Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
603 lines
21 KiB
603 lines
21 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#if !defined (HAVE_CUDA) |
|
|
|
cv::softcascade::SCascade::SCascade(const double, const double, const int, const int) { throw_no_cuda(); } |
|
|
|
cv::softcascade::SCascade::~SCascade() { throw_no_cuda(); } |
|
|
|
bool cv::softcascade::SCascade::load(const FileNode&) { throw_no_cuda(); return false;} |
|
|
|
void cv::softcascade::SCascade::detect(InputArray, InputArray, OutputArray, cv::gpu::Stream&) const { throw_no_cuda(); } |
|
|
|
void cv::softcascade::SCascade::read(const FileNode& fn) { Algorithm::read(fn); } |
|
|
|
cv::softcascade::ChannelsProcessor::ChannelsProcessor() { throw_no_cuda(); } |
|
cv::softcascade::ChannelsProcessor::~ChannelsProcessor() { throw_no_cuda(); } |
|
|
|
cv::Ptr<cv::softcascade::ChannelsProcessor> cv::softcascade::ChannelsProcessor::create(const int, const int, const int) |
|
{ throw_no_cuda(); return cv::Ptr<cv::softcascade::ChannelsProcessor>(); } |
|
|
|
#else |
|
|
|
# include "cuda_invoker.hpp" |
|
|
|
cv::softcascade::cudev::Level::Level(int idx, const Octave& oct, const float scale, const int w, const int h) |
|
: octave(idx), step(oct.stages), relScale(scale / oct.scale) |
|
{ |
|
workRect.x = (unsigned char)cvRound(w / (float)oct.shrinkage); |
|
workRect.y = (unsigned char)cvRound(h / (float)oct.shrinkage); |
|
|
|
objSize.x = cv::saturate_cast<uchar>(oct.size.x * relScale); |
|
objSize.y = cv::saturate_cast<uchar>(oct.size.y * relScale); |
|
|
|
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers |
|
if (fabs(relScale - 1.f) < FLT_EPSILON) |
|
scaling[0] = scaling[1] = 1.f; |
|
else |
|
{ |
|
scaling[0] = (relScale < 1.f) ? 0.89f * ::pow(relScale, 1.099f / ::log(2.0f)) : 1.f; |
|
scaling[1] = relScale * relScale; |
|
} |
|
} |
|
|
|
namespace cv { namespace softcascade { namespace cudev { |
|
|
|
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle, |
|
const int fw, const int fh, const int bins, cudaStream_t stream); |
|
|
|
void suppress(const cv::gpu::PtrStepSzb& objects, cv::gpu::PtrStepSzb overlaps, cv::gpu::PtrStepSzi ndetections, |
|
cv::gpu::PtrStepSzb suppressed, cudaStream_t stream); |
|
|
|
void bgr2Luv(const cv::gpu::PtrStepSzb& bgr, cv::gpu::PtrStepSzb luv); |
|
void transform(const cv::gpu::PtrStepSz<uchar3>& bgr, cv::gpu::PtrStepSzb gray); |
|
void gray2hog(const cv::gpu::PtrStepSzb& gray, cv::gpu::PtrStepSzb mag, const int bins); |
|
void shrink(const cv::gpu::PtrStepSzb& channels, cv::gpu::PtrStepSzb shrunk); |
|
|
|
void shfl_integral(const cv::gpu::PtrStepSzb& img, cv::gpu::PtrStepSz<unsigned int> integral, cudaStream_t stream); |
|
}}} |
|
|
|
struct cv::softcascade::SCascade::Fields |
|
{ |
|
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs, const int totals, const int method) |
|
{ |
|
static const char *const SC_STAGE_TYPE = "stageType"; |
|
static const char *const SC_BOOST = "BOOST"; |
|
static const char *const SC_FEATURE_TYPE = "featureType"; |
