mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
846 lines
26 KiB
846 lines
26 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* THE BSD LICENSE |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ |
|
#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ |
|
|
|
//! @cond IGNORED |
|
|
|
#include <algorithm> |
|
#include <map> |
|
#include <limits> |
|
#include <cmath> |
|
|
|
#include "general.h" |
|
#include "nn_index.h" |
|
#include "dist.h" |
|
#include "matrix.h" |
|
#include "result_set.h" |
|
#include "heap.h" |
|
#include "allocator.h" |
|
#include "random.h" |
|
#include "saving.h" |
|
|
|
|
|
namespace cvflann |
|
{ |
|
|
|
struct HierarchicalClusteringIndexParams : public IndexParams |
|
{ |
|
HierarchicalClusteringIndexParams(int branching = 32, |
|
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, |
|
int trees = 4, int leaf_size = 100) |
|
{ |
|
(*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL; |
|
// The branching factor used in the hierarchical clustering |
|
(*this)["branching"] = branching; |
|
// Algorithm used for picking the initial cluster centers |
|
(*this)["centers_init"] = centers_init; |
|
// number of parallel trees to build |
|
(*this)["trees"] = trees; |
|
// maximum leaf size |
|
(*this)["leaf_size"] = leaf_size; |
|
} |
|
}; |
|
|
|
|
|
/** |
|
* Hierarchical index |
|
* |
|
* Contains a tree constructed through a hierarchical clustering |
|
* and other information for indexing a set of points for nearest-neighbour matching. |
|
*/ |
|
template <typename Distance> |
|
class HierarchicalClusteringIndex : public NNIndex<Distance> |
|
{ |
|
public: |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
private: |
|
|
|
|
|
typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&); |
|
|
|
/** |
|
* The function used for choosing the cluster centers. |
|
*/ |
|
centersAlgFunction chooseCenters; |
|
|
|
|
|
|
|
/** |
|
* Chooses the initial centers in the k-means clustering in a random manner. |
|
* |
|
* Params: |
|
* k = number of centers |
|
* vecs = the dataset of points |
|
* indices = indices in the dataset |
|
* indices_length = length of indices vector |
|
* |
|
*/ |
|
void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length) |
|
{ |
|
UniqueRandom r(indices_length); |
|
|
|
int index; |
|
for (index=0; index<k; ++index) { |
|
bool duplicate = true; |
|
int rnd; |
|
while (duplicate) { |
|
duplicate = false; |
|
rnd = r.next(); |
|
if (rnd<0) { |
|
centers_length = index; |
|
return; |
|
} |
|
|
|
centers[index] = dsindices[rnd]; |
|
|
|
for (int j=0; j<index; ++j) { |
|
DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols); |
|
if (sq<1e-16) { |
|
duplicate = true; |
|
} |
|
} |
|
} |
|
} |
|
|
|
centers_length = index; |
|
} |
|
|
|
|
|
/** |
|
* Chooses the initial centers in the k-means using Gonzales' algorithm |
|
* so that the centers are spaced apart from each other. |
|
* |
|
* Params: |
|
* k = number of centers |
|
* vecs = the dataset of points |
|
* indices = indices in the dataset |
|
* Returns: |
|
*/ |
|
void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length) |
|
{ |
|
int n = indices_length; |
|
|
|
int rnd = rand_int(n); |
|
CV_DbgAssert(rnd >=0 && rnd < n); |
|
|
|
centers[0] = dsindices[rnd]; |
|
|
|
int index; |
|
for (index=1; index<k; ++index) { |
|
|
|
int best_index = -1; |
|
DistanceType best_val = 0; |
|
for (int j=0; j<n; ++j) { |
|
DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols); |
|
