mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
268 lines
6.8 KiB
268 lines
6.8 KiB
|
|
#include "test_precomp.hpp" |
|
|
|
#include <string> |
|
#include <fstream> |
|
#include <iostream> |
|
|
|
using namespace std; |
|
|
|
|
|
class CV_GBTreesTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_GBTreesTest(); |
|
~CV_GBTreesTest(); |
|
|
|
protected: |
|
void run(int); |
|
|
|
int TestTrainPredict(int test_num); |
|
int TestSaveLoad(); |
|
|
|
int checkPredictError(int test_num); |
|
int checkLoadSave(); |
|
|
|
string model_file_name1; |
|
string model_file_name2; |
|
string* datasets; |
|
string data_path; |
|
|
|
CvMLData* data; |
|
CvGBTrees* gtb; |
|
|
|
vector<float> test_resps1; |
|
vector<float> test_resps2; |
|
}; |
|
|
|
|
|
int _get_len(const CvMat* mat) |
|
{ |
|
return (mat->cols > mat->rows) ? mat->cols : mat->rows; |
|
} |
|
|
|
|
|
CV_GBTreesTest::CV_GBTreesTest() |
|
{ |
|
datasets = 0; |
|
data = 0; |
|
gtb = 0; |
|
} |
|
|
|
CV_GBTreesTest::~CV_GBTreesTest() |
|
{ |
|
if (data) |
|
delete data; |
|
delete[] datasets; |
|
} |
|
|
|
|
|
int CV_GBTreesTest::TestTrainPredict(int test_num) |
|
{ |
|
int code = cvtest::TS::OK; |
|
|
|
int weak_count = 200; |
|
float shrinkage = 0.1f; |
|
float subsample_portion = 0.5f; |
|
int max_depth = 5; |
|
bool use_surrogates = true; |
|
int loss_function_type = 0; |
|
switch (test_num) |
|
{ |
|
case (1) : loss_function_type = CvGBTrees::SQUARED_LOSS; break; |
|
case (2) : loss_function_type = CvGBTrees::ABSOLUTE_LOSS; break; |
|
case (3) : loss_function_type = CvGBTrees::HUBER_LOSS; break; |
|
case (0) : loss_function_type = CvGBTrees::DEVIANCE_LOSS; break; |
|
default : |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Bad test_num value in CV_GBTreesTest::TestTrainPredict(..) function." ); |
|
return cvtest::TS::FAIL_BAD_ARG_CHECK; |
|
} |
|
} |
|
|
|
int dataset_num = test_num == 0 ? 0 : 1; |
|
if (!data) |
|
{ |
|
data = new CvMLData(); |
|
data->set_delimiter(','); |
|
|
|
if (data->read_csv(datasets[dataset_num].c_str())) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "File reading error." ); |
|
return cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
|
|
if (test_num == 0) |
|
{ |
|
data->set_response_idx(57); |
|
data->set_var_types("ord[0-56],cat[57]"); |
|
} |
|
else |
|
{ |
|
data->set_response_idx(13); |
|
data->set_var_types("ord[0-2,4-13],cat[3]"); |
|
subsample_portion = 0.7f; |
|
} |
|
|
|
int train_sample_count = cvFloor(_get_len(data->get_responses())*0.5f); |
|
CvTrainTestSplit spl( train_sample_count ); |
|
data->set_train_test_split( &spl ); |
|
} |
|
|
|
data->mix_train_and_test_idx(); |
|
|
|
|
|
if (gtb) delete gtb; |
|
gtb = new CvGBTrees(); |
|
bool tmp_code = true; |
|
tmp_code = gtb->train(data, CvGBTreesParams(loss_function_type, weak_count, |
|
shrinkage, subsample_portion, |
|
max_depth, use_surrogates)); |
|
|
|
if (!tmp_code) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Model training was failed."); |
|
return cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
|
|
code = checkPredictError(test_num); |
|
|
|
return code; |
|
|
|
} |
|
|
|
|
|
int CV_GBTreesTest::checkPredictError(int test_num) |
|
{ |
|
if (!gtb) |
|
return cvtest::TS::FAIL_GENERIC; |
|
|
|
float mean[] = {5.430247f, 13.5654f, 12.6569f, 13.1661f}; |
|
float sigma[] = {0.4162694f, 3.21161f, 3.43297f, 3.00624f}; |
|
|
|
float current_error = gtb->calc_error(data, CV_TEST_ERROR); |
|
|
|
