mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
677 lines
21 KiB
677 lines
21 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright( C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
//(including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort(including negligence or otherwise) arising in any way out of |
|
// the use of this software, even ifadvised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
const double minEigenValue = DBL_EPSILON; |
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
EM::EM(int _nclusters, int _covMatType, const TermCriteria& _termCrit) |
|
{ |
|
nclusters = _nclusters; |
|
covMatType = _covMatType; |
|
maxIters = (_termCrit.type & TermCriteria::MAX_ITER) ? _termCrit.maxCount : DEFAULT_MAX_ITERS; |
|
epsilon = (_termCrit.type & TermCriteria::EPS) ? _termCrit.epsilon : 0; |
|
} |
|
|
|
EM::~EM() |
|
{ |
|
//clear(); |
|
} |
|
|
|
void EM::clear() |
|
{ |
|
trainSamples.release(); |
|
trainProbs.release(); |
|
trainLogLikelihoods.release(); |
|
trainLabels.release(); |
|
|
|
weights.release(); |
|
means.release(); |
|
covs.clear(); |
|
|
|
covsEigenValues.clear(); |
|
invCovsEigenValues.clear(); |
|
covsRotateMats.clear(); |
|
|
|
logWeightDivDet.release(); |
|
} |
|
|
|
|
|
bool EM::train(InputArray samples, |
|
OutputArray logLikelihoods, |
|
OutputArray labels, |
|
OutputArray probs) |
|
{ |
|
Mat samplesMat = samples.getMat(); |
|
setTrainData(START_AUTO_STEP, samplesMat, 0, 0, 0, 0); |
|
return doTrain(START_AUTO_STEP, logLikelihoods, labels, probs); |
|
} |
|
|
|
bool EM::trainE(InputArray samples, |
|
InputArray _means0, |
|
InputArray _covs0, |
|
InputArray _weights0, |
|
OutputArray logLikelihoods, |
|
OutputArray labels, |
|
OutputArray probs) |
|
{ |
|
Mat samplesMat = samples.getMat(); |
|
vector<Mat> covs0; |
|
_covs0.getMatVector(covs0); |
|
|
|
Mat means0 = _means0.getMat(), weights0 = _weights0.getMat(); |
|
|
|
setTrainData(START_E_STEP, samplesMat, 0, !_means0.empty() ? &means0 : 0, |
|
!_covs0.empty() ? &covs0 : 0, !_weights0.empty() ? &weights0 : 0); |
|
return doTrain(START_E_STEP, logLikelihoods, labels, probs); |
|
} |
|
|
|
bool EM::trainM(InputArray samples, |
|
InputArray _probs0, |
|
OutputArray logLikelihoods, |
|
OutputArray labels, |
|
OutputArray probs) |
|
{ |
|
Mat samplesMat = samples.getMat(); |
|
Mat probs0 = _probs0.getMat(); |
|
|
|
setTrainData(START_M_STEP, samplesMat, !_probs0.empty() ? &probs0 : 0, 0, 0, 0); |
|
return doTrain(START_M_STEP, logLikelihoods, labels, probs); |
|
} |
|
|
|
|
|
Vec2d EM::predict(InputArray _sample, OutputArray _probs) const |
|
{ |
|
Mat sample = _sample.getMat(); |
|
CV_Assert(isTrained()); |
|
|
|
CV_Assert(!sample.empty()); |
|
if(sample.type() != CV_64FC1) |
|
{ |
|
Mat tmp; |
|
sample.convertTo(tmp, CV_64FC1); |
|
sample = tmp; |
|
} |
|
sample.reshape(1, 1); |
|
|
|
Mat probs; |
|
if( _probs.needed() ) |
|
{ |
|
_probs.create(1, nclusters, CV_64FC1); |
|
probs = _probs.getMat(); |
|
} |
|
|
|
return computeProbabilities(sample, !probs.empty() ? &probs : 0); |
|
} |
|
|
|
bool EM::isTrained() const |
|
{ |
|
return !means.empty(); |
|
} |
|
|
|
|
|
static |
|