|
static const char *const SC_ICF = "ICF"; |
|
static const char *const SC_ORIG_W = "width"; |
|
static const char *const SC_ORIG_H = "height"; |
|
static const char *const SC_FEATURE_FORMAT = "featureFormat"; |
|
static const char *const SC_SHRINKAGE = "shrinkage"; |
|
static const char *const SC_OCTAVES = "octaves"; |
|
static const char *const SC_OCT_SCALE = "scale"; |
|
static const char *const SC_OCT_WEAKS = "weaks"; |
|
static const char *const SC_TREES = "trees"; |
|
static const char *const SC_WEAK_THRESHOLD = "treeThreshold"; |
|
static const char *const SC_FEATURES = "features"; |
|
static const char *const SC_INTERNAL = "internalNodes"; |
|
static const char *const SC_LEAF = "leafValues"; |
|
static const char *const SC_F_CHANNEL = "channel"; |
|
static const char *const SC_F_RECT = "rect"; |
|
|
|
// only Ada Boost supported |
|
String stageTypeStr = (String)root[SC_STAGE_TYPE]; |
|
CV_Assert(stageTypeStr == SC_BOOST); |
|
|
|
// only HOG-like integral channel features supported |
|
String featureTypeStr = (String)root[SC_FEATURE_TYPE]; |
|
CV_Assert(featureTypeStr == SC_ICF); |
|
|
|
int origWidth = (int)root[SC_ORIG_W]; |
|
int origHeight = (int)root[SC_ORIG_H]; |
|
|
|
String fformat = (String)root[SC_FEATURE_FORMAT]; |
|
bool useBoxes = (fformat == "BOX"); |
|
ushort shrinkage = cv::saturate_cast<ushort>((int)root[SC_SHRINKAGE]); |
|
|
|
FileNode fn = root[SC_OCTAVES]; |
|
if (fn.empty()) return 0; |
|
|
|
std::vector<cudev::Octave> voctaves; |
|
std::vector<float> vstages; |
|
std::vector<cudev::Node> vnodes; |
|
std::vector<float> vleaves; |
|
|
|
FileNodeIterator it = fn.begin(), it_end = fn.end(); |
|
for (ushort octIndex = 0; it != it_end; ++it, ++octIndex) |
|
{ |
|
FileNode fns = *it; |
|
float scale = powf(2.f,saturate_cast<float>((int)fns[SC_OCT_SCALE])); |
|
bool isUPOctave = scale >= 1; |
|
|
|
ushort nweaks = saturate_cast<ushort>((int)fns[SC_OCT_WEAKS]); |
|
|
|
ushort2 size; |
|
size.x = (unsigned short)cvRound(origWidth * scale); |
|
size.y = (unsigned short)cvRound(origHeight * scale); |
|
|
|
cudev::Octave octave(octIndex, nweaks, shrinkage, size, scale); |
|
CV_Assert(octave.stages > 0); |
|
voctaves.push_back(octave); |
|
|
|
FileNode ffs = fns[SC_FEATURES]; |
|
if (ffs.empty()) return 0; |
|
|
|
std::vector<cv::Rect> feature_rects; |
|
std::vector<int> feature_channels; |
|
|
|
FileNodeIterator ftrs = ffs.begin(), ftrs_end = ffs.end(); |
|
int feature_offset = 0; |
|
for (; ftrs != ftrs_end; ++ftrs, ++feature_offset ) |
|
{ |
|
cv::FileNode ftn = (*ftrs)[SC_F_RECT]; |
|
cv::FileNodeIterator r_it = ftn.begin(); |
|
int x = (int)*(r_it++); |
|
int y = (int)*(r_it++); |
|
int w = (int)*(r_it++); |
|
int h = (int)*(r_it++); |
|
|
|
if (useBoxes) |
|
{ |
|
if (isUPOctave) |
|
{ |
|
w -= x; |
|
h -= y; |
|
} |
|
} |
|
else |
|
{ |
|
if (!isUPOctave) |
|
{ |
|
w += x; |
|
h += y; |
|
} |
|
} |
|
feature_rects.push_back(cv::Rect(x, y, w, h)); |
|
feature_channels.push_back((int)(*ftrs)[SC_F_CHANNEL]); |
