|
|
|
if image is None: |
|
ax = fig.add_subplot(111) |
|
ax.set_aspect('equal', 'box') |
|
ax.set_xlabel('x', fontsize=20) |
|
ax.set_ylabel('y', fontsize=20) |
|
else: |
|
plt.imshow(image) |
|
ax = plt.gca() |
|
|
|
num_colors = 8 |
|
cmap_fnc = lambda x : np.concatenate((x, 1-x, np.zeros_like(x))) |
|
cmap = cmap_fnc(np.linspace(0, 1, num_colors)[None, :]) |
|
thrs = np.linspace(0, 10, num_colors) |
|
arrows = [None] * num_colors |
|
|
|
for k, (pt1, pt2) in enumerate(zip(points_2d, points_2d_est)): |
|
color = cmap[:, -1] |
|
for i, thr in enumerate(thrs): |
|
if errs[k] < thr: |
|
color = cmap[:, i] |
|
break |
|
arrow = ax.arrow( |
|
pt1[0], pt1[1], pt2[0]-pt1[0], pt2[1]-pt1[1], |
|
color=color, width=width, head_width=head_width, |
|
) |
|
for i, thr in enumerate(thrs): |
|
if errs[k] < thr: |
|
arrows[i] = arrow # type: ignore |
|
break |
|
|
|
legend, legend_str = [], [] |
|
for i in range(num_colors): |
|
if arrows[i] is not None: |
|
legend.append(arrows[i]) |
|
if i == 0: |
|
legend_str.append(f'lower than {thrs[i]:.1f}') |
|
elif i == num_colors-1: |
|
legend_str.append(f'higher than {thrs[i]:.1f}') |
|
else: |
|
legend_str.append(f'between {thrs[i-1]:.1f} and {thrs[i]:.1f}') |
|
|
|
ax.legend(legend, legend_str, fontsize=15) |
|
ax.set_title(title, loc='center', wrap=True, fontsize=16) |
|
|
|
|
|
def getDetectionMask(image_points): |
|
detection_mask = np.zeros((len(image_points), len(image_points[0])), dtype=np.uint8) |
|
# [detection_matrix] |
|
for i in range(len(image_points)): |
|
for j in range(len(image_points[0])): |
|
detection_mask[i,j] = int(len(image_points[i][j]) != 0) |
|
# [detection_matrix] |
|
return detection_mask |
|
|
|
|
|
def calibrateFromPoints( |
|
pattern_points, |
|
image_points, |
|
image_sizes, |
|
is_fisheye, |
|
image_names=None, |
|
find_intrinsics_in_python=False, |
|
Ks=None, |
|
distortions=None |
|
): |
|
""" |
|
pattern_points: NUM_POINTS x 3 (numpy array) |
|
image_points: NUM_CAMERAS x NUM_FRAMES x NUM_POINTS x 2 |
|
is_fisheye: NUM_CAMERAS (bool) |
|
image_sizes: NUM_CAMERAS x [width, height] |
|
""" |
|
num_cameras = len(image_points) |
|
num_frames = len(image_points[0]) |
|
detection_mask = getDetectionMask(image_points) |
|
pattern_points_all = [pattern_points] * num_frames |
|
with np.printoptions(threshold=np.inf): # type: ignore |
|
print("detection mask Matrix:\n", str(detection_mask).replace('0\n ', '0').replace('1\n ', '1')) |
|
|
|
#HACK: OpenCV API does not well support mix of fisheye and pinhole models. |
|
# Pinhole models with rational distortion model is used instead |
|
fisheyes = np.count_nonzero(is_fisheye) |
|
intrinsics_flag = 0 |
|
if (fisheyes > 0) and (fisheyes != num_cameras): |
|
intrinsics_flag = cv.CALIB_RATIONAL_MODEL + cv.CALIB_ZERO_TANGENT_DIST + cv.CALIB_FIX_K5 + cv.CALIB_FIX_K6 |
|
|
|
if Ks is not None and distortions is not None: |
|
USE_INTRINSICS_GUESS = True |
|
else: |
|
USE_INTRINSICS_GUESS = find_intrinsics_in_python |
|
if find_intrinsics_in_python: |
|
Ks, distortions = [], [] |
|
for c in range(num_cameras): |
|
if is_fisheye[c]: |
|
image_points_c = [ |
|
image_points[c][f][:, None] for f in range(num_frames) if len(image_points[c][f]) > 0 |
|
] |
|
repr_err_c, K, dist_coeff, _, _ = cv.fisheye.calibrate( |
|
[pattern_points[:, None]] * len(image_points_c), |
|
image_points_c, |
|
image_sizes[c], |
|
None, |
|
None |
|
) |
|
else: |
|
image_points_c = [ |
|
