mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
531 lines
18 KiB
531 lines
18 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "npy_blob.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS |
|
|
|
namespace opencv_test |
|
{ |
|
|
|
using namespace std; |
|
using namespace testing; |
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
template<typename TStr> |
|
static std::string _tf(TStr filename, bool inTorchDir = true, bool required = true) |
|
{ |
|
String path = "dnn/"; |
|
if (inTorchDir) |
|
path += "torch/"; |
|
path += filename; |
|
return findDataFile(path, required); |
|
} |
|
|
|
TEST(Torch_Importer, simple_read) |
|
{ |
|
Net net; |
|
ASSERT_NO_THROW(net = readNetFromTorch(_tf("net_simple_net.txt"), false)); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
class Test_Torch_layers : public DNNTestLayer |
|
{ |
|
public: |
|
void runTorchNet(const String& prefix, String outLayerName = "", |
|
bool check2ndBlob = false, bool isBinary = false, bool evaluate = true, |
|
double l1 = 0.0, double lInf = 0.0) |
|
{ |
|
String suffix = (isBinary) ? ".dat" : ".txt"; |
|
|
|
Mat inp, outRef; |
|
ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) ); |
|
ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) ); |
|
|
|
checkBackend(backend, target, &inp, &outRef); |
|
|
|
Net net = readNetFromTorch(_tf(prefix + "_net" + suffix), isBinary, evaluate); |
|
ASSERT_FALSE(net.empty()); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
if (outLayerName.empty()) |
|
outLayerName = net.getLayerNames().back(); |
|
|
|
net.setInput(inp); |
|
std::vector<Mat> outBlobs; |
|
net.forward(outBlobs, outLayerName); |
|
l1 = l1 ? l1 : default_l1; |
|
lInf = lInf ? lInf : default_lInf; |
|
normAssert(outRef, outBlobs[0], "", l1, lInf); |
|
|
|
if (check2ndBlob && backend != DNN_BACKEND_INFERENCE_ENGINE) |
|
{ |
|
Mat out2 = outBlobs[1]; |
|
Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary); |
|
normAssert(out2, ref2, "", l1, lInf); |
|
} |
|
} |
|
}; |
|
|
|
TEST_P(Test_Torch_layers, run_convolution) |
|
{ |
|
// Output reference values are in range [23.4018, 72.0181] |
|
double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.08 : default_l1; |
|
double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.42 : default_lInf; |
|
runTorchNet("net_conv", "", false, true, true, l1, lInf); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, run_pool_max) |
|
{ |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
runTorchNet("net_pool_max", "", true); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, run_pool_ave) |
|
{ |
|
runTorchNet("net_pool_ave"); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, run_reshape_change_batch_size) |
|
{ |
|
runTorchNet("net_reshape"); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, run_reshape) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
runTorchNet("net_reshape_batch"); |
|
runTorchNet("net_reshape_channels", "", false, true); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, run_reshape_single_sample) |
|
{ |
|
// Reference output values in range [14.4586, 18.4492]. |
|
runTorchNet("net_reshape_single_sample", "", false, false, true, |
|
(target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.033 : default_l1, |
|
(target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.05 : default_lInf); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, run_linear) |
|
{ |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
runTorchNet("net_linear_2d"); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, run_concat) |
|
{ |
|
runTorchNet("net_concat", "l5_torchMerge"); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, run_depth_concat) |
