Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
259 lines
8.4 KiB
259 lines
8.4 KiB
#include <cv.h> |
|
#include <cvaux.h> |
|
#include <highgui.h> |
|
#include <iostream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
inline Point2f applyHomography( const Mat_<double>& H, const Point2f& pt ) |
|
{ |
|
double w = 1./(H(2,0)*pt.x + H(2,1)*pt.y + H(2,2)); |
|
return Point2f( (float)((H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w), (float)((H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w) ); |
|
} |
|
|
|
void drawCorrespondences( const Mat& img1, const Mat& img2, const Mat& transfMtr, |
|
const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2, |
|
const vector<int>& matches, float maxDist, Mat& drawImg ) |
|
{ |
|
Scalar RED = CV_RGB(255, 0, 0); |
|
Scalar PINK = CV_RGB(255,130,230); |
|
Scalar GREEN = CV_RGB(0, 255, 0); |
|
Scalar BLUE = CV_RGB(0, 0, 255); |
|
|
|
/* Output: |
|
red point - point without corresponding point; |
|
grean point - point having correct corresponding point; |
|
pink point - point having incorrect corresponding point, but excised by threshold of distance; |
|
blue point - point having incorrect corresponding point; |
|
*/ |
|
Size size(img1.cols + img2.cols, MAX(img1.rows, img2.rows)); |
|
drawImg.create(size, CV_MAKETYPE(img1.depth(), 3)); |
|
Mat drawImg1 = drawImg(Rect(0, 0, img1.cols, img1.rows)); |
|
cvtColor(img1, drawImg1, CV_GRAY2RGB); |
|
Mat drawImg2 = drawImg(Rect(img1.cols, 0, img2.cols, img2.rows)); |
|
cvtColor(img2, drawImg2, CV_GRAY2RGB); |
|
|
|
for(vector<KeyPoint>::const_iterator it = keypoints1.begin(); it < keypoints1.end(); ++it ) |
|
{ |
|
circle(drawImg, it->pt, 3, RED); |
|
} |
|
|
|
for(vector<KeyPoint>::const_iterator it = keypoints2.begin(); it < keypoints2.end(); ++it ) |
|
{ |
|
Point p = it->pt; |
|
circle(drawImg, Point2f(p.x+img1.cols, p.y), 3, RED); |
|
} |
|
|
|
Mat vec1(3, 1, CV_32FC1), vec2; |
|
float err = 3; |
|
vector<int>::const_iterator mit = matches.begin(); |
|
assert( matches.size() == keypoints1.size() ); |
|
for( int i1 = 0; mit < matches.end(); ++mit, i1++ ) |
|
{ |
|
Point2f pt1 = keypoints1[i1].pt, pt2 = keypoints2[*mit].pt; |
|
Point2f diff = applyHomography(transfMtr, pt1) - pt2; |
|
if( norm(diff) < err ) |
|
{ |
|
circle(drawImg, pt1, 3, GREEN); |
|
circle(drawImg, Point2f(pt2.x+img1.cols, pt2.y), 3, GREEN); |
|
line(drawImg, pt1, Point2f(pt2.x+img1.cols, pt2.y), GREEN); |
|
} |
|
else |
|
{ |
|
/*if( *dit > maxDist ) |
|
{ |
|
circle(drawImg, pt1, 3, PINK); |
|
circle(drawImg, Point2f(pt2.x+img1.cols, pt2.y), 3, PINK); |
|
} |
|
// TODO add key point filter |
|
else*/ |
|
{ |
|
circle(drawImg, pt1, 3, BLUE); |
|
circle(drawImg, Point2f(pt2.x+img1.cols, pt2.y), 3, BLUE); |
|
line(drawImg, pt1, Point2f(pt2.x+img1.cols, pt2.y), BLUE); |
|
} |
|
} |
|
} |
|
} |
|
|
|
FeatureDetector* createDetector( const string& detectorType ) |