image_points[c][f] for f in range(num_frames) if len(image_points[c][f]) > 0 |
|
] |
|
repr_err_c, K, dist_coeff, _, _ = cv.calibrateCamera( |
|
[pattern_points] * len(image_points_c), |
|
image_points_c, |
|
image_sizes[c], |
|
None, |
|
None, |
|
flags=intrinsics_flag |
|
) |
|
print(f'Intrinsics calibration for camera {c}, reproj error {repr_err_c:.2f} (px)') |
|
Ks.append(K) |
|
distortions.append(dist_coeff) |
|
|
|
start_time = time.time() |
|
# try: |
|
# [multiview_calib] |
|
rmse, rvecs, Ts, Ks, distortions, rvecs0, tvecs0, errors_per_frame, output_pairs = \ |
|
cv.calibrateMultiview( |
|
objPoints=pattern_points_all, |
|
imagePoints=image_points, |
|
imageSize=image_sizes, |
|
detectionMask=detection_mask, |
|
Ks=Ks, |
|
distortions=distortions, |
|
isFisheye=np.array(is_fisheye, dtype=np.uint8), |
|
useIntrinsicsGuess=USE_INTRINSICS_GUESS, |
|
flagsForIntrinsics=np.full((num_cameras), intrinsics_flag, dtype=int) |
|
) |
|
# [multiview_calib] |
|
# except Exception as e: |
|
# print("Multi-view calibration failed with the following exception:", e.__class__) |
|
# sys.exit(0) |
|
|
|
print('calibration time', time.time() - start_time, 'seconds') |
|
print('rvecs', rvecs) |
|
print('tvecs', Ts) |
|
print('K', Ks) |
|
print('distortion', distortions) |
|
print('mean RMS error over all visible frames %.3E' % rmse) |
|
|
|
with np.printoptions(precision=2): |
|
print('mean RMS errors per camera', np.array([np.mean(errs[errs > 0]) for errs in errors_per_frame])) |
|
|
|
return { |
|
'rvecs': rvecs, |
|
'distortions': distortions, |
|
'Ks': Ks, |
|
'Ts': Ts, |
|
'rvecs0': rvecs0, |
|
'tvecs0': tvecs0, |
|
'errors_per_frame': errors_per_frame, |
|
'output_pairs': output_pairs, |
|
'image_points': image_points, |
|
'is_fisheye': is_fisheye, |
|
'image_sizes': image_sizes, |
|
'pattern_points': pattern_points, |
|
'detection_mask': detection_mask, |
|
'image_names': image_names, |
|
} |
|
|
|
|
|
def visualizeResults(detection_mask, rvecs, Ts, Ks, distortions, is_fisheye, |
|
image_points, errors_per_frame, rvecs0, tvecs0, |
|
pattern_points, image_sizes, output_pairs, image_names, cam_ids): |
|
Rs = [cv.Rodrigues(rvec)[0] for rvec in rvecs] |
|
errors = errors_per_frame[errors_per_frame > 0] |
|
detection_mask_idxs = np.stack(np.where(detection_mask)) # 2 x M, first row is camera idx, second is frame idx |
|
|
|
# Get very first frame from first camera |
|
frame_idx = detection_mask_idxs[1, 0] |
|
R_frame = cv.Rodrigues(rvecs0[frame_idx])[0] |
|
pattern_frame = (R_frame @ pattern_points.T + tvecs0[frame_idx]).T |
|
plotCamerasPosition(Rs, Ts, image_sizes, output_pairs, pattern_frame, frame_idx, cam_ids) |
|
|
|
save_file = 'cam_poses.png' |
|
print('Saving:', save_file) |
|
plt.savefig(save_file, dpi=300, bbox_inches='tight') |
|
|
|
# Generate and save undistorted images |
|
def plot(cam_idx, frame_idx): |
|
image = None |
|
if image_names is not None: |
|
image = cv.cvtColor(cv.imread(image_names[cam_idx][frame_idx]), cv.COLOR_BGR2RGB) |
|
plotProjection( |
|
image_points[cam_idx][frame_idx], |
|
pattern_points, |
|
rvecs0[frame_idx], |
|
tvecs0[frame_idx], |
|
rvecs[cam_idx], |
|
Ts[cam_idx], |
|
Ks[cam_idx], |
|
distortions[cam_idx], |
|
is_fisheye[cam_idx], |
|
cam_idx, |
|
frame_idx, |
|
(errors_per_frame[cam_idx, frame_idx] < errors).sum() * 100 / len(errors), |
|
image, |
|
) |
|
|
|
plot(detection_mask_idxs[0, 0], detection_mask_idxs[1, 0]) |
|
showUndistorted(image_points, Ks, distortions, image_names) |