|
} |
|
|
|
fns = fns[SC_TREES]; |
|
if (fn.empty()) return 0; |
|
|
|
// for each stage (~ decision tree with H = 2) |
|
FileNodeIterator st = fns.begin(), st_end = fns.end(); |
|
for (; st != st_end; ++st ) |
|
{ |
|
FileNode octfn = *st; |
|
float threshold = (float)octfn[SC_WEAK_THRESHOLD]; |
|
vstages.push_back(threshold); |
|
|
|
FileNode intfns = octfn[SC_INTERNAL]; |
|
FileNodeIterator inIt = intfns.begin(), inIt_end = intfns.end(); |
|
for (; inIt != inIt_end;) |
|
{ |
|
inIt +=2; |
|
int featureIdx = (int)(*(inIt++)); |
|
|
|
float orig_threshold = (float)(*(inIt++)); |
|
unsigned int th = saturate_cast<unsigned int>((int)orig_threshold); |
|
cv::Rect& r = feature_rects[featureIdx]; |
|
uchar4 rect; |
|
rect.x = saturate_cast<uchar>(r.x); |
|
rect.y = saturate_cast<uchar>(r.y); |
|
rect.z = saturate_cast<uchar>(r.width); |
|
rect.w = saturate_cast<uchar>(r.height); |
|
|
|
unsigned int channel = saturate_cast<unsigned int>(feature_channels[featureIdx]); |
|
vnodes.push_back(cudev::Node(rect, channel, th)); |
|
} |
|
|
|
intfns = octfn[SC_LEAF]; |
|
inIt = intfns.begin(), inIt_end = intfns.end(); |
|
for (; inIt != inIt_end; ++inIt) |
|
{ |
|
vleaves.push_back((float)(*inIt)); |
|
} |
|
} |
|
} |
|
|
|
cv::Mat hoctaves(1, (int) (voctaves.size() * sizeof(cudev::Octave)), CV_8UC1, (uchar*)&(voctaves[0])); |
|
CV_Assert(!hoctaves.empty()); |
|
|
|
cv::Mat hstages(cv::Mat(vstages).reshape(1,1)); |
|
CV_Assert(!hstages.empty()); |
|
|
|
cv::Mat hnodes(1, (int) (vnodes.size() * sizeof(cudev::Node)), CV_8UC1, (uchar*)&(vnodes[0]) ); |
|
CV_Assert(!hnodes.empty()); |
|
|
|
cv::Mat hleaves(cv::Mat(vleaves).reshape(1,1)); |
|
CV_Assert(!hleaves.empty()); |
|
|
|
Fields* fields = new Fields(mins, maxs, totals, origWidth, origHeight, shrinkage, 0, |
|
hoctaves, hstages, hnodes, hleaves, method); |
|
fields->voctaves = voctaves; |
|
fields->createLevels(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH); |
|
|
|
return fields; |
|
} |
|
|
|
bool check(float mins,float maxs, int scales) |
|
{ |
|
bool updated = ((minScale == mins) || (maxScale == maxs) || (totals == scales)); |
|
|
|
minScale = mins; |
|
maxScale = maxScale; |
|
totals = scales; |
|
|
|
return updated; |
|
} |
|
|
|
int createLevels(const int fh, const int fw) |
|
{ |
|
std::vector<cudev::Level> vlevels; |
|
float logFactor = (::log(maxScale) - ::log(minScale)) / (totals -1); |
|
|
|
float scale = minScale; |
|
int dcs = 0; |
|
for (int sc = 0; sc < totals; ++sc) |
|
{ |
|
int width = (int)::std::max(0.0f, fw - (origObjWidth * scale)); |
|
int height = (int)::std::max(0.0f, fh - (origObjHeight * scale)); |
|
|
|
float logScale = ::log(scale); |
|
int fit = fitOctave(voctaves, logScale); |
|
|
|
cudev::Level level(fit, voctaves[fit], scale, width, height); |
|
|
|
if (!width || !height) |
|
break; |
|
else |
|
{ |
|
vlevels.push_back(level); |
|
if (voctaves[fit].scale < 1) ++dcs; |
|
} |
|
|
|
if (::fabs(scale - maxScale) < FLT_EPSILON) break; |
|
