Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
774 lines
21 KiB
774 lines
21 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_STITCHING_WARPERS_INL_HPP__ |
|
#define __OPENCV_STITCHING_WARPERS_INL_HPP__ |
|
|
|
#include "opencv2/core.hpp" |
|
#include "warpers.hpp" // Make your IDE see declarations |
|
#include <limits> |
|
|
|
//! @cond IGNORED |
|
|
|
namespace cv { |
|
namespace detail { |
|
|
|
template <class P> |
|
Point2f RotationWarperBase<P>::warpPoint(const Point2f &pt, InputArray K, InputArray R) |
|
{ |
|
projector_.setCameraParams(K, R); |
|
Point2f uv; |
|
projector_.mapForward(pt.x, pt.y, uv.x, uv.y); |
|
return uv; |
|
} |
|
|
|
|
|
template <class P> |
|
Rect RotationWarperBase<P>::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray _xmap, OutputArray _ymap) |
|
{ |
|
projector_.setCameraParams(K, R); |
|
|
|
Point dst_tl, dst_br; |
|
detectResultRoi(src_size, dst_tl, dst_br); |
|
|
|
_xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); |
|
_ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); |
|
|
|
Mat xmap = _xmap.getMat(), ymap = _ymap.getMat(); |
|
|
|
float x, y; |
|
for (int v = dst_tl.y; v <= dst_br.y; ++v) |
|
{ |
|
for (int u = dst_tl.x; u <= dst_br.x; ++u) |
|
{ |
|
projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y); |
|
xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x; |
|
ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y; |
|
} |
|
} |
|
|
|
return Rect(dst_tl, dst_br); |
|
} |
|
|
|
|
|
template <class P> |
|
Point RotationWarperBase<P>::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, |
|
OutputArray dst) |
|
{ |
|
UMat xmap, ymap; |
|
Rect dst_roi = buildMaps(src.size(), K, R, xmap, ymap); |
|
|
|
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); |
|
remap(src, dst, xmap, ymap, interp_mode, border_mode); |
|
|
|
return dst_roi.tl(); |
|
} |
|
|
|
|
|
template <class P> |
|
void RotationWarperBase<P>::warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode, |
|
Size dst_size, OutputArray dst) |
|
{ |
|
projector_.setCameraParams(K, R); |
|
|
|
Point src_tl, src_br; |
|
detectResultRoi(dst_size, src_tl, src_br); |
|
|
|
Size size = src.size(); |
|
CV_Assert(src_br.x - src_tl.x + 1 == size.width && src_br.y - src_tl.y + 1 == size.height); |
|
|
|
Mat xmap(dst_size, CV_32F); |
|
Mat ymap(dst_size, CV_32F); |
|
|
|
float u, v; |
|
for (int y = 0; y < dst_size.height; ++y) |
|
{ |
|
for (int x = 0; x < dst_size.width; ++x) |
|
{ |
|
projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v); |
|
xmap.at<float>(y, x) = u - src_tl.x; |
|
ymap.at<float>(y, x) = v - src_tl.y; |
|
} |
|
} |
|
|
|
dst.create(dst_size, src.type()); |
|
remap(src, dst, xmap, ymap, interp_mode, border_mode); |
|
} |
|
|
|
|
|
template <class P> |
|
Rect RotationWarperBase<P>::warpRoi(Size src_size, InputArray K, InputArray R) |
|
{ |
|
projector_.setCameraParams(K, R); |
|
|
|
Point dst_tl, dst_br; |
|
detectResultRoi(src_size, dst_tl, dst_br); |
|
|
|
return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)); |
|
} |
|
|
|
|
|
template <class P> |
|
void RotationWarperBase<P>::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br) |
|
{ |
|
float tl_uf = std::numeric_limits<float>::max(); |
|
float tl_vf = std::numeric_limits<float>::max(); |
|