|
# plt.show() |
|
|
|
|
|
def visualizeFromFile(file): |
|
file_read = cv.FileStorage(file, cv.FileStorage_READ) |
|
assert file_read.isOpened(), file |
|
read_keys = [ |
|
'rvecs', 'distortions', 'Ks', 'Ts', 'rvecs0', 'tvecs0', |
|
'errors_per_frame', 'output_pairs', 'image_points', 'is_fisheye', |
|
'image_sizes', 'pattern_points', 'detection_mask', 'cam_ids', |
|
] |
|
input = {} |
|
for key in read_keys: |
|
input[key] = file_read.getNode(key).mat() |
|
|
|
im_names_len = file_read.getNode('image_names').size() |
|
input['image_names'] = np.array( |
|
[file_read.getNode('image_names').at(i).string() for i in range(im_names_len)] |
|
).reshape(input['image_points'].shape[:2]) |
|
|
|
input['tvecs0'] = input['tvecs0'][..., None] |
|
input['Ts'] = input['Ts'][..., None] |
|
visualizeResults(**input) |
|
|
|
|
|
def saveToFile(path_to_save, **kwargs): |
|
if path_to_save == '': |
|
path_to_save = datetime.now().strftime("%d-%b-%Y (%H:%M:%S.%f)")+'.yaml' |
|
save_file = cv.FileStorage(path_to_save, cv.FileStorage_WRITE) |
|
|
|
kwargs['is_fisheye'] = np.array(kwargs['is_fisheye'], dtype=int) |
|
image_points = kwargs['image_points'] |
|
|
|
for i in range(len(image_points)): |
|
for j in range(len(image_points[0])): |
|
if len(image_points[i][j]) == 0: |
|
image_points[i][j] = np.zeros((kwargs['pattern_points'].shape[0], 2)) |
|
|
|
for key in kwargs.keys(): |
|
if key == 'image_names': |
|
save_file.write('image_names', list(np.array(kwargs['image_names']).reshape(-1))) |
|
elif key == 'cam_ids': |
|
save_file.write('cam_ids', ','.join(cam_ids)) |
|
else: |
|
value = kwargs[key] |
|
if key in ('rvecs0', 'tvecs0'): |
|
# Replace None by [0, 0, 0] |
|
value = [arr if arr is not None else np.zeros((3, 1)) for arr in value] |
|
save_file.write(key, np.array(value)) |
|
|
|
save_file.release() |
|
|
|
|
|
def chessboard_points(grid_size, dist_m): |
|
pattern = np.zeros((grid_size[0] * grid_size[1], 3), np.float32) |
|
pattern[:, :2] = np.mgrid[0:grid_size[0], 0:grid_size[1]].T.reshape(-1, 2) * dist_m # only for (x,y,z=0) |
|
return pattern |
|
|
|
|
|
def circles_grid_points(grid_size, dist_m): |
|
pattern = [] |
|
for i in range(grid_size[0]): |
|
for j in range(grid_size[1]): |
|
pattern.append([j * dist_m, i * dist_m, 0]) |
|
return np.array(pattern, dtype=np.float32) |
|
|
|
|
|
def asym_circles_grid_points(grid_size, dist_m): |
|
pattern = [] |
|
for i in range(grid_size[1]): |
|
for j in range(grid_size[0]): |
|
if i % 2 == 1: |
|
pattern.append([(j + .5)*dist_m, dist_m*(i//2 + .5), 0]) |
|
else: |
|
pattern.append([j*dist_m, (i//2)*dist_m, 0]) |
|
return np.array(pattern, dtype=np.float32) |
|
|
|
|
|
def detect(cam_idx, frame_idx, img_name, pattern_type, |
|
grid_size, criteria, winsize, RESIZE_IMAGE): |
|
# print(img_name) |
|
assert os.path.exists(img_name), img_name |
|
img = cv.imread(img_name) |
|
img_size = img.shape[:2][::-1] |
|
|
|
scale = 1.0 |
|
img_detection = img |
|
if RESIZE_IMAGE: |
|
scale = 1000.0 / max(img.shape[0], img.shape[1]) |
|
if scale < 1.0: |
|
img_detection = cv.resize( |
|
img, |
|
(int(scale * img.shape[1]), int(scale * img.shape[0])), |
|
interpolation=cv.INTER_AREA |
|
) |
|
# [detect_pattern] |
|
if pattern_type.lower() == 'checkerboard': |
|
ret, corners = cv.findChessboardCorners( |
|
cv.cvtColor(img_detection, cv.COLOR_BGR2GRAY), grid_size, None |
|
) |
|
if ret: |
|
if scale < 1.0: |
|
corners /= scale |
|