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor)); |
|
} |
|
|
|
cv::Mat hlevels = cv::Mat(1, (int) (vlevels.size() * sizeof(cudev::Level)), CV_8UC1, (uchar*)&(vlevels[0]) ); |
|
CV_Assert(!hlevels.empty()); |
|
levels.upload(hlevels); |
|
downscales = dcs; |
|
return dcs; |
|
} |
|
|
|
bool update(int fh, int fw, int shr) |
|
{ |
|
shrunk.create(fh / shr * HOG_LUV_BINS, fw / shr, CV_8UC1); |
|
integralBuffer.create(shrunk.rows, shrunk.cols, CV_32SC1); |
|
|
|
hogluv.create((fh / shr) * HOG_LUV_BINS + 1, fw / shr + 1, CV_32SC1); |
|
hogluv.setTo(cv::Scalar::all(0)); |
|
|
|
overlaps.create(1, 5000, CV_8UC1); |
|
suppressed.create(1, sizeof(Detection) * 51, CV_8UC1); |
|
|
|
return true; |
|
} |
|
|
|
Fields( const float mins, const float maxs, const int tts, const int ow, const int oh, const int shr, const int ds, |
|
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves, int method) |
|
: minScale(mins), maxScale(maxs), totals(tts), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds) |
|
{ |
|
update(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH, shr); |
|
octaves.upload(hoctaves); |
|
stages.upload(hstages); |
|
nodes.upload(hnodes); |
|
leaves.upload(hleaves); |
|
|
|
preprocessor = ChannelsProcessor::create(shrinkage, 6, method); |
|
} |
|
|
|
void detect(cv::gpu::GpuMat& objects, cv::gpu::Stream& s) const |
|
{ |
|
objects.setTo(Scalar::all(0), s); |
|
|
|
cudaSafeCall( cudaGetLastError()); |
|
|
|
cudev::CascadeInvoker<cudev::GK107PolicyX4> invoker |
|
= cudev::CascadeInvoker<cudev::GK107PolicyX4>(levels, stages, nodes, leaves); |
|
|
|
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s); |
|
invoker(mask, hogluv, objects, downscales, stream); |
|
} |
|
|
|
void suppress(cv::gpu::GpuMat& objects, cv::gpu::Stream& s) |
|
{ |
|
cv::gpu::GpuMat ndetections = cv::gpu::GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1)); |
|
ensureSizeIsEnough(objects.rows, objects.cols, CV_8UC1, overlaps); |
|
|
|
overlaps.setTo(0, s); |
|
suppressed.setTo(0, s); |
|
|
|
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s); |
|
cudev::suppress(objects, overlaps, ndetections, suppressed, stream); |
|
} |
|
|
|
private: |
|
|
|
typedef std::vector<cudev::Octave>::const_iterator octIt_t; |
|
static int fitOctave(const std::vector<cudev::Octave>& octs, const float& logFactor) |
|
{ |
|
float minAbsLog = FLT_MAX; |
|
int res = 0; |
|
for (int oct = 0; oct < (int)octs.size(); ++oct) |
|
{ |
|
const cudev::Octave& octave =octs[oct]; |
|
float logOctave = ::log(octave.scale); |
|
float logAbsScale = ::fabs(logFactor - logOctave); |
|
|
|
if(logAbsScale < minAbsLog) |
|
{ |
|
res = oct; |
|
minAbsLog = logAbsScale; |
|
} |
|
} |
|
return res; |
|
} |
|
|
|
public: |
|
|
|
cv::Ptr<ChannelsProcessor> preprocessor; |
|
|
|
// scales range |
|
float minScale; |
|
float maxScale; |
|
|
|
int totals; |
|
|
|
int origObjWidth; |
|
int origObjHeight; |
|
|
|
const int shrinkage; |
|
int downscales; |
|
|
|
|
|
// 160x120x10 |
|