float br_uf = -std::numeric_limits<float>::max(); |
|
float br_vf = -std::numeric_limits<float>::max(); |
|
|
|
float u, v; |
|
for (int y = 0; y < src_size.height; ++y) |
|
{ |
|
for (int x = 0; x < src_size.width; ++x) |
|
{ |
|
projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v); |
|
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); |
|
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); |
|
} |
|
} |
|
|
|
dst_tl.x = static_cast<int>(tl_uf); |
|
dst_tl.y = static_cast<int>(tl_vf); |
|
dst_br.x = static_cast<int>(br_uf); |
|
dst_br.y = static_cast<int>(br_vf); |
|
} |
|
|
|
|
|
template <class P> |
|
void RotationWarperBase<P>::detectResultRoiByBorder(Size src_size, Point &dst_tl, Point &dst_br) |
|
{ |
|
float tl_uf = std::numeric_limits<float>::max(); |
|
float tl_vf = std::numeric_limits<float>::max(); |
|
float br_uf = -std::numeric_limits<float>::max(); |
|
float br_vf = -std::numeric_limits<float>::max(); |
|
|
|
float u, v; |
|
for (float x = 0; x < src_size.width; ++x) |
|
{ |
|
projector_.mapForward(static_cast<float>(x), 0, u, v); |
|
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); |
|
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); |
|
|
|
projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size.height - 1), u, v); |
|
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); |
|
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); |
|
} |
|
for (int y = 0; y < src_size.height; ++y) |
|
{ |
|
projector_.mapForward(0, static_cast<float>(y), u, v); |
|
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); |
|
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); |
|
|
|
projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(y), u, v); |
|
tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); |
|
br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); |
|
} |
|
|
|
dst_tl.x = static_cast<int>(tl_uf); |
|
dst_tl.y = static_cast<int>(tl_vf); |
|
dst_br.x = static_cast<int>(br_uf); |
|
dst_br.y = static_cast<int>(br_vf); |
|
} |
|
|
|
|
|
inline |
|
void PlaneProjector::mapForward(float x, float y, float &u, float &v) |
|
{ |
|
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
x_ = t[0] + x_ / z_ * (1 - t[2]); |
|
y_ = t[1] + y_ / z_ * (1 - t[2]); |
|
|
|
u = scale * x_; |
|
v = scale * y_; |
|
} |
|
|
|
|
|
inline |
|
void PlaneProjector::mapBackward(float u, float v, float &x, float &y) |
|
{ |
|
u = u / scale - t[0]; |
|
v = v / scale - t[1]; |
|
|
|
float z; |
|
x = k_rinv[0] * u + k_rinv[1] * v + k_rinv[2] * (1 - t[2]); |
|
y = k_rinv[3] * u + k_rinv[4] * v + k_rinv[5] * (1 - t[2]); |
|
z = k_rinv[6] * u + k_rinv[7] * v + k_rinv[8] * (1 - t[2]); |
|
|
|
x /= z; |
|
y /= z; |
|
} |
|
|
|
|
|
inline |
|
void SphericalProjector::mapForward(float x, float y, float &u, float &v) |
|
{ |
|
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
u = scale * atan2f(x_, z_); |
|
float w = y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_); |
|
v = scale * (static_cast<float>(CV_PI) - acosf(w == w ? w : 0)); |
|
} |
|
|
|
|
|
inline |
|
void SphericalProjector::mapBackward(float u, float v, float &x, float &y) |
|
{ |
|
u /= scale; |
|
v /= scale; |
|
|
|
float sinv = sinf(static_cast<float>(CV_PI) - v); |
|
float x_ = sinv * sinf(u); |
|
float y_ = cosf(static_cast<float>(CV_PI) - v); |
