mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
728 lines
23 KiB
728 lines
23 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#if 0 |
|
|
|
ML_IMPL int |
|
icvCmpIntegers (const void* a, const void* b) {return *(const int*)a - *(const int*)b;} |
|
|
|
/****************************************************************************************\ |
|
* Cross-validation algorithms realizations * |
|
\****************************************************************************************/ |
|
|
|
// Return pointer to trainIdx. Function DOES NOT FILL this matrix! |
|
ML_IMPL |
|
const CvMat* cvCrossValGetTrainIdxMatrix (const CvStatModel* estimateModel) |
|
{ |
|
CvMat* result = NULL; |
|
|
|
CV_FUNCNAME ("cvCrossValGetTrainIdxMatrix"); |
|
__BEGIN__ |
|
|
|
if (!CV_IS_CROSSVAL(estimateModel)) |
|
{ |
|
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); |
|
} |
|
|
|
result = ((CvCrossValidationModel*)estimateModel)->sampleIdxTrain; |
|
|
|
__END__ |
|
|
|
return result; |
|
} // End of cvCrossValGetTrainIdxMatrix |
|
|
|
/****************************************************************************************/ |
|
// Return pointer to checkIdx. Function DOES NOT FILL this matrix! |
|
ML_IMPL |
|
const CvMat* cvCrossValGetCheckIdxMatrix (const CvStatModel* estimateModel) |
|
{ |
|
CvMat* result = NULL; |
|
|
|
CV_FUNCNAME ("cvCrossValGetCheckIdxMatrix"); |
|
__BEGIN__ |
|
|
|
if (!CV_IS_CROSSVAL (estimateModel)) |
|
{ |
|
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); |
|
} |
|
|
|
result = ((CvCrossValidationModel*)estimateModel)->sampleIdxEval; |
|
|
|
__END__ |
|
|
|
return result; |
|
} // End of cvCrossValGetCheckIdxMatrix |
|
|
|
/****************************************************************************************/ |
|
// Create new Idx-matrix for next classifiers training and return code of result. |
|
// Result is 0 if function can't make next step (error input or folds are finished), |
|
// it is 1 if all was correct, and it is 2 if current fold wasn't' checked. |
|
ML_IMPL |
|
int cvCrossValNextStep (CvStatModel* estimateModel) |
|
{ |
|
int result = 0; |
|
|
|
CV_FUNCNAME ("cvCrossValGetNextTrainIdx"); |
|
__BEGIN__ |
|
|
|
CvCrossValidationModel* crVal = (CvCrossValidationModel*) estimateModel; |
|
int k, fold; |
|
|
|
if (!CV_IS_CROSSVAL (estimateModel)) |
|
{ |
|
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); |
|
} |
|
|
|
fold = ++crVal->current_fold; |
|
|
|
if (fold >= crVal->folds_all) |
|
{ |
|
if (fold == crVal->folds_all) |
|
EXIT; |
|
else |
|
{ |
|
CV_ERROR (CV_StsInternal, "All iterations has end long ago"); |
|
} |
|
} |
|
|
|
k = crVal->folds[fold + 1] - crVal->folds[fold]; |
|
crVal->sampleIdxTrain->data.i = crVal->sampleIdxAll + crVal->folds[fold + 1]; |
|
crVal->sampleIdxTrain->cols = crVal->samples_all - k; |
|
crVal->sampleIdxEval->data.i = crVal->sampleIdxAll + crVal->folds[fold]; |
|
crVal->sampleIdxEval->cols = k; |
|
|
|
if (crVal->is_checked) |
|
{ |
|
crVal->is_checked = 0; |
|
result = 1; |
|
} |
|
else |
|
{ |
|
result = 2; |
|
} |
|
|
|
__END__ |
|
|
|
return result; |
|
} |
|
|
|
/****************************************************************************************/ |
|