|
{ |
|
runTorchNet("net_depth_concat", "", false, true, true, 0.0, |
|
target == DNN_TARGET_OPENCL_FP16 ? 0.021 : 0.0); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, run_deconv) |
|
{ |
|
runTorchNet("net_deconv"); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, run_batch_norm) |
|
{ |
|
runTorchNet("net_batch_norm", "", false, true); |
|
runTorchNet("net_batch_norm_train", "", false, true, false); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, net_prelu) |
|
{ |
|
runTorchNet("net_prelu"); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, net_cadd_table) |
|
{ |
|
runTorchNet("net_cadd_table"); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, net_softmax) |
|
{ |
|
runTorchNet("net_softmax"); |
|
runTorchNet("net_softmax_spatial"); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, net_logsoftmax) |
|
{ |
|
runTorchNet("net_logsoftmax"); |
|
runTorchNet("net_logsoftmax_spatial"); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, net_lp_pooling) |
|
{ |
|
runTorchNet("net_lp_pooling_square", "", false, true); |
|
runTorchNet("net_lp_pooling_power", "", false, true); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, net_conv_gemm_lrn) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
runTorchNet("net_conv_gemm_lrn", "", false, true, true, |
|
target == DNN_TARGET_OPENCL_FP16 ? 0.046 : 0.0, |
|
target == DNN_TARGET_OPENCL_FP16 ? 0.023 : 0.0); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, net_inception_block) |
|
{ |
|
runTorchNet("net_inception_block", "", false, true); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, net_normalize) |
|
{ |
|
runTorchNet("net_normalize", "", false, true); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, net_padding) |
|
{ |
|
runTorchNet("net_padding", "", false, true); |
|
runTorchNet("net_spatial_zero_padding", "", false, true); |
|
runTorchNet("net_spatial_reflection_padding", "", false, true); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, net_non_spatial) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && |
|
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) |
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
runTorchNet("net_non_spatial", "", false, true); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, run_paralel) |
|
{ |
|
if (backend != DNN_BACKEND_OPENCV || target != DNN_TARGET_CPU) |
|
throw SkipTestException(""); // TODO: Check this |
|
runTorchNet("net_parallel", "l5_torchMerge"); |
|
} |
|
|
|
TEST_P(Test_Torch_layers, net_residual) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE == 2018050000 |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || |
|
target == DNN_TARGET_OPENCL_FP16)) |
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
#endif |
|
runTorchNet("net_residual", "", false, true); |
|
} |
|
|
|
class Test_Torch_nets : public DNNTestLayer {}; |
|
|
|
TEST_P(Test_Torch_nets, OpenFace_accuracy) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
#endif |
|
checkBackend(); |
|
|
|
const string model = findDataFile("dnn/openface_nn4.small2.v1.t7", false); |
|
Net net = readNetFromTorch(model); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
Mat sample = imread(findDataFile("cv/shared/lena.png")); |
|
Mat sampleF32(sample.size(), CV_32FC3); |
|
sample.convertTo(sampleF32, sampleF32.type()); |
|
sampleF32 /= 255; |
|
resize(sampleF32, sampleF32, Size(96, 96), 0, 0, INTER_NEAREST); |
|
|
|
Mat inputBlob = blobFromImage(sampleF32, 1.0, Size(), Scalar(), /*swapRB*/true); |
|
|
|
net.setInput(inputBlob); |
|
Mat out = net.forward(); |
|
|
|
// Reference output values are in range [-0.17212, 0.263492] |
|