|
float z_ = sinv * cosf(u); |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
|
|
inline |
|
void CylindricalProjector::mapForward(float x, float y, float &u, float &v) |
|
{ |
|
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
u = scale * atan2f(x_, z_); |
|
v = scale * y_ / sqrtf(x_ * x_ + z_ * z_); |
|
} |
|
|
|
|
|
inline |
|
void CylindricalProjector::mapBackward(float u, float v, float &x, float &y) |
|
{ |
|
u /= scale; |
|
v /= scale; |
|
|
|
float x_ = sinf(u); |
|
float y_ = v; |
|
float z_ = cosf(u); |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
inline |
|
void FisheyeProjector::mapForward(float x, float y, float &u, float &v) |
|
{ |
|
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
float u_ = atan2f(x_, z_); |
|
float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); |
|
|
|
u = scale * v_ * cosf(u_); |
|
v = scale * v_ * sinf(u_); |
|
} |
|
|
|
inline |
|
void FisheyeProjector::mapBackward(float u, float v, float &x, float &y) |
|
{ |
|
u /= scale; |
|
v /= scale; |
|
|
|
float u_ = atan2f(v, u); |
|
float v_ = sqrtf(u*u + v*v); |
|
|
|
float sinv = sinf((float)CV_PI - v_); |
|
float x_ = sinv * sinf(u_); |
|
float y_ = cosf((float)CV_PI - v_); |
|
float z_ = sinv * cosf(u_); |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
inline |
|
void StereographicProjector::mapForward(float x, float y, float &u, float &v) |
|
{ |
|
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
float u_ = atan2f(x_, z_); |
|
float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); |
|
|
|
float r = sinf(v_) / (1 - cosf(v_)); |
|
|
|
u = scale * r * cos(u_); |
|
v = scale * r * sin(u_); |
|
} |
|
|
|
inline |
|
void StereographicProjector::mapBackward(float u, float v, float &x, float &y) |
|
{ |
|
u /= scale; |
|
v /= scale; |
|
|
|
float u_ = atan2f(v, u); |
|
float r = sqrtf(u*u + v*v); |
|
float v_ = 2 * atanf(1.f / r); |
|
|
|
float sinv = sinf((float)CV_PI - v_); |
|
float x_ = sinv * sinf(u_); |
|
float y_ = cosf((float)CV_PI - v_); |
|
float z_ = sinv * cosf(u_); |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
inline |
|
void CompressedRectilinearProjector::mapForward(float x, float y, float &u, float &v) |
|
{ |
|
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
float u_ = atan2f(x_, z_); |
|
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); |
|
|
|
u = scale * a * tanf(u_ / a); |
|
v = scale * b * tanf(v_) / cosf(u_); |
|
} |
|
|
|
inline |
|
void CompressedRectilinearProjector::mapBackward(float u, float v, float &x, float &y) |
|
{ |
|
u /= scale; |
|
v /= scale; |
|
|
|
float aatg = a * atanf(u / a); |
|
float u_ = aatg; |
|
float v_ = atanf(v * cosf(aatg) / b); |
|
|
|
float cosv = cosf(v_); |
|
float x_ = cosv * sinf(u_); |
|
float y_ = sinf(v_); |
|
float z_ = cosv * cosf(u_); |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
inline |
|
void CompressedRectilinearPortraitProjector::mapForward(float x, float y, float &u, float &v) |
|
{ |
|
float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
float u_ = atan2f(x_, z_); |
|
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); |
|
|
|
u = - scale * a * tanf(u_ / a); |
|
v = scale * b * tanf(v_) / cosf(u_); |
|
} |
|
|
|
inline |
|
void CompressedRectilinearPortraitProjector::mapBackward(float u, float v, float &x, float &y) |