// Do checking part of loop of cross-validations metod. |
|
ML_IMPL |
|
void cvCrossValCheckClassifier (CvStatModel* estimateModel, |
|
const CvStatModel* model, |
|
const CvMat* trainData, |
|
int sample_t_flag, |
|
const CvMat* trainClasses) |
|
{ |
|
CV_FUNCNAME ("cvCrossValCheckClassifier "); |
|
__BEGIN__ |
|
|
|
CvCrossValidationModel* crVal = (CvCrossValidationModel*) estimateModel; |
|
int i, j, k; |
|
int* data; |
|
float* responses_fl; |
|
int step; |
|
float* responses_result; |
|
int* responses_i; |
|
double te, te1; |
|
double sum_c, sum_p, sum_pp, sum_cp, sum_cc, sq_err; |
|
|
|
// Check input data to correct values. |
|
if (!CV_IS_CROSSVAL (estimateModel)) |
|
{ |
|
CV_ERROR (CV_StsBadArg,"First parameter point to not CvCrossValidationModel"); |
|
} |
|
if (!CV_IS_STAT_MODEL (model)) |
|
{ |
|
CV_ERROR (CV_StsBadArg, "Second parameter point to not CvStatModel"); |
|
} |
|
if (!CV_IS_MAT (trainData)) |
|
{ |
|
CV_ERROR (CV_StsBadArg, "Third parameter point to not CvMat"); |
|
} |
|
if (!CV_IS_MAT (trainClasses)) |
|
{ |
|
CV_ERROR (CV_StsBadArg, "Fifth parameter point to not CvMat"); |
|
} |
|
if (crVal->is_checked) |
|
{ |
|
CV_ERROR (CV_StsInternal, "This iterations already was checked"); |
|
} |
|
|
|
// Initialize. |
|
k = crVal->sampleIdxEval->cols; |
|
data = crVal->sampleIdxEval->data.i; |
|
|
|
// Eval tested feature vectors. |
|
CV_CALL (cvStatModelMultiPredict (model, trainData, sample_t_flag, |
|
crVal->predict_results, NULL, crVal->sampleIdxEval)); |
|
// Count number if correct results. |
|
responses_result = crVal->predict_results->data.fl; |
|
if (crVal->is_regression) |
|
{ |
|
sum_c = sum_p = sum_pp = sum_cp = sum_cc = sq_err = 0; |
|
if (CV_MAT_TYPE (trainClasses->type) == CV_32FC1) |
|
{ |
|
responses_fl = trainClasses->data.fl; |
|
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(float); |
|
for (i = 0; i < k; i++) |
|
{ |
|
te = responses_result[*data]; |
|
te1 = responses_fl[*data * step]; |
|
sum_c += te1; |
|
sum_p += te; |
|
sum_cc += te1 * te1; |
|
sum_pp += te * te; |
|
sum_cp += te1 * te; |
|
te -= te1; |
|
sq_err += te * te; |
|
|
|
data++; |
|
} |
|
} |
|
else |
|
{ |
|
responses_i = trainClasses->data.i; |
|
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(int); |
|
for (i = 0; i < k; i++) |
|
{ |
|
te = responses_result[*data]; |
|
te1 = responses_i[*data * step]; |
|
sum_c += te1; |
|
sum_p += te; |
|
sum_cc += te1 * te1; |
|
sum_pp += te * te; |
|
sum_cp += te1 * te; |
|
te -= te1; |
|
sq_err += te * te; |
|
|
|
data++; |
|
} |
|
} |
|
// Fixing new internal values of accuracy. |
|
crVal->sum_correct += sum_c; |
|
crVal->sum_predict += sum_p; |
|
crVal->sum_cc += sum_cc; |
|
crVal->sum_pp += sum_pp; |
|
crVal->sum_cp += sum_cp; |
|
crVal->sq_error += sq_err; |
|
} |
|
else |
|
{ |
|
if (CV_MAT_TYPE (trainClasses->type) == CV_32FC1) |
|
{ |
|
responses_fl = trainClasses->data.fl; |
|
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(float); |
|
for (i = 0, j = 0; i < k; i++) |
|
{ |
|
if (cvRound (responses_result[*data]) == cvRound (responses_fl[*data * step])) |
|
j++; |
|
data++; |
|
} |
|
} |
|
else |
|
{ |
|
responses_i = trainClasses->data.i; |
|
step = trainClasses->rows == 1 ? 1 : trainClasses->step / sizeof(int); |