corners2 = cv.cornerSubPix(cv.cvtColor(img, cv.COLOR_BGR2GRAY), |
|
corners, winsize, (-1,-1), criteria) |
|
|
|
elif pattern_type.lower() == 'circles': |
|
ret, corners = cv.findCirclesGrid( |
|
img_detection, patternSize=grid_size, flags=cv.CALIB_CB_SYMMETRIC_GRID |
|
) |
|
if ret: |
|
corners2 = corners / scale |
|
|
|
elif pattern_type.lower() == 'acircles': |
|
ret, corners = cv.findCirclesGrid( |
|
img_detection, patternSize=grid_size, flags=cv.CALIB_CB_ASYMMETRIC_GRID |
|
) |
|
if ret: |
|
corners2 = corners / scale |
|
else: |
|
raise ValueError("Calibration pattern is not supported!") |
|
# [detect_pattern] |
|
if ret: |
|
# cv.drawChessboardCorners(img, grid_size, corners2, ret) |
|
# plt.imshow(img) |
|
# plt.show() |
|
return cam_idx, frame_idx, img_size, np.array(corners2, dtype=np.float32).reshape(-1, 2) |
|
else: |
|
# plt.imshow(img_detection) |
|
# plt.show() |
|
return cam_idx, frame_idx, img_size, np.array([], dtype=np.float32) |
|
|
|
|
|
def calibrateFromImages(files_with_images, grid_size, pattern_type, is_fisheye, |
|
dist_m, winsize, points_json_file, debug_corners, |
|
RESIZE_IMAGE, find_intrinsics_in_python, |
|
is_parallel_detection=True, cam_ids=None, intrinsics_dir=''): |
|
""" |
|
files_with_images: NUM_CAMERAS - path to file containing image names (NUM_FRAMES) |
|
grid_size: [width, height] -- size of grid pattern |
|
dist_m: length of a grid cell |
|
is_fisheye: NUM_CAMERAS (bool) |
|
""" |
|
# [calib_init] |
|
if pattern_type.lower() == 'checkerboard': |
|
pattern = chessboard_points(grid_size, dist_m) |
|
elif pattern_type.lower() == 'circles': |
|
pattern = circles_grid_points(grid_size, dist_m) |
|
elif pattern_type.lower() == 'acircles': |
|
pattern = asym_circles_grid_points(grid_size, dist_m) |
|
else: |
|
raise NotImplementedError("Pattern type is not implemented!") |
|
# [calib_init] |
|
|
|
assert len(files_with_images) == len(is_fisheye) and len(grid_size) == 2 |
|
if cam_ids is None: |
|
cam_ids = list(range(len(files_with_images))) |
|
|
|
all_images_names, input_data = [], [] |
|
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 50, 0.001) |
|
for cam_idx, filename in enumerate(files_with_images): |
|
assert os.path.exists(filename), filename |
|
print('cam_id:', cam_ids[cam_idx]) |
|
|
|
images_names = open(filename, 'r').readlines() |
|
for i in range(len(images_names)): |
|
images_names[i] = images_names[i].replace('\n', '') |
|
all_images_names.append(images_names) |
|
if cam_idx > 0: |
|
# same number of images per file |
|
assert len(images_names) == len(all_images_names[-1]) |
|
for frame_idx, img_name in enumerate(images_names): |
|
input_data.append([cam_idx, frame_idx, img_name]) |
|
|
|
image_sizes = [None] * len(files_with_images) |
|
image_points_cameras = [[None] * len(images_names) for _ in files_with_images] |
|
|
|
if is_parallel_detection: |
|
parallel_job = joblib.Parallel(n_jobs=multiprocessing.cpu_count()) |
|
output = parallel_job( |
|
joblib.delayed(detect)( |
|
cam_idx, frame_idx, img_name, pattern_type, |
|
grid_size, criteria, winsize, RESIZE_IMAGE |
|
) for cam_idx, frame_idx, img_name in input_data |
|
) |
|
assert output is not None |
|
for cam_idx, frame_idx, img_size, corners in output: |
|
image_points_cameras[cam_idx][frame_idx] = corners |
|
if image_sizes[cam_idx] is None: |
|
image_sizes[cam_idx] = img_size |
|
else: |
|
for cam_idx, frame_idx, img_name in input_data: |
|
_, _, img_size, corners = detect( |