|
{ |
|
u /= - scale; |
|
v /= scale; |
|
|
|
float aatg = a * atanf(u / a); |
|
float u_ = aatg; |
|
float v_ = atanf(v * cosf( aatg ) / b); |
|
|
|
float cosv = cosf(v_); |
|
float y_ = cosv * sinf(u_); |
|
float x_ = sinf(v_); |
|
float z_ = cosv * cosf(u_); |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
inline |
|
void PaniniProjector::mapForward(float x, float y, float &u, float &v) |
|
{ |
|
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
float u_ = atan2f(x_, z_); |
|
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); |
|
|
|
float tg = a * tanf(u_ / a); |
|
u = scale * tg; |
|
|
|
float sinu = sinf(u_); |
|
if ( fabs(sinu) < 1E-7 ) |
|
v = scale * b * tanf(v_); |
|
else |
|
v = scale * b * tg * tanf(v_) / sinu; |
|
} |
|
|
|
inline |
|
void PaniniProjector::mapBackward(float u, float v, float &x, float &y) |
|
{ |
|
u /= scale; |
|
v /= scale; |
|
|
|
float lamda = a * atanf(u / a); |
|
float u_ = lamda; |
|
|
|
float v_; |
|
if ( fabs(lamda) > 1E-7) |
|
v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda / a))); |
|
else |
|
v_ = atanf(v / b); |
|
|
|
float cosv = cosf(v_); |
|
float x_ = cosv * sinf(u_); |
|
float y_ = sinf(v_); |
|
float z_ = cosv * cosf(u_); |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
inline |
|
void PaniniPortraitProjector::mapForward(float x, float y, float &u, float &v) |
|
{ |
|
float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
float u_ = atan2f(x_, z_); |
|
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); |
|
|
|
float tg = a * tanf(u_ / a); |
|
u = - scale * tg; |
|
|
|
float sinu = sinf( u_ ); |
|
if ( fabs(sinu) < 1E-7 ) |
|
v = scale * b * tanf(v_); |
|
else |
|
v = scale * b * tg * tanf(v_) / sinu; |
|
} |
|
|
|
inline |
|
void PaniniPortraitProjector::mapBackward(float u, float v, float &x, float &y) |
|
{ |
|
u /= - scale; |
|
v /= scale; |
|
|
|
float lamda = a * atanf(u / a); |
|
float u_ = lamda; |
|
|
|
float v_; |
|
if ( fabs(lamda) > 1E-7) |
|
v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda/a))); |
|
else |
|
v_ = atanf(v / b); |
|
|
|
float cosv = cosf(v_); |
|
float y_ = cosv * sinf(u_); |
|
float x_ = sinf(v_); |
|
float z_ = cosv * cosf(u_); |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
inline |
|
void MercatorProjector::mapForward(float x, float y, float &u, float &v) |
|
{ |
|
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
float u_ = atan2f(x_, z_); |
|
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); |
|
|
|
u = scale * u_; |
|
v = scale * logf( tanf( (float)(CV_PI/4) + v_/2 ) ); |
|
} |
|
|
|
inline |
|
void MercatorProjector::mapBackward(float u, float v, float &x, float &y) |
|
{ |
|
u /= scale; |
|
v /= scale; |
|
|
|
float v_ = atanf( sinhf(v) ); |
|
float u_ = u; |
|
|
|
float cosv = cosf(v_); |
|
float x_ = cosv * sinf(u_); |
|
float y_ = sinf(v_); |
|
float z_ = cosv * cosf(u_); |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
inline |
|
void TransverseMercatorProjector::mapForward(float x, float y, float &u, float &v) |
|
{ |
|
float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
float u_ = atan2f(x_, z_); |
|
float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)); |
|
|
|
float B = cosf(v_) * sinf(u_); |
|
|
|
u = scale / 2 * logf( (1+B) / (1-B) ); |
|