void checkTrainData(int startStep, const Mat& samples, |
|
int nclusters, int covMatType, const Mat* probs, const Mat* means, |
|
const vector<Mat>* covs, const Mat* weights) |
|
{ |
|
// Check samples. |
|
CV_Assert(!samples.empty()); |
|
CV_Assert(samples.channels() == 1); |
|
|
|
int nsamples = samples.rows; |
|
int dim = samples.cols; |
|
|
|
// Check training params. |
|
CV_Assert(nclusters > 0); |
|
CV_Assert(nclusters <= nsamples); |
|
CV_Assert(startStep == EM::START_AUTO_STEP || |
|
startStep == EM::START_E_STEP || |
|
startStep == EM::START_M_STEP); |
|
CV_Assert(covMatType == EM::COV_MAT_GENERIC || |
|
covMatType == EM::COV_MAT_DIAGONAL || |
|
covMatType == EM::COV_MAT_SPHERICAL); |
|
|
|
CV_Assert(!probs || |
|
(!probs->empty() && |
|
probs->rows == nsamples && probs->cols == nclusters && |
|
(probs->type() == CV_32FC1 || probs->type() == CV_64FC1))); |
|
|
|
CV_Assert(!weights || |
|
(!weights->empty() && |
|
(weights->cols == 1 || weights->rows == 1) && static_cast<int>(weights->total()) == nclusters && |
|
(weights->type() == CV_32FC1 || weights->type() == CV_64FC1))); |
|
|
|
CV_Assert(!means || |
|
(!means->empty() && |
|
means->rows == nclusters && means->cols == dim && |
|
means->channels() == 1)); |
|
|
|
CV_Assert(!covs || |
|
(!covs->empty() && |
|
static_cast<int>(covs->size()) == nclusters)); |
|
if(covs) |
|
{ |
|
const Size covSize(dim, dim); |
|
for(size_t i = 0; i < covs->size(); i++) |
|
{ |
|
const Mat& m = (*covs)[i]; |
|
CV_Assert(!m.empty() && m.size() == covSize && (m.channels() == 1)); |
|
} |
|
} |
|
|
|
if(startStep == EM::START_E_STEP) |
|
{ |
|
CV_Assert(means); |
|
} |
|
else if(startStep == EM::START_M_STEP) |
|
{ |
|
CV_Assert(probs); |
|
} |
|
} |
|
|
|
static |
|
void preprocessSampleData(const Mat& src, Mat& dst, int dstType, bool isAlwaysClone) |
|
{ |
|
if(src.type() == dstType && !isAlwaysClone) |
|
dst = src; |
|
else |
|
src.convertTo(dst, dstType); |
|
} |
|
|
|
static |
|
void preprocessProbability(Mat& probs) |
|
{ |
|
max(probs, 0., probs); |
|
|
|
const double uniformProbability = (double)(1./probs.cols); |
|
for(int y = 0; y < probs.rows; y++) |
|
{ |
|
Mat sampleProbs = probs.row(y); |
|
|
|
double maxVal = 0; |
|
minMaxLoc(sampleProbs, 0, &maxVal); |
|
if(maxVal < FLT_EPSILON) |
|
sampleProbs.setTo(uniformProbability); |
|
else |
|
normalize(sampleProbs, sampleProbs, 1, 0, NORM_L1); |
|
} |
|
} |
|
|
|
void EM::setTrainData(int startStep, const Mat& samples, |
|
const Mat* probs0, |
|
const Mat* means0, |
|
const vector<Mat>* covs0, |
|
const Mat* weights0) |
|
{ |
|
clear(); |
|
|
|
checkTrainData(startStep, samples, nclusters, covMatType, probs0, means0, covs0, weights0); |
|
|
|
bool isKMeansInit = (startStep == EM::START_AUTO_STEP) || (startStep == EM::START_E_STEP && (covs0 == 0 || weights0 == 0)); |
|
// Set checked data |
|
preprocessSampleData(samples, trainSamples, isKMeansInit ? CV_32FC1 : CV_64FC1, false); |
|
|
|
// set probs |
|
if(probs0 && startStep == EM::START_M_STEP) |
|
{ |
|
preprocessSampleData(*probs0, trainProbs, CV_64FC1, true); |
|
preprocessProbability(trainProbs); |
|
} |
|
|
|
// set weights |
|
if(weights0 && (startStep == EM::START_E_STEP && covs0)) |