|
for (i = 0, j = 0; i < k; i++) |
|
{ |
|
if (cvRound (responses_result[*data]) == responses_i[*data * step]) |
|
j++; |
|
data++; |
|
} |
|
} |
|
// Fixing new internal values of accuracy. |
|
crVal->correct_results += j; |
|
} |
|
// Fixing that this fold already checked. |
|
crVal->all_results += k; |
|
crVal->is_checked = 1; |
|
|
|
__END__ |
|
} // End of cvCrossValCheckClassifier |
|
|
|
/****************************************************************************************/ |
|
// Return current accuracy. |
|
ML_IMPL |
|
float cvCrossValGetResult (const CvStatModel* estimateModel, |
|
float* correlation) |
|
{ |
|
float result = 0; |
|
|
|
CV_FUNCNAME ("cvCrossValGetResult"); |
|
__BEGIN__ |
|
|
|
double te, te1; |
|
CvCrossValidationModel* crVal = (CvCrossValidationModel*)estimateModel; |
|
|
|
if (!CV_IS_CROSSVAL (estimateModel)) |
|
{ |
|
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); |
|
} |
|
|
|
if (crVal->all_results) |
|
{ |
|
if (crVal->is_regression) |
|
{ |
|
result = ((float)crVal->sq_error) / crVal->all_results; |
|
if (correlation) |
|
{ |
|
te = crVal->all_results * crVal->sum_cp - |
|
crVal->sum_correct * crVal->sum_predict; |
|
te *= te; |
|
te1 = (crVal->all_results * crVal->sum_cc - |
|
crVal->sum_correct * crVal->sum_correct) * |
|
(crVal->all_results * crVal->sum_pp - |
|
crVal->sum_predict * crVal->sum_predict); |
|
*correlation = (float)(te / te1); |
|
|
|
} |
|
} |
|
else |
|
{ |
|
result = ((float)crVal->correct_results) / crVal->all_results; |
|
} |
|
} |
|
|
|
__END__ |
|
|
|
return result; |
|
} |
|
|
|
/****************************************************************************************/ |
|
// Reset cross-validation EstimateModel to state the same as it was immidiatly after |
|
// its creating. |
|
ML_IMPL |
|
void cvCrossValReset (CvStatModel* estimateModel) |
|
{ |
|
CV_FUNCNAME ("cvCrossValReset"); |
|
__BEGIN__ |
|
|
|
CvCrossValidationModel* crVal = (CvCrossValidationModel*)estimateModel; |
|
|
|
if (!CV_IS_CROSSVAL (estimateModel)) |
|
{ |
|
CV_ERROR (CV_StsBadArg, "Pointer point to not CvCrossValidationModel"); |
|
} |
|
|
|
crVal->current_fold = -1; |
|
crVal->is_checked = 1; |
|
crVal->all_results = 0; |
|
crVal->correct_results = 0; |
|
crVal->sq_error = 0; |
|
crVal->sum_correct = 0; |
|
crVal->sum_predict = 0; |
|
crVal->sum_cc = 0; |
|
crVal->sum_pp = 0; |
|
crVal->sum_cp = 0; |
|
|
|
__END__ |
|
} |
|
|
|
/****************************************************************************************/ |
|
// This function is standart CvStatModel field to release cross-validation EstimateModel. |
|
ML_IMPL |
|
void cvReleaseCrossValidationModel (CvStatModel** model) |
|
{ |
|
CvCrossValidationModel* pModel; |
|
|
|
CV_FUNCNAME ("cvReleaseCrossValidationModel"); |
|
__BEGIN__ |
|
|
|
if (!model) |
|
{ |
|
CV_ERROR (CV_StsNullPtr, ""); |
|
} |
|
|
|
pModel = (CvCrossValidationModel*)*model; |
|
if (!pModel) |
|
{ |
|
return; |
|
} |
|
if (!CV_IS_CROSSVAL (pModel)) |
|
{ |
|
CV_ERROR (CV_StsBadArg, ""); |
|
} |
|
|
|
cvFree (&pModel->sampleIdxAll); |
|
cvFree (&pModel->folds); |
|
cvReleaseMat (&pModel->sampleIdxEval); |
|
cvReleaseMat (&pModel->sampleIdxTrain); |
|
cvReleaseMat (&pModel->predict_results); |