|
{ |
|
FeatureDetector* fd = 0; |
|
if( !detectorType.compare( "FAST" ) ) |
|
{ |
|
fd = new FastFeatureDetector( 1/*threshold*/, true/*nonmax_suppression*/ ); |
|
} |
|
else if( !detectorType.compare( "STAR" ) ) |
|
{ |
|
fd = new StarFeatureDetector( 16/*max_size*/, 30/*response_threshold*/, 10/*line_threshold_projected*/, |
|
8/*line_threshold_binarized*/, 5/*suppress_nonmax_size*/ ); |
|
} |
|
else if( !detectorType.compare( "SIFT" ) ) |
|
{ |
|
fd = new SiftFeatureDetector(SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(), |
|
SIFT::DetectorParams::GET_DEFAULT_EDGE_THRESHOLD()); |
|
} |
|
else if( !detectorType.compare( "SURF" ) ) |
|
{ |
|
fd = new SurfFeatureDetector( 400./*hessian_threshold*/, 3 /*octaves*/, 4/*octave_layers*/ ); |
|
} |
|
else if( !detectorType.compare( "MSER" ) ) |
|
{ |
|
fd = new MserFeatureDetector( 5/*delta*/, 60/*min_area*/, 14400/*_max_area*/, 0.25f/*max_variation*/, |
|
0.2/*min_diversity*/, 200/*max_evolution*/, 1.01/*area_threshold*/, 0.003/*min_margin*/, |
|
5/*edge_blur_size*/ ); |
|
} |
|
else if( !detectorType.compare( "GFTT" ) ) |
|
{ |
|
fd = new GoodFeaturesToTrackDetector( 1000/*maxCorners*/, 0.01/*qualityLevel*/, 1./*minDistance*/, |
|
3/*int _blockSize*/, true/*useHarrisDetector*/, 0.04/*k*/ ); |
|
} |
|
else |
|
fd = 0; |
|
|
|
return fd; |
|
} |
|
|
|
DescriptorExtractor* createDescExtractor( const string& descriptorType ) |
|
{ |
|
DescriptorExtractor* de = 0; |
|
if( !descriptorType.compare( "CALONDER" ) ) |
|
{ |
|
assert(0); |
|
//de = new CalonderDescriptorExtractor<float>(""); |
|
} |
|
else if( !descriptorType.compare( "SURF" ) ) |
|
{ |
|
de = new SurfDescriptorExtractor( 3/*octaves*/, 4/*octave_layers*/, false/*extended*/ ); |
|
} |
|
else |
|
de = 0; |
|
return de; |
|
} |
|
|
|
DescriptorMatcher* createDescMatcher( const string& matherType = string() ) |
|
{ |
|
return new BruteForceMatcher<L2<float> >(); |
|
} |
|
|
|
const string DETECTOR_TYPE_STR = "detector_type"; |
|
const string DESCRIPTOR_TYPE_STR = "descriptor_type"; |
|
|
|
const string winName = "correspondences"; |
|
|
|
void iter( Ptr<FeatureDetector> detector, Ptr<DescriptorExtractor> descriptor, |
|
const Mat& img1, float maxDist, Mat& transfMtr, RNG* rng = 0 ) |
|
{ |
|
if( transfMtr.empty() ) |
|
transfMtr = Mat::eye(3, 3, CV_32FC1); |
|
if( rng ) |
|
{ |
|
transfMtr.at<float>(0,0) = rng->uniform( 0.7f, 1.3f); |
|
transfMtr.at<float>(0,1) = rng->uniform(-0.2f, 0.2f); |
|
transfMtr.at<float>(0,2) = rng->uniform(-0.1f, 0.1f)*img1.cols; |
|
transfMtr.at<float>(1,0) = rng->uniform(-0.2f, 0.2f); |
|
transfMtr.at<float>(1,1) = rng->uniform( 0.7f, 1.3f); |
|
transfMtr.at<float>(1,2) = rng->uniform(-0.1f, 0.3f)*img1.rows; |
|
transfMtr.at<float>(2,0) = rng->uniform( -1e-4f, 1e-4f); |
|
transfMtr.at<float>(2,1) = rng->uniform( -1e-4f, 1e-4f); |
|