for (int i=1; i<index; ++i) { |
|
DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols); |
|
if (tmp_dist<dist) { |
|
dist = tmp_dist; |
|
} |
|
} |
|
if (dist>best_val) { |
|
best_val = dist; |
|
best_index = j; |
|
} |
|
} |
|
if (best_index!=-1) { |
|
centers[index] = dsindices[best_index]; |
|
} |
|
else { |
|
break; |
|
} |
|
} |
|
centers_length = index; |
|
} |
|
|
|
|
|
/** |
|
* Chooses the initial centers in the k-means using the algorithm |
|
* proposed in the KMeans++ paper: |
|
* Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding |
|
* |
|
* Implementation of this function was converted from the one provided in Arthur's code. |
|
* |
|
* Params: |
|
* k = number of centers |
|
* vecs = the dataset of points |
|
* indices = indices in the dataset |
|
* Returns: |
|
*/ |
|
void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length) |
|
{ |
|
int n = indices_length; |
|
|
|
double currentPot = 0; |
|
DistanceType* closestDistSq = new DistanceType[n]; |
|
|
|
// Choose one random center and set the closestDistSq values |
|
int index = rand_int(n); |
|
CV_DbgAssert(index >=0 && index < n); |
|
centers[0] = dsindices[index]; |
|
|
|
// Computing distance^2 will have the advantage of even higher probability further to pick new centers |
|
// far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article) |
|
for (int i = 0; i < n; i++) { |
|
closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); |
|
closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] ); |
|
currentPot += closestDistSq[i]; |
|
} |
|
|
|
|
|
const int numLocalTries = 1; |
|
|
|
// Choose each center |
|
int centerCount; |
|
for (centerCount = 1; centerCount < k; centerCount++) { |
|
|
|
// Repeat several trials |
|
double bestNewPot = -1; |
|
int bestNewIndex = 0; |
|
for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { |
|
|
|
// Choose our center - have to be slightly careful to return a valid answer even accounting |
|
// for possible rounding errors |
|
double randVal = rand_double(currentPot); |
|
for (index = 0; index < n-1; index++) { |
|
if (randVal <= closestDistSq[index]) break; |
|
else randVal -= closestDistSq[index]; |
|
} |
|
|
|
// Compute the new potential |
|
double newPot = 0; |
|
for (int i = 0; i < n; i++) { |
|
DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); |
|
newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); |
|
} |
|
|
|
// Store the best result |
|
if ((bestNewPot < 0)||(newPot < bestNewPot)) { |
|
bestNewPot = newPot; |
|
bestNewIndex = index; |
|
} |
|
} |
|
|
|
// Add the appropriate center |
|
centers[centerCount] = dsindices[bestNewIndex]; |
|
currentPot = bestNewPot; |
|
for (int i = 0; i < n; i++) { |
|
DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols); |
|
closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); |
|
} |
|
} |
|
|
|
centers_length = centerCount; |
|
|
|
delete[] closestDistSq; |
|
} |
|
|
|
|
|
/** |
|
* Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel): |
|
* select the first point of the list as a candidate, then parse the points list. If another |
|
* point is further than current candidate from the other centers, test if it is a good center |
|
* of a local aggregation. If it is, replace current candidate by this point. And so on... |
|
* |
|
* Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points, |
|
* this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex |
|
* class that pick centers among existing points instead of computing the barycenters, there is a real |