|
|
|
cvFree (model); |
|
|
|
__END__ |
|
} // End of cvReleaseCrossValidationModel. |
|
|
|
/****************************************************************************************/ |
|
// This function create cross-validation EstimateModel. |
|
ML_IMPL CvStatModel* |
|
cvCreateCrossValidationEstimateModel( |
|
int samples_all, |
|
const CvStatModelParams* estimateParams, |
|
const CvMat* sampleIdx) |
|
{ |
|
CvStatModel* model = NULL; |
|
CvCrossValidationModel* crVal = NULL; |
|
|
|
CV_FUNCNAME ("cvCreateCrossValidationEstimateModel"); |
|
__BEGIN__ |
|
|
|
int k_fold = 10; |
|
|
|
int i, j, k, s_len; |
|
int samples_selected; |
|
CvRNG rng; |
|
CvRNG* prng; |
|
int* res_s_data; |
|
int* te_s_data; |
|
int* folds; |
|
|
|
rng = cvRNG(cvGetTickCount()); |
|
cvRandInt (&rng); cvRandInt (&rng); cvRandInt (&rng); cvRandInt (&rng); |
|
// Check input parameters. |
|
if (estimateParams) |
|
k_fold = ((CvCrossValidationParams*)estimateParams)->k_fold; |
|
if (!k_fold) |
|
{ |
|
CV_ERROR (CV_StsBadArg, "Error in parameters of cross-validation (k_fold == 0)!"); |
|
} |
|
if (samples_all <= 0) |
|
{ |
|
CV_ERROR (CV_StsBadArg, "<samples_all> should be positive!"); |
|
} |
|
|
|
// Alloc memory and fill standart StatModel's fields. |
|
CV_CALL (crVal = (CvCrossValidationModel*)cvCreateStatModel ( |
|
CV_STAT_MODEL_MAGIC_VAL | CV_CROSSVAL_MAGIC_VAL, |
|
sizeof(CvCrossValidationModel), |
|
cvReleaseCrossValidationModel, |
|
NULL, NULL)); |
|
crVal->current_fold = -1; |
|
crVal->folds_all = k_fold; |
|
if (estimateParams && ((CvCrossValidationParams*)estimateParams)->is_regression) |
|
crVal->is_regression = 1; |
|
else |
|
crVal->is_regression = 0; |
|
if (estimateParams && ((CvCrossValidationParams*)estimateParams)->rng) |
|
prng = ((CvCrossValidationParams*)estimateParams)->rng; |
|
else |
|
prng = &rng; |
|
|
|
// Check and preprocess sample indices. |
|
if (sampleIdx) |
|
{ |
|
int s_step; |
|
int s_type = 0; |
|
|
|
if (!CV_IS_MAT (sampleIdx)) |
|
CV_ERROR (CV_StsBadArg, "Invalid sampleIdx array"); |
|
|
|
if (sampleIdx->rows != 1 && sampleIdx->cols != 1) |
|
CV_ERROR (CV_StsBadSize, "sampleIdx array must be 1-dimensional"); |
|
|
|
s_len = sampleIdx->rows + sampleIdx->cols - 1; |
|
s_step = sampleIdx->rows == 1 ? |
|
1 : sampleIdx->step / CV_ELEM_SIZE(sampleIdx->type); |
|
|
|
s_type = CV_MAT_TYPE (sampleIdx->type); |
|
|
|
switch (s_type) |
|
{ |
|
case CV_8UC1: |
|
case CV_8SC1: |
|
{ |
|
uchar* s_data = sampleIdx->data.ptr; |
|
|
|
// sampleIdx is array of 1's and 0's - |
|
// i.e. it is a mask of the selected samples |
|
if( s_len != samples_all ) |
|
CV_ERROR (CV_StsUnmatchedSizes, |
|
"Sample mask should contain as many elements as the total number of samples"); |
|
|
|
samples_selected = 0; |
|
for (i = 0; i < s_len; i++) |
|
samples_selected += s_data[i * s_step] != 0; |
|
|
|
if (samples_selected == 0) |
|
CV_ERROR (CV_StsOutOfRange, "No samples is selected!"); |
|
} |
|
s_len = samples_selected; |
|
break; |
|
case CV_32SC1: |
|
if (s_len > samples_all) |
|
CV_ERROR (CV_StsOutOfRange, |
|
"sampleIdx array may not contain more elements than the total number of samples"); |
|
samples_selected = s_len; |
|
break; |
|
default: |
|