transfMtr.at<float>(2,2) = rng->uniform( 0.7f, 1.3f); |
|
} |
|
|
|
Mat img2; warpPerspective( img1, img2, transfMtr, img1.size() ); |
|
|
|
|
|
cout << endl << "< Extracting keypoints... "; |
|
vector<KeyPoint> keypoints1, keypoints2; |
|
detector->detect( img1, keypoints1 ); |
|
detector->detect( img2, keypoints2 ); |
|
cout << keypoints1.size() << " from first image and " << keypoints2.size() << " from second image >" << endl; |
|
if( keypoints1.empty() || keypoints2.empty() ) |
|
cout << "end" << endl; |
|
|
|
cout << "< Computing descriptors... "; |
|
Mat descs1, descs2; |
|
if( keypoints1.size()>0 && keypoints2.size()>0 ) |
|
{ |
|
descriptor->compute( img1, keypoints1, descs1 ); |
|
descriptor->compute( img2, keypoints2, descs2 ); |
|
} |
|
cout << ">" << endl; |
|
|
|
cout << "< Matching keypoints by descriptors... "; |
|
vector<int> matches; |
|
Ptr<DescriptorMatcher> matcher = createDescMatcher(); |
|
matcher->add( descs2 ); |
|
matcher->match( descs1, matches ); |
|
cout << ">" << endl; |
|
|
|
// TODO time |
|
|
|
Mat drawImg; |
|
drawCorrespondences( img1, img2, transfMtr, keypoints1, keypoints2, |
|
matches, maxDist, drawImg ); |
|
imshow( winName, drawImg); |
|
} |
|
|
|
Ptr<FeatureDetector> detector; |
|
Ptr<DescriptorExtractor> descriptor; |
|
Mat img1; |
|
Mat transfMtr; |
|
RNG rng; |
|
const float maxDistScale = 0.01f; |
|
int maxDist; |
|
|
|
void onMaxDistChange( int maxDist, void* ) |
|
{ |
|
float realMaxDist = maxDist*maxDistScale; |
|
cout << "maxDist " << realMaxDist << endl; |
|
iter( detector, descriptor, img1, realMaxDist, transfMtr ); |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
if( argc != 4 ) |
|
{ |
|
cout << "Format:" << endl; |
|
cout << "./" << argv[0] << " [detector_type] [descriptor_type] [image]" << endl; |
|
return 0; |
|
} |
|
|
|
cout << "< Creating detector, descriptor and matcher... "; |
|
detector = createDetector(argv[1]); |
|
descriptor = createDescExtractor(argv[2]); |
|
//Ptr<DescriptorMatcher> matcher = createDescMatcher(argv[3]); |
|
cout << ">" << endl; |
|
if( detector.empty() || descriptor.empty()/* || matcher.empty() */ ) |
|
{ |
|
cout << "Can not create detector or descriptor or matcher of given types" << endl; |
|
return 0; |
|
} |
|
|
|
cout << "< Reading the image... "; |
|
img1 = imread( argv[3], CV_LOAD_IMAGE_GRAYSCALE); |
|
cout << ">" << endl; |
|
if( img1.empty() ) |
|
{ |
|
cout << "Can not read image" << endl; |
|
return 0; |
|
} |
|
|
|
namedWindow(winName, 1); |
|
maxDist = 12; |
|
createTrackbar( "maxDist", winName, &maxDist, 100, onMaxDistChange ); |
|
|
|
onMaxDistChange(maxDist, 0); |
|
for(;;) |
|
{ |
|
char c = (char)cvWaitKey(0); |
|
if( c == '\x1b' ) // esc |
|
{ |
|
cout << "Exiting ..." << endl; |
|
return 0; |
|
} |
|
else if( c == 'n' ) |
|
iter(detector, descriptor, img1, maxDist*maxDistScale, transfMtr, &rng); |
|
} |
|
waitKey(0); |
|
}
|
|
|