if ( abs( current_error - mean[test_num]) > 6*sigma[test_num] ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Test error is out of range:\n" |
|
"abs(%f/*curEr*/ - %f/*mean*/ > %f/*6*sigma*/", |
|
current_error, mean[test_num], 6*sigma[test_num] ); |
|
return cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
return cvtest::TS::OK; |
|
|
|
} |
|
|
|
|
|
int CV_GBTreesTest::TestSaveLoad() |
|
{ |
|
if (!gtb) |
|
return cvtest::TS::FAIL_GENERIC; |
|
|
|
model_file_name1 = cv::tempfile(); |
|
model_file_name2 = cv::tempfile(); |
|
|
|
gtb->save(model_file_name1.c_str()); |
|
gtb->calc_error(data, CV_TEST_ERROR, &test_resps1); |
|
gtb->load(model_file_name1.c_str()); |
|
gtb->calc_error(data, CV_TEST_ERROR, &test_resps2); |
|
gtb->save(model_file_name2.c_str()); |
|
|
|
return checkLoadSave(); |
|
|
|
} |
|
|
|
|
|
|
|
int CV_GBTreesTest::checkLoadSave() |
|
{ |
|
int code = cvtest::TS::OK; |
|
|
|
// 1. compare files |
|
ifstream f1( model_file_name1.c_str() ), f2( model_file_name2.c_str() ); |
|
string s1, s2; |
|
int lineIdx = 0; |
|
CV_Assert( f1.is_open() && f2.is_open() ); |
|
for( ; !f1.eof() && !f2.eof(); lineIdx++ ) |
|
{ |
|
getline( f1, s1 ); |
|
getline( f2, s2 ); |
|
if( s1.compare(s2) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "first and second saved files differ in %n-line; first %n line: %s; second %n-line: %s", |
|
lineIdx, lineIdx, s1.c_str(), lineIdx, s2.c_str() ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
} |
|
if( !f1.eof() || !f2.eof() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "First and second saved files differ in %n-line; first %n line: %s; second %n-line: %s", |
|
lineIdx, lineIdx, s1.c_str(), lineIdx, s2.c_str() ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
f1.close(); |
|
f2.close(); |
|
// delete temporary files |
|
remove( model_file_name1.c_str() ); |
|
remove( model_file_name2.c_str() ); |
|
|
|
// 2. compare responses |
|
CV_Assert( test_resps1.size() == test_resps2.size() ); |
|
vector<float>::const_iterator it1 = test_resps1.begin(), it2 = test_resps2.begin(); |
|
for( ; it1 != test_resps1.end(); ++it1, ++it2 ) |
|
{ |
|
if( fabs(*it1 - *it2) > FLT_EPSILON ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Responses predicted before saving and after loading are different" ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
} |
|
return code; |
|
} |
|
|
|
|
|
|
|
void CV_GBTreesTest::run(int) |
|
{ |
|
|
|
string data_path = string(ts->get_data_path()); |
|
datasets = new string[2]; |
|
datasets[0] = data_path + string("spambase.data"); /*string("dataset_classification.csv");*/ |
|
datasets[1] = data_path + string("housing_.data"); /*string("dataset_regression.csv");*/ |
|
|
|
int code = cvtest::TS::OK; |
|
|
|
for (int i = 0; i < 4; i++) |
|
{ |
|
|
|
int temp_code = TestTrainPredict(i); |
|
if (temp_code != cvtest::TS::OK) |
|
{ |
|
code = temp_code; |
|
break; |
|
} |
|
|
|
else if (i==0) |
|
{ |
|
temp_code = TestSaveLoad(); |
|
if (temp_code != cvtest::TS::OK) |
|
code = temp_code; |
|
delete data; |
|
data = 0; |
|
} |
|
|
|
delete gtb; |
|
gtb = 0; |
|
} |
|
delete data; |
|
data = 0; |
|
|
|
ts->set_failed_test_info( code ); |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////////// |
|
//////////////////// test registration ///////////////////////////////////// |
|
///////////////////////////////////////////////////////////////////////////// |
|
|
|
TEST(ML_GBTrees, regression) { CV_GBTreesTest test; test.safe_run(); }
|
|
|