// on Myriad problem layer: l4_Pooling - does not use pads_begin |
|
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 2e-3 : 1e-5; |
|
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 5e-3 : 1e-3; |
|
Mat outRef = readTorchBlob(_tf("net_openface_output.dat"), true); |
|
normAssert(out, outRef, "", l1, lInf); |
|
} |
|
|
|
static Mat getSegmMask(const Mat& scores) |
|
{ |
|
const int rows = scores.size[2]; |
|
const int cols = scores.size[3]; |
|
const int numClasses = scores.size[1]; |
|
|
|
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1); |
|
Mat maxVal(rows, cols, CV_32FC1, Scalar(0)); |
|
for (int ch = 0; ch < numClasses; ch++) |
|
{ |
|
for (int row = 0; row < rows; row++) |
|
{ |
|
const float *ptrScore = scores.ptr<float>(0, ch, row); |
|
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row); |
|
float *ptrMaxVal = maxVal.ptr<float>(row); |
|
for (int col = 0; col < cols; col++) |
|
{ |
|
if (ptrScore[col] > ptrMaxVal[col]) |
|
{ |
|
ptrMaxVal[col] = ptrScore[col]; |
|
ptrMaxCl[col] = (uchar)ch; |
|
} |
|
} |
|
} |
|
} |
|
return maxCl; |
|
} |
|
|
|
// Computer per-class intersection over union metric. |
|
static void normAssertSegmentation(const Mat& ref, const Mat& test) |
|
{ |
|
CV_Assert_N(ref.dims == 4, test.dims == 4); |
|
const int numClasses = ref.size[1]; |
|
CV_Assert(numClasses == test.size[1]); |
|
|
|
Mat refMask = getSegmMask(ref); |
|
Mat testMask = getSegmMask(test); |
|
EXPECT_EQ(countNonZero(refMask != testMask), 0); |
|
} |
|
|
|
TEST_P(Test_Torch_nets, ENet_accuracy) |
|
{ |
|
applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB); |
|
checkBackend(); |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
throw SkipTestException(""); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) |
|
{ |
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); |
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
throw SkipTestException(""); |
|
} |
|
|
|
Net net; |
|
{ |
|
const string model = findDataFile("dnn/Enet-model-best.net", false); |
|
net = readNetFromTorch(model, true); |
|
ASSERT_TRUE(!net.empty()); |
|
} |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
Mat sample = imread(_tf("street.png", false)); |
|
Mat inputBlob = blobFromImage(sample, 1./255, Size(), Scalar(), /*swapRB*/true); |
|
|
|
net.setInput(inputBlob, ""); |
|
Mat out = net.forward(); |
|
Mat ref = blobFromNPY(_tf("torch_enet_prob.npy", false)); |
|
// Due to numerical instability in Pooling-Unpooling layers (indexes jittering) |
|
// thresholds for ENet must be changed. Accuracy of results was checked on |
|
// Cityscapes dataset and difference in mIOU with Torch is 10E-4% |
|
normAssert(ref, out, "", 0.00044, /*target == DNN_TARGET_CPU ? 0.453 : */0.552); |
|
normAssertSegmentation(ref, out); |
|
|
|
const int N = 3; |
|
for (int i = 0; i < N; i++) |
|
{ |
|
net.setInput(inputBlob, ""); |
|
Mat out = net.forward(); |
|
normAssert(ref, out, "", 0.00044, /*target == DNN_TARGET_CPU ? 0.453 : */0.552); |
|
normAssertSegmentation(ref, out); |
|
} |
|
} |
|
|
|
// Check accuracy of style transfer models from https://github.com/jcjohnson/fast-neural-style |
|
// th fast_neural_style.lua \ |
|
// -input_image ~/opencv_extra/testdata/dnn/googlenet_1.png \ |
|
// -output_image lena.png \ |
|
// -median_filter 0 \ |
|
// -image_size 0 \ |
|
// -model models/eccv16/starry_night.t7 |
|
// th fast_neural_style.lua \ |
|
// -input_image ~/opencv_extra/testdata/dnn/googlenet_1.png \ |
|
// -output_image lena.png \ |
|
// -median_filter 0 \ |
|
// -image_size 0 \ |
|
// -model models/instance_norm/feathers.t7 |
|
TEST_P(Test_Torch_nets, FastNeuralStyle_accuracy) |
|
{ |
|
#if defined INF_ENGINE_RELEASE |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD |
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
#endif |
|
|
|
checkBackend(); |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
#if INF_ENGINE_RELEASE <= 2018050000 |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_2018R5); |
|
#endif |
|
#endif |
|
|
|
std::string models[] = {"dnn/fast_neural_style_eccv16_starry_night.t7", |
|
"dnn/fast_neural_style_instance_norm_feathers.t7"}; |
|
std::string targets[] = {"dnn/lena_starry_night.png", "dnn/lena_feathers.png"}; |
|
|
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
const string model = findDataFile(models[i], false); |
|
Net net = readNetFromTorch(model); |
|
|
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
Mat img = imread(findDataFile("dnn/googlenet_1.png")); |
|
Mat inputBlob = blobFromImage(img, 1.0, Size(), Scalar(103.939, 116.779, 123.68), false); |
|
|
|
net.setInput(inputBlob); |
|
Mat out = net.forward(); |
|
|
|
// Deprocessing. |
|
getPlane(out, 0, 0) += 103.939; |
|
getPlane(out, 0, 1) += 116.779; |
|
getPlane(out, 0, 2) += 123.68; |
|
out = cv::min(cv::max(0, out), 255); |
|
|
|
Mat ref = imread(findDataFile(targets[i])); |
|
Mat refBlob = blobFromImage(ref, 1.0, Size(), Scalar(), false); |
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) |
|
{ |
|
double normL1 = cvtest::norm(refBlob, out, cv::NORM_L1) / refBlob.total(); |
|
if (target == DNN_TARGET_MYRIAD) |
|
EXPECT_LE(normL1, 4.0f); |
|
else |
|
EXPECT_LE(normL1, 0.6f); |
|
} |
|
else |
|
normAssert(out, refBlob, "", 0.5, 1.1); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_nets, dnnBackendsAndTargets()); |
|
|
|
// Test a custom layer |
|
// https://github.com/torch/nn/blob/master/doc/convolution.md#nn.SpatialUpSamplingNearest |
|
class SpatialUpSamplingNearestLayer CV_FINAL : public Layer |
|
{ |
|
public: |
|
SpatialUpSamplingNearestLayer(const LayerParams ¶ms) : Layer(params) |
|
{ |
|
scale = params.get<int>("scale_factor"); |
|
} |
|
|
|
static Ptr<Layer> create(LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new SpatialUpSamplingNearestLayer(params)); |
|
} |
|
|
|
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs, |
|
const int requiredOutputs, |
|
std::vector<std::vector<int> > &outputs, |
|
std::vector<std::vector<int> > &internals) const CV_OVERRIDE |
|
{ |
|
std::vector<int> outShape(4); |
|
outShape[0] = inputs[0][0]; // batch size |
|
outShape[1] = inputs[0][1]; // number of channels |
|
outShape[2] = scale * inputs[0][2]; |
|
outShape[3] = scale * inputs[0][3]; |
|
outputs.assign(1, outShape); |
|
return false; |
|
} |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
Mat& inp = inputs[0]; |
|
Mat& out = outputs[0]; |
|
const int outHeight = out.size[2]; |
|
const int outWidth = out.size[3]; |
|
for (size_t n = 0; n < inp.size[0]; ++n) |
|
{ |
|
for (size_t ch = 0; ch < inp.size[1]; ++ch) |
|
{ |
|
resize(getPlane(inp, n, ch), getPlane(out, n, ch), |
|
Size(outWidth, outHeight), 0, 0, INTER_NEAREST); |
|
} |
|
} |
|
} |
|
|
|
private: |
|
int scale; |
|
}; |
|
|
|
TEST_P(Test_Torch_layers, upsampling_nearest) |
|
{ |
|
// Test a custom layer. |
|
CV_DNN_REGISTER_LAYER_CLASS(SpatialUpSamplingNearest, SpatialUpSamplingNearestLayer); |
|
try |
|
{ |
|
runTorchNet("net_spatial_upsampling_nearest", "", false, true); |
|
} |
|
catch (...) |
|
{ |
|
LayerFactory::unregisterLayer("SpatialUpSamplingNearest"); |
|
throw; |
|
} |
|
LayerFactory::unregisterLayer("SpatialUpSamplingNearest"); |
|
|
|
// Test an implemented layer. |
|
runTorchNet("net_spatial_upsampling_nearest", "", false, true); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Torch_layers, dnnBackendsAndTargets()); |
|
|
|
}
|
|
|