|
{ |
|
weights0->convertTo(weights, CV_64FC1); |
|
weights.reshape(1,1); |
|
preprocessProbability(weights); |
|
} |
|
|
|
// set means |
|
if(means0 && (startStep == EM::START_E_STEP/* || startStep == EM::START_AUTO_STEP*/)) |
|
means0->convertTo(means, isKMeansInit ? CV_32FC1 : CV_64FC1); |
|
|
|
// set covs |
|
if(covs0 && (startStep == EM::START_E_STEP && weights0)) |
|
{ |
|
covs.resize(nclusters); |
|
for(size_t i = 0; i < covs0->size(); i++) |
|
(*covs0)[i].convertTo(covs[i], CV_64FC1); |
|
} |
|
} |
|
|
|
void EM::decomposeCovs() |
|
{ |
|
CV_Assert(!covs.empty()); |
|
covsEigenValues.resize(nclusters); |
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
covsRotateMats.resize(nclusters); |
|
invCovsEigenValues.resize(nclusters); |
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
{ |
|
CV_Assert(!covs[clusterIndex].empty()); |
|
|
|
SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV); |
|
|
|
if(covMatType == EM::COV_MAT_SPHERICAL) |
|
{ |
|
double maxSingularVal = svd.w.at<double>(0); |
|
covsEigenValues[clusterIndex] = Mat(1, 1, CV_64FC1, Scalar(maxSingularVal)); |
|
} |
|
else if(covMatType == EM::COV_MAT_DIAGONAL) |
|
{ |
|
covsEigenValues[clusterIndex] = svd.w; |
|
} |
|
else //EM::COV_MAT_GENERIC |
|
{ |
|
covsEigenValues[clusterIndex] = svd.w; |
|
covsRotateMats[clusterIndex] = svd.u; |
|
} |
|
max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]); |
|
invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex]; |
|
} |
|
} |
|
|
|
void EM::clusterTrainSamples() |
|
{ |
|
int nsamples = trainSamples.rows; |
|
|
|
// Cluster samples, compute/update means |
|
|
|
// Convert samples and means to 32F, because kmeans requires this type. |
|
Mat trainSamplesFlt, meansFlt; |
|
if(trainSamples.type() != CV_32FC1) |
|
trainSamples.convertTo(trainSamplesFlt, CV_32FC1); |
|
else |
|
trainSamplesFlt = trainSamples; |
|
if(!means.empty()) |
|
{ |
|
if(means.type() != CV_32FC1) |
|
means.convertTo(meansFlt, CV_32FC1); |
|
else |
|
meansFlt = means; |
|
} |
|
|
|
Mat labels; |
|
kmeans(trainSamplesFlt, nclusters, labels, TermCriteria(TermCriteria::COUNT, means.empty() ? 10 : 1, 0.5), 10, KMEANS_PP_CENTERS, meansFlt); |
|
|
|
// Convert samples and means back to 64F. |
|
CV_Assert(meansFlt.type() == CV_32FC1); |
|
if(trainSamples.type() != CV_64FC1) |
|
{ |
|
Mat trainSamplesBuffer; |
|
trainSamplesFlt.convertTo(trainSamplesBuffer, CV_64FC1); |
|
trainSamples = trainSamplesBuffer; |
|
} |
|
meansFlt.convertTo(means, CV_64FC1); |
|
|
|
// Compute weights and covs |
|
weights = Mat(1, nclusters, CV_64FC1, Scalar(0)); |
|
covs.resize(nclusters); |
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
{ |
|
Mat clusterSamples; |
|
for(int sampleIndex = 0; sampleIndex < nsamples; sampleIndex++) |
|
{ |
|
if(labels.at<int>(sampleIndex) == clusterIndex) |
|
{ |
|
const Mat sample = trainSamples.row(sampleIndex); |
|
clusterSamples.push_back(sample); |
|
} |
|
} |
|
CV_Assert(!clusterSamples.empty()); |
|
|
|
calcCovarMatrix(clusterSamples, covs[clusterIndex], means.row(clusterIndex), |
|
CV_COVAR_NORMAL + CV_COVAR_ROWS + CV_COVAR_USE_AVG + CV_COVAR_SCALE, CV_64FC1); |