v = scale * atan2f(tanf(v_), cosf(u_)); |
|
} |
|
|
|
inline |
|
void TransverseMercatorProjector::mapBackward(float u, float v, float &x, float &y) |
|
{ |
|
u /= scale; |
|
v /= scale; |
|
|
|
float v_ = asinf( sinf(v) / coshf(u) ); |
|
float u_ = atan2f( sinhf(u), cos(v) ); |
|
|
|
float cosv = cosf(v_); |
|
float x_ = cosv * sinf(u_); |
|
float y_ = sinf(v_); |
|
float z_ = cosv * cosf(u_); |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
inline |
|
void SphericalPortraitProjector::mapForward(float x, float y, float &u0, float &v0) |
|
{ |
|
float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
float x_ = y0_; |
|
float y_ = x0_; |
|
float u, v; |
|
|
|
u = scale * atan2f(x_, z_); |
|
v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_))); |
|
|
|
u0 = -u;//v; |
|
v0 = v;//u; |
|
} |
|
|
|
|
|
inline |
|
void SphericalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y) |
|
{ |
|
float u, v; |
|
u = -u0;//v0; |
|
v = v0;//u0; |
|
|
|
u /= scale; |
|
v /= scale; |
|
|
|
float sinv = sinf(static_cast<float>(CV_PI) - v); |
|
float x0_ = sinv * sinf(u); |
|
float y0_ = cosf(static_cast<float>(CV_PI) - v); |
|
float z_ = sinv * cosf(u); |
|
|
|
float x_ = y0_; |
|
float y_ = x0_; |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
inline |
|
void CylindricalPortraitProjector::mapForward(float x, float y, float &u0, float &v0) |
|
{ |
|
float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
float x_ = y0_; |
|
float y_ = x0_; |
|
float u, v; |
|
|
|
u = scale * atan2f(x_, z_); |
|
v = scale * y_ / sqrtf(x_ * x_ + z_ * z_); |
|
|
|
u0 = -u;//v; |
|
v0 = v;//u; |
|
} |
|
|
|
|
|
inline |
|
void CylindricalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y) |
|
{ |
|
float u, v; |
|
u = -u0;//v0; |
|
v = v0;//u0; |
|
|
|
u /= scale; |
|
v /= scale; |
|
|
|
float x0_ = sinf(u); |
|
float y0_ = v; |
|
float z_ = cosf(u); |
|
|
|
float x_ = y0_; |
|
float y_ = x0_; |
|
|
|
float z; |
|
x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_; |
|
y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_; |
|
z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_; |
|
|
|
if (z > 0) { x /= z; y /= z; } |
|
else x = y = -1; |
|
} |
|
|
|
inline |
|
void PlanePortraitProjector::mapForward(float x, float y, float &u0, float &v0) |
|
{ |
|
float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2]; |
|
float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5]; |
|
float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8]; |
|
|
|
float x_ = y0_; |
|
float y_ = x0_; |
|
|
|
x_ = t[0] + x_ / z_ * (1 - t[2]); |
|
y_ = t[1] + y_ / z_ * (1 - t[2]); |
|
|
|
float u,v; |
|
u = scale * x_; |
|
v = scale * y_; |
|
|
|
u0 = -u; |
|
v0 = v; |
|
} |
|
|
|
|
|
inline |
|
void PlanePortraitProjector::mapBackward(float u0, float v0, float &x, float &y) |
|
{ |
|
float u, v; |
|
u = -u0; |
|
v = v0; |
|
|
|
u = u / scale - t[0]; |
|
v = v / scale - t[1]; |
|
|
|
float z; |
|
x = k_rinv[0] * v + k_rinv[1] * u + k_rinv[2] * (1 - t[2]); |
|
y = k_rinv[3] * v + k_rinv[4] * u + k_rinv[5] * (1 - t[2]); |
|
z = k_rinv[6] * v + k_rinv[7] * u + k_rinv[8] * (1 - t[2]); |
|
|
|
x /= z; |
|
y /= z; |
|
} |
|
|
|
|
|
} // namespace detail |
|
} // namespace cv |
|
|
|
//! @endcond |
|
|
|
#endif // __OPENCV_STITCHING_WARPERS_INL_HPP__
|
|
|