|
* improvement. |
|
* |
|
* Params: |
|
* k = number of centers |
|
* vecs = the dataset of points |
|
* indices = indices in the dataset |
|
* Returns: |
|
*/ |
|
void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length) |
|
{ |
|
const float kSpeedUpFactor = 1.3f; |
|
|
|
int n = indices_length; |
|
|
|
DistanceType* closestDistSq = new DistanceType[n]; |
|
|
|
// Choose one random center and set the closestDistSq values |
|
int index = rand_int(n); |
|
CV_DbgAssert(index >=0 && index < n); |
|
centers[0] = dsindices[index]; |
|
|
|
for (int i = 0; i < n; i++) { |
|
closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); |
|
} |
|
|
|
|
|
// Choose each center |
|
int centerCount; |
|
for (centerCount = 1; centerCount < k; centerCount++) { |
|
|
|
// Repeat several trials |
|
double bestNewPot = -1; |
|
int bestNewIndex = 0; |
|
DistanceType furthest = 0; |
|
for (index = 0; index < n; index++) { |
|
|
|
// We will test only the potential of the points further than current candidate |
|
if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) { |
|
|
|
// Compute the new potential |
|
double newPot = 0; |
|
for (int i = 0; i < n; i++) { |
|
newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols) |
|
, closestDistSq[i] ); |
|
} |
|
|
|
// Store the best result |
|
if ((bestNewPot < 0)||(newPot <= bestNewPot)) { |
|
bestNewPot = newPot; |
|
bestNewIndex = index; |
|
furthest = closestDistSq[index]; |
|
} |
|
} |
|
} |
|
|
|
// Add the appropriate center |
|
centers[centerCount] = dsindices[bestNewIndex]; |
|
for (int i = 0; i < n; i++) { |
|
closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols) |
|
, closestDistSq[i] ); |
|
} |
|
} |
|
|
|
centers_length = centerCount; |
|
|
|
delete[] closestDistSq; |
|
} |
|
|
|
|
|
public: |
|
|
|
|
|
/** |
|
* Index constructor |
|
* |
|
* Params: |
|
* inputData = dataset with the input features |
|
* params = parameters passed to the hierarchical k-means algorithm |
|
*/ |
|
HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(), |
|
Distance d = Distance()) |
|
: dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d) |
|
{ |
|
memoryCounter = 0; |
|
|
|
size_ = dataset.rows; |
|
veclen_ = dataset.cols; |
|
|
|
branching_ = get_param(params,"branching",32); |
|
centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM); |
|
trees_ = get_param(params,"trees",4); |
|
leaf_size_ = get_param(params,"leaf_size",100); |
|
|
|
if (centers_init_==FLANN_CENTERS_RANDOM) { |
|
chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom; |
|
} |
|
else if (centers_init_==FLANN_CENTERS_GONZALES) { |
|
chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales; |
|
} |
|
else if (centers_init_==FLANN_CENTERS_KMEANSPP) { |
|
chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp; |
|
} |
|
else if (centers_init_==FLANN_CENTERS_GROUPWISE) { |
|
chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser; |
|
} |
|
else { |
|
FLANN_THROW(cv::Error::StsError, "Unknown algorithm for choosing initial centers."); |
|
} |
|
|
|
root = new NodePtr[trees_]; |
|
indices = new int*[trees_]; |
|
|
|
for (int i=0; i<trees_; ++i) { |
|
root[i] = NULL; |
|
indices[i] = NULL; |
|
} |
|
} |
|
|
|
HierarchicalClusteringIndex(const HierarchicalClusteringIndex&); |
|
HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&); |
|
|
|
/** |
|
* Index destructor. |
|
* |
|
* Release the memory used by the index. |
|
*/ |
|
virtual ~HierarchicalClusteringIndex() |