|
cam_idx, frame_idx, img_name, pattern_type, |
|
grid_size, criteria, winsize, RESIZE_IMAGE |
|
) |
|
image_points_cameras[cam_idx][frame_idx] = corners |
|
if image_sizes[cam_idx] is None: |
|
image_sizes[cam_idx] = img_size |
|
|
|
if debug_corners: |
|
# plots random image frames with detected points |
|
num_random_plots = 5 |
|
visible_frames = [] |
|
for c, pts_cam in enumerate(image_points_cameras): |
|
for f, pts_frame in enumerate(pts_cam): |
|
if pts_frame is not None: |
|
visible_frames.append((c,f)) |
|
random_images = np.random.RandomState(0).choice( |
|
range(len(visible_frames)), min(num_random_plots, len(visible_frames)) |
|
) |
|
for idx in random_images: |
|
c, f = visible_frames[idx] |
|
img = cv.cvtColor(cv.imread(all_images_names[c][f]), cv.COLOR_BGR2RGB) |
|
cv.drawChessboardCorners(img, grid_size, image_points_cameras[c][f], True) |
|
plt.figure() |
|
plt.imshow(img) |
|
plt.show() |
|
|
|
if points_json_file: |
|
image_points_cameras_list = [] |
|
for pts_cam in image_points_cameras: |
|
cam_pts = [] |
|
for pts_frame in pts_cam: |
|
if pts_frame is not None: |
|
cam_pts.append(pts_frame.tolist()) |
|
else: |
|
cam_pts.append([]) |
|
image_points_cameras_list.append(cam_pts) |
|
|
|
with open(points_json_file, 'w') as wf: |
|
json.dump({ |
|
'object_points': pattern.tolist(), |
|
'image_points': image_points_cameras_list, |
|
'image_sizes': image_sizes, |
|
'is_fisheye': is_fisheye, |
|
}, wf) |
|
|
|
Ks = None |
|
distortions = None |
|
if intrinsics_dir: |
|
# Read camera instrinsic matrices (Ks) and dictortions |
|
Ks, distortions = [], [] |
|
for cam_id in cam_ids: |
|
input_file = os.path.join(intrinsics_dir, f"cameraParameters_{cam_id}.xml") |
|
print("Reading intrinsics from", input_file) |
|
storage = cv.FileStorage(input_file, cv.FileStorage_READ) |
|
camera_matrix = storage.getNode('cameraMatrix').mat() |
|
dist_coeffs = storage.getNode('dist_coeffs').mat() |
|
Ks.append(camera_matrix) |
|
distortions.append(dist_coeffs) |
|
find_intrinsics_in_python = True |
|
|
|
return calibrateFromPoints( |
|
pattern, |
|
image_points_cameras, |
|
image_sizes, |
|
is_fisheye, |
|
all_images_names, |
|
find_intrinsics_in_python, |
|
Ks=Ks, |
|
distortions=distortions, |
|
) |
|
|
|
|
|
def calibrateFromJSON(json_file, find_intrinsics_in_python): |
|
assert os.path.exists(json_file) |
|
data = json.load(open(json_file, 'r')) |
|
|
|
for i in range(len(data['image_points'])): |
|
for j in range(len(data['image_points'][i])): |
|
data['image_points'][i][j] = np.array(data['image_points'][i][j], dtype=np.float32) |
|
|
|
Ks = data['Ks'] if 'Ks' in data else None |
|
distortions = data['distortions'] if 'distortions' in data else None |
|
images_names = data['images_names'] if 'images_names' in data else None |
|
|
|
return calibrateFromPoints( |
|
np.array(data['object_points'], dtype=np.float32).T, |
|
data['image_points'], |
|
data['image_sizes'], |
|
data['is_fisheye'], |
|
images_names, |
|
find_intrinsics_in_python, |
|
Ks, |
|
distortions, |
|
) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--json_file', type=str, default=None, help="json file with all data. Must have keys: 'object_points', 'image_points', 'image_sizes', 'is_fisheye'") |
|
parser.add_argument('--filenames', type=str, default=None, help='Txt files containg image lists, e.g., cam_1.txt,cam_2.txt,...,cam_N.txt for N cameras') |
|