cv::gpu::GpuMat shrunk; |
|
|
|
// temporal mat for integral |
|
cv::gpu::GpuMat integralBuffer; |
|
|
|
// 161x121x10 |
|
cv::gpu::GpuMat hogluv; |
|
|
|
|
|
// used for suppression |
|
cv::gpu::GpuMat suppressed; |
|
// used for area overlap computing during |
|
cv::gpu::GpuMat overlaps; |
|
|
|
|
|
// Cascade from xml |
|
cv::gpu::GpuMat octaves; |
|
cv::gpu::GpuMat stages; |
|
cv::gpu::GpuMat nodes; |
|
cv::gpu::GpuMat leaves; |
|
cv::gpu::GpuMat levels; |
|
|
|
|
|
// For ROI |
|
cv::gpu::GpuMat mask; |
|
cv::gpu::GpuMat genRoiTmp; |
|
|
|
// cv::gpu::GpuMat collected; |
|
|
|
|
|
std::vector<cudev::Octave> voctaves; |
|
|
|
// DeviceInfo info; |
|
|
|
enum { BOOST = 0 }; |
|
enum |
|
{ |
|
DEFAULT_FRAME_WIDTH = 640, |
|
DEFAULT_FRAME_HEIGHT = 480, |
|
HOG_LUV_BINS = 10 |
|
}; |
|
|
|
private: |
|
cv::softcascade::SCascade::Fields& operator=( const cv::softcascade::SCascade::Fields & ); |
|
}; |
|
|
|
cv::softcascade::SCascade::SCascade(const double mins, const double maxs, const int sc, const int fl) |
|
: fields(0), minScale(mins), maxScale(maxs), scales(sc), flags(fl) {} |
|
|
|
cv::softcascade::SCascade::~SCascade() { delete fields; } |
|
|
|
bool cv::softcascade::SCascade::load(const FileNode& fn) |
|
{ |
|
if (fields) delete fields; |
|
fields = Fields::parseCascade(fn, (float)minScale, (float)maxScale, scales, flags); |
|
return fields != 0; |
|
} |
|
|
|
namespace { |
|
|
|
void integral(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& sum, cv::gpu::GpuMat& buffer, cv::gpu::Stream& s) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1); |
|
|
|
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s); |
|
|
|
cv::Size whole; |
|
cv::Point offset; |
|
|
|
src.locateROI(whole, offset); |
|
|
|
if (cv::gpu::deviceSupports(cv::gpu::WARP_SHUFFLE_FUNCTIONS) && src.cols <= 2048 |
|
&& offset.x % 16 == 0 && ((src.cols + 63) / 64) * 64 <= (static_cast<int>(src.step) - offset.x)) |
|
{ |
|
ensureSizeIsEnough(((src.rows + 7) / 8) * 8, ((src.cols + 63) / 64) * 64, CV_32SC1, buffer); |
|
|
|
cv::softcascade::cudev::shfl_integral(src, buffer, stream); |
|
|
|
sum.create(src.rows + 1, src.cols + 1, CV_32SC1); |
|
sum.setTo(cv::Scalar::all(0), s); |
|
|
|
cv::gpu::GpuMat inner = sum(cv::Rect(1, 1, src.cols, src.rows)); |
|
cv::gpu::GpuMat res = buffer(cv::Rect(0, 0, src.cols, src.rows)); |
|
|
|
res.copyTo(inner, s); |
|
} |
|
else {CV_Error(cv::Error::GpuNotSupported, ": CC 3.x required.");} |
|
} |
|
|
|
} |
|
|
|
void cv::softcascade::SCascade::detect(InputArray _image, InputArray _rois, OutputArray _objects, cv::gpu::Stream& s) const |
|
{ |
|
CV_Assert(fields); |
|
|
|
// only color images and precomputed integrals are supported |
|
int type = _image.type(); |
|
CV_Assert(type == CV_8UC3 || type == CV_32SC1 || (!_rois.empty())); |
|
|
|
const cv::gpu::GpuMat image = _image.getGpuMat(); |
|
|
|
if (_objects.empty()) _objects.create(1, 4096 * sizeof(Detection), CV_8UC1); |
|
|
|
cv::gpu::GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat(); |