|
weights.at<double>(clusterIndex) = static_cast<double>(clusterSamples.rows)/static_cast<double>(nsamples); |
|
} |
|
|
|
decomposeCovs(); |
|
} |
|
|
|
void EM::computeLogWeightDivDet() |
|
{ |
|
CV_Assert(!covsEigenValues.empty()); |
|
|
|
Mat logWeights; |
|
cv::max(weights, DBL_MIN, weights); |
|
log(weights, logWeights); |
|
|
|
logWeightDivDet.create(1, nclusters, CV_64FC1); |
|
// note: logWeightDivDet = log(weight_k) - 0.5 * log(|det(cov_k)|) |
|
|
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
{ |
|
double logDetCov = 0.; |
|
const int evalCount = static_cast<int>(covsEigenValues[clusterIndex].total()); |
|
for(int di = 0; di < evalCount; di++) |
|
logDetCov += std::log(covsEigenValues[clusterIndex].at<double>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0)); |
|
|
|
logWeightDivDet.at<double>(clusterIndex) = logWeights.at<double>(clusterIndex) - 0.5 * logDetCov; |
|
} |
|
} |
|
|
|
bool EM::doTrain(int startStep, OutputArray logLikelihoods, OutputArray labels, OutputArray probs) |
|
{ |
|
int dim = trainSamples.cols; |
|
// Precompute the empty initial train data in the cases of EM::START_E_STEP and START_AUTO_STEP |
|
if(startStep != EM::START_M_STEP) |
|
{ |
|
if(covs.empty()) |
|
{ |
|
CV_Assert(weights.empty()); |
|
clusterTrainSamples(); |
|
} |
|
} |
|
|
|
if(!covs.empty() && covsEigenValues.empty() ) |
|
{ |
|
CV_Assert(invCovsEigenValues.empty()); |
|
decomposeCovs(); |
|
} |
|
|
|
if(startStep == EM::START_M_STEP) |
|
mStep(); |
|
|
|
double trainLogLikelihood, prevTrainLogLikelihood = 0.; |
|
for(int iter = 0; ; iter++) |
|
{ |
|
eStep(); |
|
trainLogLikelihood = sum(trainLogLikelihoods)[0]; |
|
|
|
if(iter >= maxIters - 1) |
|
break; |
|
|
|
double trainLogLikelihoodDelta = trainLogLikelihood - prevTrainLogLikelihood; |
|
if( iter != 0 && |
|
(trainLogLikelihoodDelta < -DBL_EPSILON || |
|
trainLogLikelihoodDelta < epsilon * std::fabs(trainLogLikelihood))) |
|
break; |
|
|
|
mStep(); |
|
|
|
prevTrainLogLikelihood = trainLogLikelihood; |
|
} |
|
|
|
if( trainLogLikelihood <= -DBL_MAX/10000. ) |
|
{ |
|
clear(); |
|
return false; |
|
} |
|
|
|
// postprocess covs |
|
covs.resize(nclusters); |
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
{ |
|
if(covMatType == EM::COV_MAT_SPHERICAL) |
|
{ |
|
covs[clusterIndex].create(dim, dim, CV_64FC1); |
|
setIdentity(covs[clusterIndex], Scalar(covsEigenValues[clusterIndex].at<double>(0))); |
|
} |
|
else if(covMatType == EM::COV_MAT_DIAGONAL) |
|
{ |
|
covs[clusterIndex] = Mat::diag(covsEigenValues[clusterIndex]); |
|
} |
|
} |
|
|
|
if(labels.needed()) |
|
trainLabels.copyTo(labels); |
|
if(probs.needed()) |
|
trainProbs.copyTo(probs); |
|
if(logLikelihoods.needed()) |
|
trainLogLikelihoods.copyTo(logLikelihoods); |
|
|
|
trainSamples.release(); |
|
trainProbs.release(); |
|
trainLabels.release(); |
|
trainLogLikelihoods.release(); |
|
|
|
return true; |
|
} |
|
|
|
Vec2d EM::computeProbabilities(const Mat& sample, Mat* probs) const |
|
{ |
|
// L_ik = log(weight_k) - 0.5 * log(|det(cov_k)|) - 0.5 *(x_i - mean_k)' cov_k^(-1) (x_i - mean_k)] |
|
// q = arg(max_k(L_ik)) |
|
// probs_ik = exp(L_ik - L_iq) / (1 + sum_j!=q (exp(L_ij - L_iq)) |
