Open Source Computer Vision Library
https://opencv.org/
178 lines
6.7 KiB
178 lines
6.7 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
/* |
|
FeatureDetector |
|
*/ |
|
struct MaskPredicate |
|
{ |
|
MaskPredicate( const Mat& _mask ) : mask(_mask) |
|
{} |
|
MaskPredicate& operator=(const MaskPredicate&) {} |
|
bool operator() (const KeyPoint& key_pt) const |
|
{ |
|
return mask.at<uchar>( (int)(key_pt.pt.y + 0.5f), (int)(key_pt.pt.x + 0.5f) ) != 0; |
|
} |
|
|
|
const Mat& mask; |
|
}; |
|
|
|
void FeatureDetector::removeInvalidPoints( const Mat& mask, vector<KeyPoint>& keypoints ) |
|
{ |
|
if( mask.empty() ) |
|
return; |
|
|
|
keypoints.erase(remove_if(keypoints.begin(), keypoints.end(), MaskPredicate(mask)), keypoints.end()); |
|
}; |
|
|
|
/* |
|
FastFeatureDetector |
|
*/ |
|
FastFeatureDetector::FastFeatureDetector( int _threshold, bool _nonmaxSuppression ) |
|
: threshold(_threshold), nonmaxSuppression(_nonmaxSuppression) |
|
{} |
|
|
|
void FastFeatureDetector::detectImpl( const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints) const |
|
{ |
|
FAST( image, keypoints, threshold, nonmaxSuppression ); |
|
removeInvalidPoints( mask, keypoints ); |
|
} |
|
|
|
/* |
|
GoodFeaturesToTrackDetector |
|
*/ |
|
GoodFeaturesToTrackDetector::GoodFeaturesToTrackDetector( int _maxCorners, double _qualityLevel, \ |
|
double _minDistance, int _blockSize, |
|
bool _useHarrisDetector, double _k ) |
|
: maxCorners(_maxCorners), qualityLevel(_qualityLevel), minDistance(_minDistance), |
|
blockSize(_blockSize), useHarrisDetector(_useHarrisDetector), k(_k) |
|
{} |
|
|
|
void GoodFeaturesToTrackDetector::detectImpl( const Mat& image, const Mat& mask, |
|
vector<KeyPoint>& keypoints ) const |
|
{ |
|
vector<Point2f> corners; |
|
goodFeaturesToTrack( image, corners, maxCorners, qualityLevel, minDistance, mask, |
|
blockSize, useHarrisDetector, k ); |
|
keypoints.resize(corners.size()); |
|
vector<Point2f>::const_iterator corner_it = corners.begin(); |
|
vector<KeyPoint>::iterator keypoint_it = keypoints.begin(); |
|
for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it ) |
|
{ |
|
*keypoint_it = KeyPoint( *corner_it, 1.f ); |
|
} |
|
} |
|
|
|
/* |
|
MserFeatureDetector |
|
*/ |
|
MserFeatureDetector::MserFeatureDetector( int delta, int minArea, int maxArea, |
|
float maxVariation, float minDiversity, |
|
int maxEvolution, double areaThreshold, |
|
double minMargin, int edgeBlurSize ) |
|
: mser( delta, minArea, maxArea, maxVariation, minDiversity, |
|
maxEvolution, areaThreshold, minMargin, edgeBlurSize ) |
|
{} |
|
|
|
void MserFeatureDetector::detectImpl( const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints ) const |
|
{ |
|
vector<vector<Point> > msers; |
|
mser(image, msers, mask); |
|
|
|
keypoints.resize( msers.size() ); |
|
vector<vector<Point> >::const_iterator contour_it = msers.begin(); |
|
vector<KeyPoint>::iterator keypoint_it = keypoints.begin(); |
|
for( ; contour_it != msers.end(); ++contour_it, ++keypoint_it ) |
|
{ |
|
RotatedRect rect = fitEllipse(Mat(*contour_it)); |
|
*keypoint_it = KeyPoint( rect.center, min(rect.size.height, rect.size.width), rect.angle); |
|
} |
|
} |
|
|
|
/* |
|
StarFeatureDetector |
|
*/ |
|
StarFeatureDetector::StarFeatureDetector(int maxSize, int responseThreshold, |
|
int lineThresholdProjected, |
|
int lineThresholdBinarized, |
|
int suppressNonmaxSize) |
|
: star( maxSize, responseThreshold, lineThresholdProjected, |
|
lineThresholdBinarized, suppressNonmaxSize) |
|
{} |
|
|
|
void StarFeatureDetector::detectImpl( const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints) const |
|
{ |
|
star(image, keypoints); |
|
removeInvalidPoints(mask, keypoints); |
|
} |
|
|
|
/* |
|
SiftFeatureDetector |
|
*/ |
|
SiftFeatureDetector::SiftFeatureDetector(double threshold, double edgeThreshold, |
|
int nOctaves, int nOctaveLayers, int firstOctave, int angleMode) : |
|
sift(threshold, edgeThreshold, nOctaves, nOctaveLayers, firstOctave, angleMode) |
|
{ |
|
} |
|
|
|
void SiftFeatureDetector::detectImpl( const Mat& image, const Mat& mask, |
|
vector<KeyPoint>& keypoints) const |
|
{ |
|
sift(image, mask, keypoints); |
|
} |
|
|
|
/* |
|
SurfFeatureDetector |
|
*/ |
|
SurfFeatureDetector::SurfFeatureDetector( double hessianThreshold, int octaves, int octaveLayers) |
|
: surf(hessianThreshold, octaves, octaveLayers) |
|
{} |
|
|
|
void SurfFeatureDetector::detectImpl( const Mat& image, const Mat& mask, |
|
vector<KeyPoint>& keypoints) const |
|
{ |
|
surf(image, mask, keypoints); |
|
}
|
|
|