CV_ERROR (CV_StsUnsupportedFormat, "Unsupported sampleIdx array data type " |
|
"(it should be 8uC1, 8sC1 or 32sC1)"); |
|
} |
|
|
|
// Alloc additional memory for internal Idx and fill it. |
|
/*!!*/ CV_CALL (res_s_data = crVal->sampleIdxAll = |
|
(int*)cvAlloc (2 * s_len * sizeof(int))); |
|
|
|
if (s_type < CV_32SC1) |
|
{ |
|
uchar* s_data = sampleIdx->data.ptr; |
|
for (i = 0; i < s_len; i++) |
|
if (s_data[i * s_step]) |
|
{ |
|
*res_s_data++ = i; |
|
} |
|
res_s_data = crVal->sampleIdxAll; |
|
} |
|
else |
|
{ |
|
int* s_data = sampleIdx->data.i; |
|
int out_of_order = 0; |
|
|
|
for (i = 0; i < s_len; i++) |
|
{ |
|
res_s_data[i] = s_data[i * s_step]; |
|
if (i > 0 && res_s_data[i] < res_s_data[i - 1]) |
|
out_of_order = 1; |
|
} |
|
|
|
if (out_of_order) |
|
qsort (res_s_data, s_len, sizeof(res_s_data[0]), icvCmpIntegers); |
|
|
|
if (res_s_data[0] < 0 || |
|
res_s_data[s_len - 1] >= samples_all) |
|
CV_ERROR (CV_StsBadArg, "There are out-of-range sample indices"); |
|
for (i = 1; i < s_len; i++) |
|
if (res_s_data[i] <= res_s_data[i - 1]) |
|
CV_ERROR (CV_StsBadArg, "There are duplicated"); |
|
} |
|
} |
|
else // if (sampleIdx) |
|
{ |
|
// Alloc additional memory for internal Idx and fill it. |
|
s_len = samples_all; |
|
CV_CALL (res_s_data = crVal->sampleIdxAll = (int*)cvAlloc (2 * s_len * sizeof(int))); |
|
for (i = 0; i < s_len; i++) |
|
{ |
|
*res_s_data++ = i; |
|
} |
|
res_s_data = crVal->sampleIdxAll; |
|
} // if (sampleIdx) ... else |
|
|
|
// Resort internal Idx. |
|
te_s_data = res_s_data + s_len; |
|
for (i = s_len; i > 1; i--) |
|
{ |
|
j = cvRandInt (prng) % i; |
|
k = *(--te_s_data); |
|
*te_s_data = res_s_data[j]; |
|
res_s_data[j] = k; |
|
} |
|
|
|
// Duplicate resorted internal Idx. |
|
// It will be used to simplify operation of getting trainIdx. |
|
te_s_data = res_s_data + s_len; |
|
for (i = 0; i < s_len; i++) |
|
{ |
|
*te_s_data++ = *res_s_data++; |
|
} |
|
|
|
// Cut sampleIdxAll to parts. |
|
if (k_fold > 0) |
|
{ |
|
if (k_fold > s_len) |
|
{ |
|
CV_ERROR (CV_StsBadArg, |
|
"Error in parameters of cross-validation ('k_fold' > #samples)!"); |
|
} |
|
folds = crVal->folds = (int*) cvAlloc ((k_fold + 1) * sizeof (int)); |
|
*folds++ = 0; |
|
for (i = 1; i < k_fold; i++) |
|
{ |
|
*folds++ = cvRound (i * s_len * 1. / k_fold); |
|
} |
|
*folds = s_len; |
|
folds = crVal->folds; |
|
|
|
crVal->max_fold_size = (s_len - 1) / k_fold + 1; |
|
} |
|
else |
|
{ |
|
k = -k_fold; |
|
crVal->max_fold_size = k; |
|
if (k >= s_len) |
|
{ |
|
CV_ERROR (CV_StsBadArg, |
|
"Error in parameters of cross-validation (-'k_fold' > #samples)!"); |
|
} |
|
crVal->folds_all = k = (s_len - 1) / k + 1; |
|
|
|
folds = crVal->folds = (int*) cvAlloc ((k + 1) * sizeof (int)); |
|
for (i = 0; i < k; i++) |
|
{ |
|
*folds++ = -i * k_fold; |
|
} |
|
*folds = s_len; |
|
folds = crVal->folds; |
|
} |
|
|
|
// Prepare other internal fields to working. |
|
CV_CALL (crVal->predict_results = cvCreateMat (1, samples_all, CV_32FC1)); |
|
CV_CALL (crVal->sampleIdxEval = cvCreateMatHeader (1, 1, CV_32SC1)); |
|
CV_CALL (crVal->sampleIdxTrain = cvCreateMatHeader (1, 1, CV_32SC1)); |
|
crVal->sampleIdxEval->cols = 0; |
|
crVal->sampleIdxTrain->cols = 0; |
|
crVal->samples_all = s_len; |
|
crVal->is_checked = 1; |