|
{ |
|
if (root!=NULL) { |
|
delete[] root; |
|
} |
|
|
|
if (indices!=NULL) { |
|
free_indices(); |
|
delete[] indices; |
|
} |
|
} |
|
|
|
/** |
|
* Returns size of index. |
|
*/ |
|
size_t size() const CV_OVERRIDE |
|
{ |
|
return size_; |
|
} |
|
|
|
/** |
|
* Returns the length of an index feature. |
|
*/ |
|
size_t veclen() const CV_OVERRIDE |
|
{ |
|
return veclen_; |
|
} |
|
|
|
|
|
/** |
|
* Computes the inde memory usage |
|
* Returns: memory used by the index |
|
*/ |
|
int usedMemory() const CV_OVERRIDE |
|
{ |
|
return pool.usedMemory+pool.wastedMemory+memoryCounter; |
|
} |
|
|
|
/** |
|
* Builds the index |
|
*/ |
|
void buildIndex() CV_OVERRIDE |
|
{ |
|
if (branching_<2) { |
|
FLANN_THROW(cv::Error::StsError, "Branching factor must be at least 2"); |
|
} |
|
|
|
free_indices(); |
|
|
|
for (int i=0; i<trees_; ++i) { |
|
indices[i] = new int[size_]; |
|
for (size_t j=0; j<size_; ++j) { |
|
indices[i][j] = (int)j; |
|
} |
|
root[i] = pool.allocate<Node>(); |
|
computeClustering(root[i], indices[i], (int)size_, branching_,0); |
|
} |
|
} |
|
|
|
|
|
flann_algorithm_t getType() const CV_OVERRIDE |
|
{ |
|
return FLANN_INDEX_HIERARCHICAL; |
|
} |
|
|
|
|
|
void saveIndex(FILE* stream) CV_OVERRIDE |
|
{ |
|
save_value(stream, branching_); |
|
save_value(stream, trees_); |
|
save_value(stream, centers_init_); |
|
save_value(stream, leaf_size_); |
|
save_value(stream, memoryCounter); |
|
for (int i=0; i<trees_; ++i) { |
|
save_value(stream, *indices[i], size_); |
|
save_tree(stream, root[i], i); |
|
} |
|
|
|
} |
|
|
|
|
|
void loadIndex(FILE* stream) CV_OVERRIDE |
|
{ |
|
if (root!=NULL) { |
|
delete[] root; |
|
} |
|
|
|
if (indices!=NULL) { |
|
free_indices(); |
|
delete[] indices; |
|
} |
|
|
|
load_value(stream, branching_); |
|
load_value(stream, trees_); |
|
load_value(stream, centers_init_); |
|
load_value(stream, leaf_size_); |
|
load_value(stream, memoryCounter); |
|
|
|
indices = new int*[trees_]; |
|
root = new NodePtr[trees_]; |
|
for (int i=0; i<trees_; ++i) { |
|
indices[i] = new int[size_]; |
|
load_value(stream, *indices[i], size_); |
|
load_tree(stream, root[i], i); |
|
} |
|
|
|
params["algorithm"] = getType(); |
|
params["branching"] = branching_; |
|
params["trees"] = trees_; |
|
params["centers_init"] = centers_init_; |
|
params["leaf_size"] = leaf_size_; |
|
} |
|
|
|
|
|
/** |
|
* Find set of nearest neighbors to vec. Their indices are stored inside |
|
* the result object. |
|
* |
|
* Params: |
|
* result = the result object in which the indices of the nearest-neighbors are stored |
|
* vec = the vector for which to search the nearest neighbors |
|
* searchParams = parameters that influence the search algorithm (checks) |
|
*/ |
|
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE |
|
{ |
|
|
|
const int maxChecks = get_param(searchParams,"checks",32); |
|
const bool explore_all_trees = get_param(searchParams,"explore_all_trees",false); |
|
|
|
// Priority queue storing intermediate branches in the best-bin-first search |
|
const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_); |
|
|
|
std::vector<bool> checked(size_,false); |
|
int checks = 0; |
|
for (int i=0; i<trees_; ++i) { |
|
findNN(root[i], result, vec, checks, maxChecks, heap, checked, explore_all_trees); |
|
if (!explore_all_trees && (checks >= maxChecks) && result.full()) |
|
break; |
|
} |
|
|
|
BranchSt branch; |
|
while (heap->popMin(branch) && (checks<maxChecks || !result.full())) { |
|