|
// see Alex Smola's blog http://blog.smola.org/page/2 for |
|
// details on the log-sum-exp trick |
|
|
|
CV_Assert(!means.empty()); |
|
CV_Assert(sample.type() == CV_64FC1); |
|
CV_Assert(sample.rows == 1); |
|
CV_Assert(sample.cols == means.cols); |
|
|
|
int dim = sample.cols; |
|
|
|
Mat L(1, nclusters, CV_64FC1); |
|
int label = 0; |
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
{ |
|
const Mat centeredSample = sample - means.row(clusterIndex); |
|
|
|
Mat rotatedCenteredSample = covMatType != EM::COV_MAT_GENERIC ? |
|
centeredSample : centeredSample * covsRotateMats[clusterIndex]; |
|
|
|
double Lval = 0; |
|
for(int di = 0; di < dim; di++) |
|
{ |
|
double w = invCovsEigenValues[clusterIndex].at<double>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0); |
|
double val = rotatedCenteredSample.at<double>(di); |
|
Lval += w * val * val; |
|
} |
|
CV_DbgAssert(!logWeightDivDet.empty()); |
|
L.at<double>(clusterIndex) = logWeightDivDet.at<double>(clusterIndex) - 0.5 * Lval; |
|
|
|
if(L.at<double>(clusterIndex) > L.at<double>(label)) |
|
label = clusterIndex; |
|
} |
|
|
|
double maxLVal = L.at<double>(label); |
|
Mat expL_Lmax = L; // exp(L_ij - L_iq) |
|
for(int i = 0; i < L.cols; i++) |
|
expL_Lmax.at<double>(i) = std::exp(L.at<double>(i) - maxLVal); |
|
double expDiffSum = sum(expL_Lmax)[0]; // sum_j(exp(L_ij - L_iq)) |
|
|
|
if(probs) |
|
{ |
|
probs->create(1, nclusters, CV_64FC1); |
|
double factor = 1./expDiffSum; |
|
expL_Lmax *= factor; |
|
expL_Lmax.copyTo(*probs); |
|
} |
|
|
|
Vec2d res; |
|
res[0] = std::log(expDiffSum) + maxLVal - 0.5 * dim * CV_LOG2PI; |
|
res[1] = label; |
|
|
|
return res; |
|
} |
|
|
|
void EM::eStep() |
|
{ |
|
// Compute probs_ik from means_k, covs_k and weights_k. |
|
trainProbs.create(trainSamples.rows, nclusters, CV_64FC1); |
|
trainLabels.create(trainSamples.rows, 1, CV_32SC1); |
|
trainLogLikelihoods.create(trainSamples.rows, 1, CV_64FC1); |
|
|
|
computeLogWeightDivDet(); |
|
|
|
CV_DbgAssert(trainSamples.type() == CV_64FC1); |
|
CV_DbgAssert(means.type() == CV_64FC1); |
|
|
|
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++) |
|
{ |
|
Mat sampleProbs = trainProbs.row(sampleIndex); |
|
Vec2d res = computeProbabilities(trainSamples.row(sampleIndex), &sampleProbs); |
|
trainLogLikelihoods.at<double>(sampleIndex) = res[0]; |
|
trainLabels.at<int>(sampleIndex) = static_cast<int>(res[1]); |
|
} |
|
} |
|
|
|
void EM::mStep() |
|
{ |
|
// Update means_k, covs_k and weights_k from probs_ik |
|
int dim = trainSamples.cols; |
|
|
|
// Update weights |
|
// not normalized first |
|
reduce(trainProbs, weights, 0, CV_REDUCE_SUM); |
|
|
|
// Update means |
|
means.create(nclusters, dim, CV_64FC1); |
|
means = Scalar(0); |
|
|
|
const double minPosWeight = trainSamples.rows * DBL_EPSILON; |
|
double minWeight = DBL_MAX; |
|
int minWeightClusterIndex = -1; |
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
{ |
|
if(weights.at<double>(clusterIndex) <= minPosWeight) |
|
continue; |
|
|
|
if(weights.at<double>(clusterIndex) < minWeight) |
|
{ |
|
minWeight = weights.at<double>(clusterIndex); |
|
minWeightClusterIndex = clusterIndex; |