|
|
|
crVal->getTrainIdxMat = cvCrossValGetTrainIdxMatrix; |
|
crVal->getCheckIdxMat = cvCrossValGetCheckIdxMatrix; |
|
crVal->nextStep = cvCrossValNextStep; |
|
crVal->check = cvCrossValCheckClassifier; |
|
crVal->getResult = cvCrossValGetResult; |
|
crVal->reset = cvCrossValReset; |
|
|
|
model = (CvStatModel*)crVal; |
|
|
|
__END__ |
|
|
|
if (!model) |
|
{ |
|
cvReleaseCrossValidationModel ((CvStatModel**)&crVal); |
|
} |
|
|
|
return model; |
|
} // End of cvCreateCrossValidationEstimateModel |
|
|
|
|
|
/****************************************************************************************\ |
|
* Extended interface with backcalls for models * |
|
\****************************************************************************************/ |
|
ML_IMPL float |
|
cvCrossValidation (const CvMat* trueData, |
|
int tflag, |
|
const CvMat* trueClasses, |
|
CvStatModel* (*createClassifier) (const CvMat*, |
|
int, |
|
const CvMat*, |
|
const CvClassifierTrainParams*, |
|
const CvMat*, |
|
const CvMat*, |
|
const CvMat*, |
|
const CvMat*), |
|
const CvClassifierTrainParams* estimateParams, |
|
const CvClassifierTrainParams* trainParams, |
|
const CvMat* compIdx, |
|
const CvMat* sampleIdx, |
|
CvStatModel** pCrValModel, |
|
const CvMat* typeMask, |
|
const CvMat* missedMeasurementMask) |
|
{ |
|
CvCrossValidationModel* crVal = NULL; |
|
float result = 0; |
|
CvStatModel* pClassifier = NULL; |
|
|
|
CV_FUNCNAME ("cvCrossValidation"); |
|
__BEGIN__ |
|
|
|
const CvMat* trainDataIdx; |
|
int samples_all; |
|
|
|
// checking input data |
|
if ((createClassifier) == NULL) |
|
{ |
|
CV_ERROR (CV_StsNullPtr, "Null pointer to functiion which create classifier"); |
|
} |
|
if (pCrValModel && *pCrValModel && !CV_IS_CROSSVAL(*pCrValModel)) |
|
{ |
|
CV_ERROR (CV_StsBadArg, |
|
"<pCrValModel> point to not cross-validation model"); |
|
} |
|
|
|
// initialization |
|
if (pCrValModel && *pCrValModel) |
|
{ |
|
crVal = (CvCrossValidationModel*)*pCrValModel; |
|
crVal->reset ((CvStatModel*)crVal); |
|
} |
|
else |
|
{ |
|
samples_all = ((tflag) ? trueData->rows : trueData->cols); |
|
CV_CALL (crVal = (CvCrossValidationModel*) |
|
cvCreateCrossValidationEstimateModel (samples_all, estimateParams, sampleIdx)); |
|
} |
|
|
|
CV_CALL (trainDataIdx = crVal->getTrainIdxMat ((CvStatModel*)crVal)); |
|
|
|
// operation loop |
|
for (; crVal->nextStep((CvStatModel*)crVal) != 0; ) |
|
{ |
|
CV_CALL (pClassifier = createClassifier (trueData, tflag, trueClasses, |
|
trainParams, compIdx, trainDataIdx, typeMask, missedMeasurementMask)); |
|
CV_CALL (crVal->check ((CvStatModel*)crVal, pClassifier, |
|
trueData, tflag, trueClasses)); |
|
|
|
pClassifier->release (&pClassifier); |
|
} |
|
|
|
// Get result and fill output field. |
|
CV_CALL (result = crVal->getResult ((CvStatModel*)crVal, 0)); |
|
|
|
if (pCrValModel && !*pCrValModel) |
|
*pCrValModel = (CvStatModel*)crVal; |
|
|
|
__END__ |
|
|
|
// Free all memory that should be freed. |
|
if (pClassifier) |
|
pClassifier->release (&pClassifier); |
|
if (crVal && (!pCrValModel || !*pCrValModel)) |
|
crVal->release ((CvStatModel**)&crVal); |
|
|
|
return result; |
|
} // End of cvCrossValidation |
|
|
|
#endif |
|
|
|
/* End of file */
|
|
|