NodePtr node = branch.node; |
|
findNN(node, result, vec, checks, maxChecks, heap, checked, false); |
|
} |
|
|
|
CV_Assert(result.full()); |
|
} |
|
|
|
IndexParams getParameters() const CV_OVERRIDE |
|
{ |
|
return params; |
|
} |
|
|
|
|
|
private: |
|
|
|
/** |
|
* Structure representing a node in the hierarchical k-means tree. |
|
*/ |
|
struct Node |
|
{ |
|
/** |
|
* The cluster center index |
|
*/ |
|
int pivot; |
|
/** |
|
* The cluster size (number of points in the cluster) |
|
*/ |
|
int size; |
|
/** |
|
* Child nodes (only for non-terminal nodes) |
|
*/ |
|
Node** childs; |
|
/** |
|
* Node points (only for terminal nodes) |
|
*/ |
|
int* indices; |
|
/** |
|
* Level |
|
*/ |
|
int level; |
|
}; |
|
typedef Node* NodePtr; |
|
|
|
|
|
|
|
/** |
|
* Alias definition for a nicer syntax. |
|
*/ |
|
typedef BranchStruct<NodePtr, DistanceType> BranchSt; |
|
|
|
|
|
|
|
void save_tree(FILE* stream, NodePtr node, int num) |
|
{ |
|
save_value(stream, *node); |
|
if (node->childs==NULL) { |
|
int indices_offset = (int)(node->indices - indices[num]); |
|
save_value(stream, indices_offset); |
|
} |
|
else { |
|
for(int i=0; i<branching_; ++i) { |
|
save_tree(stream, node->childs[i], num); |
|
} |
|
} |
|
} |
|
|
|
|
|
void load_tree(FILE* stream, NodePtr& node, int num) |
|
{ |
|
node = pool.allocate<Node>(); |
|
load_value(stream, *node); |
|
if (node->childs==NULL) { |
|
int indices_offset; |
|
load_value(stream, indices_offset); |
|
node->indices = indices[num] + indices_offset; |
|
} |
|
else { |
|
node->childs = pool.allocate<NodePtr>(branching_); |
|
for(int i=0; i<branching_; ++i) { |
|
load_tree(stream, node->childs[i], num); |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Release the inner elements of indices[] |
|
*/ |
|
void free_indices() |
|
{ |
|
if (indices!=NULL) { |
|
for(int i=0; i<trees_; ++i) { |
|
if (indices[i]!=NULL) { |
|
delete[] indices[i]; |
|
indices[i] = NULL; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void computeLabels(int* dsindices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost) |
|
{ |
|
cost = 0; |
|
for (int i=0; i<indices_length; ++i) { |
|
ElementType* point = dataset[dsindices[i]]; |
|
DistanceType dist = distance(point, dataset[centers[0]], veclen_); |
|
labels[i] = 0; |
|
for (int j=1; j<centers_length; ++j) { |
|
DistanceType new_dist = distance(point, dataset[centers[j]], veclen_); |
|
if (dist>new_dist) { |
|
labels[i] = j; |
|
dist = new_dist; |
|
} |
|
} |
|
cost += dist; |
|
} |
|
} |
|
|
|
/** |
|
* The method responsible with actually doing the recursive hierarchical |
|
* clustering |
|
* |
|
* Params: |
|
* node = the node to cluster |
|
* indices = indices of the points belonging to the current node |
|
* branching = the branching factor to use in the clustering |
|
* |
|
* TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) |
|
*/ |
|
void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level) |
|
{ |
|
node->size = indices_length; |
|
node->level = level; |
|
|
|
if (indices_length < leaf_size_) { // leaf node |
|
node->indices = dsindices; |
|
std::sort(node->indices,node->indices+indices_length); |
|
node->childs = NULL; |
|
return; |
|
} |
|
|
|
std::vector<int> centers(branching); |
|
std::vector<int> labels(indices_length); |
|
|
|
int centers_length; |
|
(this->*chooseCenters)(branching, dsindices, indices_length, ¢ers[0], centers_length); |
|
|
|
if (centers_length<branching) { |
|
node->indices = dsindices; |
|