parser.add_argument('--pattern_size', type=str, default=None, help='pattern size: width,height') |
|
parser.add_argument('--pattern_type', type=str, default=None, help='supported: checkeboard, circles, acircles') |
|
parser.add_argument('--fisheye', type=str, default=None, help='fisheye mask, e.g., 0,1,...') |
|
parser.add_argument('--pattern_distance', type=float, default=None, help='distance between object / pattern points') |
|
parser.add_argument('--find_intrinsics_in_python', required=False, action='store_true', help='calibrate intrinsics in Python sample instead of C++') |
|
parser.add_argument('--winsize', type=str, default='5,5', help='window size for corners detection: w,h') |
|
parser.add_argument('--debug_corners', required=False, action='store_true', help='debug flag for corners detection visualization of images') |
|
parser.add_argument('--points_json_file', type=str, default='', help='if path is provided then image and object points will be saved to JSON file.') |
|
parser.add_argument('--path_to_save', type=str, default='', help='path and filename to save results in yaml file') |
|
parser.add_argument('--path_to_visualize', type=str, default='', help='path to results pickle file needed to run visualization') |
|
parser.add_argument('--visualize', required=False, action='store_true', help='visualization flag. If set, only runs visualization but path_to_visualize must be provided') |
|
parser.add_argument('--resize_image_detection', required=False, action='store_true', help='If set, an image will be resized to speed-up corners detection') |
|
parser.add_argument('--intrinsics_dir', type=str, default='', help='Path to measured intrinsics') |
|
|
|
params, _ = parser.parse_known_args() |
|
|
|
if params.visualize: |
|
assert os.path.exists(params.path_to_visualize), f'Path to result file does not exist: {params.path_to_visualize}' |
|
visualizeFromFile(params.path_to_visualize) |
|
sys.exit(0) |
|
|
|
if params.filenames is None: |
|
cam_files = sorted(glob.glob('cam_*.txt')) |
|
params.filenames = ','.join(cam_files) |
|
print('Found camera filenames:', params.filenames) |
|
params.fisheye = ','.join('0' * len(cam_files)) |
|
print('Fisheye parameters:', params.fisheye) # TODO: Calculate it automatically |
|
|
|
if params.json_file is not None: |
|
output = calibrateFromJSON(params.json_file, params.find_intrinsics_in_python) |
|
else: |
|
if (params.pattern_type is None and params.pattern_size is None and params.pattern_distance is None): |
|
assert False and 'Either json file or all other parameters must be set' |
|
|
|
# cam_N.txt --> cam_N --> N |
|
cam_ids = [os.path.splitext(f)[0].split('_')[-1] for f in params.filenames.split(',')] |
|
|
|
output = calibrateFromImages( |
|
files_with_images=params.filenames.split(','), |
|
grid_size=[int(v) for v in params.pattern_size.split(',')], |
|
pattern_type=params.pattern_type, |
|
is_fisheye=[bool(int(v)) for v in params.fisheye.split(',')], |
|
dist_m=params.pattern_distance, |
|
winsize=tuple([int(v) for v in params.winsize.split(',')]), |
|
points_json_file=params.points_json_file, |
|
debug_corners=params.debug_corners, |
|
RESIZE_IMAGE=params.resize_image_detection, |
|
find_intrinsics_in_python=params.find_intrinsics_in_python, |
|
cam_ids=cam_ids, |
|
intrinsics_dir=params.intrinsics_dir, |
|
) |
|
output['cam_ids'] = cam_ids |
|
|
|
visualizeResults(**output) |
|
|
|
print('Saving:', params.path_to_save) |
|
saveToFile(params.path_to_save, **output)
|
|
|