|
|
|
/// roi |
|
Fields& flds = *fields; |
|
int shr = flds.shrinkage; |
|
|
|
flds.mask.create( rois.cols / shr, rois.rows / shr, rois.type()); |
|
|
|
cudev::shrink(rois, flds.mask); |
|
//cv::gpu::transpose(flds.genRoiTmp, flds.mask, s); |
|
|
|
if (type == CV_8UC3) |
|
{ |
|
flds.update(image.rows, image.cols, flds.shrinkage); |
|
|
|
if (flds.check((float)minScale, (float)maxScale, scales)) |
|
flds.createLevels(image.rows, image.cols); |
|
|
|
flds.preprocessor->apply(image, flds.shrunk); |
|
::integral(flds.shrunk, flds.hogluv, flds.integralBuffer, s); |
|
} |
|
else |
|
{ |
|
image.copyTo(flds.hogluv, s); |
|
} |
|
|
|
flds.detect(objects, s); |
|
|
|
if ( (flags && NMS_MASK) != NO_REJECT) |
|
{ |
|
cv::gpu::GpuMat spr(objects, cv::Rect(0, 0, flds.suppressed.cols, flds.suppressed.rows)); |
|
flds.suppress(objects, s); |
|
flds.suppressed.copyTo(spr); |
|
} |
|
} |
|
|
|
void cv::softcascade::SCascade::read(const FileNode& fn) |
|
{ |
|
Algorithm::read(fn); |
|
} |
|
|
|
namespace { |
|
|
|
using cv::InputArray; |
|
using cv::OutputArray; |
|
using cv::gpu::Stream; |
|
using cv::gpu::GpuMat; |
|
|
|
inline void setZero(cv::gpu::GpuMat& m, cv::gpu::Stream& s) |
|
{ |
|
m.setTo(0, s); |
|
} |
|
|
|
struct SeparablePreprocessor : public cv::softcascade::ChannelsProcessor |
|
{ |
|
SeparablePreprocessor(const int s, const int b) : cv::softcascade::ChannelsProcessor(), shrinkage(s), bins(b) {} |
|
virtual ~SeparablePreprocessor() {} |
|
|
|
virtual void apply(InputArray _frame, OutputArray _shrunk, cv::gpu::Stream& s = cv::gpu::Stream::Null()) |
|
{ |
|
bgr = _frame.getGpuMat(); |
|
//cv::gpu::GaussianBlur(frame, bgr, cv::Size(3, 3), -1.0); |
|
|
|
_shrunk.create(bgr.rows * (4 + bins) / shrinkage, bgr.cols / shrinkage, CV_8UC1); |
|
cv::gpu::GpuMat shrunk = _shrunk.getGpuMat(); |
|
|
|
channels.create(bgr.rows * (4 + bins), bgr.cols, CV_8UC1); |
|
setZero(channels, s); |
|
|
|
gray.create(bgr.size(), CV_8UC1); |
|
cv::softcascade::cudev::transform(bgr, gray); //cv::gpu::cvtColor(bgr, gray, CV_BGR2GRAY); |
|
cv::softcascade::cudev::gray2hog(gray, channels(cv::Rect(0, 0, bgr.cols, bgr.rows * (bins + 1))), bins); |
|
|
|
cv::gpu::GpuMat luv(channels, cv::Rect(0, bgr.rows * (bins + 1), bgr.cols, bgr.rows * 3)); |
|
cv::softcascade::cudev::bgr2Luv(bgr, luv); |
|
cv::softcascade::cudev::shrink(channels, shrunk); |
|
} |
|
|
|
private: |
|
const int shrinkage; |
|
const int bins; |
|
|
|
cv::gpu::GpuMat bgr; |
|
cv::gpu::GpuMat gray; |
|
cv::gpu::GpuMat channels; |
|
SeparablePreprocessor& operator=( const SeparablePreprocessor& ); |
|
}; |
|
|
|
} |
|
|
|
cv::Ptr<cv::softcascade::ChannelsProcessor> cv::softcascade::ChannelsProcessor::create(const int s, const int b, const int m) |
|
{ |
|
CV_Assert((m && SEPARABLE)); |
|
return makePtr<SeparablePreprocessor>(s, b); |
|
} |
|
|
|
cv::softcascade::ChannelsProcessor::ChannelsProcessor() { } |
|
cv::softcascade::ChannelsProcessor::~ChannelsProcessor() { } |
|
|
|
#endif
|
|
|