std::sort(node->indices,node->indices+indices_length); |
|
node->childs = NULL; |
|
return; |
|
} |
|
|
|
|
|
// assign points to clusters |
|
DistanceType cost; |
|
computeLabels(dsindices, indices_length, ¢ers[0], centers_length, &labels[0], cost); |
|
|
|
node->childs = pool.allocate<NodePtr>(branching); |
|
int start = 0; |
|
int end = start; |
|
for (int i=0; i<branching; ++i) { |
|
for (int j=0; j<indices_length; ++j) { |
|
if (labels[j]==i) { |
|
std::swap(dsindices[j],dsindices[end]); |
|
std::swap(labels[j],labels[end]); |
|
end++; |
|
} |
|
} |
|
|
|
node->childs[i] = pool.allocate<Node>(); |
|
node->childs[i]->pivot = centers[i]; |
|
node->childs[i]->indices = NULL; |
|
computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1); |
|
start=end; |
|
} |
|
} |
|
|
|
|
|
|
|
/** |
|
* Performs one descent in the hierarchical k-means tree. The branches not |
|
* visited are stored in a priority queue. |
|
* |
|
* Params: |
|
* node = node to explore |
|
* result = container for the k-nearest neighbors found |
|
* vec = query points |
|
* checks = how many points in the dataset have been checked so far |
|
* maxChecks = maximum dataset points to checks |
|
*/ |
|
|
|
|
|
void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks, |
|
const cv::Ptr<Heap<BranchSt>>& heap, std::vector<bool>& checked, bool explore_all_trees = false) |
|
{ |
|
if (node->childs==NULL) { |
|
if (!explore_all_trees && (checks>=maxChecks) && result.full()) { |
|
return; |
|
} |
|
for (int i=0; i<node->size; ++i) { |
|
int index = node->indices[i]; |
|
if (!checked[index]) { |
|
DistanceType dist = distance(dataset[index], vec, veclen_); |
|
result.addPoint(dist, index); |
|
checked[index] = true; |
|
++checks; |
|
} |
|
} |
|
} |
|
else { |
|
DistanceType* domain_distances = new DistanceType[branching_]; |
|
int best_index = 0; |
|
domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_); |
|
for (int i=1; i<branching_; ++i) { |
|
domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_); |
|
if (domain_distances[i]<domain_distances[best_index]) { |
|
best_index = i; |
|
} |
|
} |
|
for (int i=0; i<branching_; ++i) { |
|
if (i!=best_index) { |
|
heap->insert(BranchSt(node->childs[i],domain_distances[i])); |
|
} |
|
} |
|
delete[] domain_distances; |
|
findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked, explore_all_trees); |
|
} |
|
} |
|
|
|
private: |
|
|
|
|
|
/** |
|
* The dataset used by this index |
|
*/ |
|
const Matrix<ElementType> dataset; |
|
|
|
/** |
|
* Parameters used by this index |
|
*/ |
|
IndexParams params; |
|
|
|
|
|
/** |
|
* Number of features in the dataset. |
|
*/ |
|
size_t size_; |
|
|
|
/** |
|
* Length of each feature. |
|
*/ |
|
size_t veclen_; |
|
|
|
/** |
|
* The root node in the tree. |
|
*/ |
|
NodePtr* root; |
|
|
|
/** |
|
* Array of indices to vectors in the dataset. |
|
*/ |
|
int** indices; |
|
|
|
|
|
/** |
|
* The distance |
|
*/ |
|
Distance distance; |
|
|
|
/** |
|
* Pooled memory allocator. |
|
* |
|
* Using a pooled memory allocator is more efficient |
|
* than allocating memory directly when there is a large |
|
* number small of memory allocations. |
|
*/ |
|
PooledAllocator pool; |
|
|
|
/** |
|
* Memory occupied by the index. |
|
*/ |
|
int memoryCounter; |
|
|
|
/** index parameters */ |
|
int branching_; |
|
int trees_; |
|
flann_centers_init_t centers_init_; |
|
int leaf_size_; |
|
|
|
|
|
}; |
|
|
|
} |
|
|
|
//! @endcond |
|
|
|
#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */
|
|
|