|
} |
|
|
|
Mat clusterMean = means.row(clusterIndex); |
|
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++) |
|
clusterMean += trainProbs.at<double>(sampleIndex, clusterIndex) * trainSamples.row(sampleIndex); |
|
clusterMean /= weights.at<double>(clusterIndex); |
|
} |
|
|
|
// Update covsEigenValues and invCovsEigenValues |
|
covs.resize(nclusters); |
|
covsEigenValues.resize(nclusters); |
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
covsRotateMats.resize(nclusters); |
|
invCovsEigenValues.resize(nclusters); |
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
{ |
|
if(weights.at<double>(clusterIndex) <= minPosWeight) |
|
continue; |
|
|
|
if(covMatType != EM::COV_MAT_SPHERICAL) |
|
covsEigenValues[clusterIndex].create(1, dim, CV_64FC1); |
|
else |
|
covsEigenValues[clusterIndex].create(1, 1, CV_64FC1); |
|
|
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
covs[clusterIndex].create(dim, dim, CV_64FC1); |
|
|
|
Mat clusterCov = covMatType != EM::COV_MAT_GENERIC ? |
|
covsEigenValues[clusterIndex] : covs[clusterIndex]; |
|
|
|
clusterCov = Scalar(0); |
|
|
|
Mat centeredSample; |
|
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++) |
|
{ |
|
centeredSample = trainSamples.row(sampleIndex) - means.row(clusterIndex); |
|
|
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
clusterCov += trainProbs.at<double>(sampleIndex, clusterIndex) * centeredSample.t() * centeredSample; |
|
else |
|
{ |
|
double p = trainProbs.at<double>(sampleIndex, clusterIndex); |
|
for(int di = 0; di < dim; di++ ) |
|
{ |
|
double val = centeredSample.at<double>(di); |
|
clusterCov.at<double>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0) += p*val*val; |
|
} |
|
} |
|
} |
|
|
|
if(covMatType == EM::COV_MAT_SPHERICAL) |
|
clusterCov /= dim; |
|
|
|
clusterCov /= weights.at<double>(clusterIndex); |
|
|
|
// Update covsRotateMats for EM::COV_MAT_GENERIC only |
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
{ |
|
SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV); |
|
covsEigenValues[clusterIndex] = svd.w; |
|
covsRotateMats[clusterIndex] = svd.u; |
|
} |
|
|
|
max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]); |
|
|
|
// update invCovsEigenValues |
|
invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex]; |
|
} |
|
|
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
{ |
|
if(weights.at<double>(clusterIndex) <= minPosWeight) |
|
{ |
|
Mat clusterMean = means.row(clusterIndex); |
|
means.row(minWeightClusterIndex).copyTo(clusterMean); |
|
covs[minWeightClusterIndex].copyTo(covs[clusterIndex]); |
|
covsEigenValues[minWeightClusterIndex].copyTo(covsEigenValues[clusterIndex]); |
|
if(covMatType == EM::COV_MAT_GENERIC) |
|
covsRotateMats[minWeightClusterIndex].copyTo(covsRotateMats[clusterIndex]); |
|
invCovsEigenValues[minWeightClusterIndex].copyTo(invCovsEigenValues[clusterIndex]); |
|
} |
|
} |
|
|
|
// Normalize weights |
|
weights /= trainSamples.rows; |
|
} |
|
|
|
void EM::read(const FileNode& fn) |
|
{ |
|
Algorithm::read(fn); |
|
|
|
decomposeCovs(); |
|
computeLogWeightDivDet(); |
|
} |
|
|
|
} // namespace cv |
|
|
|
/* End of file. */
|
|
|