Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

432 lines
18 KiB

#include <algorithm>
#include <iostream>
#include <cctype>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/infer.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/highgui.hpp> // CommandLineParser
const std::string about =
"This is an OpenCV-based version of Gaze Estimation example";
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input video file }"
"{ facem | face-detection-retail-0005.xml | Path to OpenVINO face detection model (.xml) }"
"{ faced | CPU | Target device for the face detection (e.g. CPU, GPU, ...) }"
"{ landm | facial-landmarks-35-adas-0002.xml | Path to OpenVINO landmarks detector model (.xml) }"
"{ landd | CPU | Target device for the landmarks detector (e.g. CPU, GPU, ...) }"
"{ headm | head-pose-estimation-adas-0001.xml | Path to OpenVINO head pose estimation model (.xml) }"
"{ headd | CPU | Target device for the head pose estimation inference (e.g. CPU, GPU, ...) }"
"{ gazem | gaze-estimation-adas-0002.xml | Path to OpenVINO gaze vector estimaiton model (.xml) }"
"{ gazed | CPU | Target device for the gaze vector estimation inference (e.g. CPU, GPU, ...) }"
;
namespace {
std::string weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
CV_Assert(sz > EXT_LEN);
auto ext = model_path.substr(sz - EXT_LEN);
auto lower = [](unsigned char c) {
return static_cast<unsigned char>(std::tolower(c));
};
std::transform(ext.begin(), ext.end(), ext.begin(), lower);
CV_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
} // anonymous namespace
namespace custom {
namespace {
using GMat3 = std::tuple<cv::GMat,cv::GMat,cv::GMat>;
using GMats = cv::GArray<cv::GMat>;
using GRects = cv::GArray<cv::Rect>;
using GSize = cv::GOpaque<cv::Size>;
G_API_NET(Faces, <cv::GMat(cv::GMat)>, "face-detector" );
G_API_NET(Landmarks, <cv::GMat(cv::GMat)>, "facial-landmarks");
G_API_NET(HeadPose, < GMat3(cv::GMat)>, "head-pose");
G_API_NET(Gaze, <cv::GMat(cv::GMat,cv::GMat,cv::GMat)>, "gaze-vector");
G_API_OP(Size, <GSize(cv::GMat)>, "custom.gapi.size") {
static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(ParseSSD,
<GRects(cv::GMat, GSize, bool)>,
"custom.gaze_estimation.parseSSD") {
static cv::GArrayDesc outMeta( const cv::GMatDesc &
, const cv::GOpaqueDesc &
, bool) {
return cv::empty_array_desc();
}
};
// Left/Right eye per every face
G_API_OP(ParseEyes,
<std::tuple<GRects, GRects>(GMats, GRects, GSize)>,
"custom.gaze_estimation.parseEyes") {
static std::tuple<cv::GArrayDesc, cv::GArrayDesc>
outMeta( const cv::GArrayDesc &
, const cv::GArrayDesc &
, const cv::GOpaqueDesc &) {
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
}
};
// Combine three scalars into a 1x3 vector (per every face)
G_API_OP(ProcessPoses,
<GMats(GMats, GMats, GMats)>,
"custom.gaze_estimation.processPoses") {
static cv::GArrayDesc outMeta( const cv::GArrayDesc &
, const cv::GArrayDesc &
, const cv::GArrayDesc &) {
return cv::empty_array_desc();
}
};
void adjustBoundingBox(cv::Rect& boundingBox) {
auto w = boundingBox.width;
auto h = boundingBox.height;
boundingBox.x -= static_cast<int>(0.067 * w);
boundingBox.y -= static_cast<int>(0.028 * h);
boundingBox.width += static_cast<int>(0.15 * w);
boundingBox.height += static_cast<int>(0.13 * h);
if (boundingBox.width < boundingBox.height) {
auto dx = (boundingBox.height - boundingBox.width);
boundingBox.x -= dx / 2;
boundingBox.width += dx;
} else {
auto dy = (boundingBox.width - boundingBox.height);
boundingBox.y -= dy / 2;
boundingBox.height += dy;
}
}
void gazeVectorToGazeAngles(const cv::Point3f& gazeVector,
cv::Point2f& gazeAngles) {
auto r = cv::norm(gazeVector);
double v0 = static_cast<double>(gazeVector.x);
double v1 = static_cast<double>(gazeVector.y);
double v2 = static_cast<double>(gazeVector.z);
gazeAngles.x = static_cast<float>(180.0 / M_PI * (M_PI_2 + std::atan2(v2, v0)));
gazeAngles.y = static_cast<float>(180.0 / M_PI * (M_PI_2 - std::acos(v1 / r)));
}
GAPI_OCV_KERNEL(OCVSize, Size) {
static void run(const cv::Mat &in, cv::Size &out) {
out = in.size();
}
};
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
static void run(const cv::Mat &in_ssd_result,
const cv::Size &upscale,
const bool filter_out_of_bounds,
std::vector<cv::Rect> &out_objects) {
const auto &in_ssd_dims = in_ssd_result.size;
CV_Assert(in_ssd_dims.dims() == 4u);
const int MAX_PROPOSALS = in_ssd_dims[2];
const int OBJECT_SIZE = in_ssd_dims[3];
CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size
const cv::Rect surface({0,0}, upscale);
out_objects.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0];
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
(void) label;
if (image_id < 0.f) {
break; // marks end-of-detections
}
if (confidence < 0.5f) {
continue; // skip objects with low confidence
}
cv::Rect rc; // map relative coordinates to the original image scale
rc.x = static_cast<int>(rc_left * upscale.width);
rc.y = static_cast<int>(rc_top * upscale.height);
rc.width = static_cast<int>(rc_right * upscale.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * upscale.height) - rc.y;
adjustBoundingBox(rc); // TODO: new option?
const auto clipped_rc = rc & surface; // TODO: new option?
if (filter_out_of_bounds) {
if (clipped_rc.area() != rc.area()) {
continue;
}
}
out_objects.emplace_back(clipped_rc);
}
}
};
cv::Rect eyeBox(const cv::Rect &face_rc,
float p1_x, float p1_y, float p2_x, float p2_y,
float scale = 1.8f) {
const auto &up = face_rc.size();
const cv::Point p1 = {
static_cast<int>(p1_x*up.width),
static_cast<int>(p1_y*up.height)
};
const cv::Point p2 = {
static_cast<int>(p2_x*up.width),
static_cast<int>(p2_y*up.height)
};
cv::Rect result;
const auto size = static_cast<float>(cv::norm(p1 - p2));
const auto midpoint = (p1 + p2) / 2;
result.width = static_cast<int>(scale * size);
result.height = result.width;
result.x = face_rc.x + midpoint.x - (result.width / 2);
result.y = face_rc.y + midpoint.y - (result.height / 2);
// Shift result to the original frame's absolute coordinates
return result;
}
GAPI_OCV_KERNEL(OCVParseEyes, ParseEyes) {
static void run(const std::vector<cv::Mat> &in_landmarks_per_face,
const std::vector<cv::Rect> &in_face_rcs,
const cv::Size &frame_size,
std::vector<cv::Rect> &out_left_eyes,
std::vector<cv::Rect> &out_right_eyes) {
const size_t numFaces = in_landmarks_per_face.size();
const cv::Rect surface(cv::Point(0,0), frame_size);
GAPI_Assert(numFaces == in_face_rcs.size());
out_left_eyes.clear();
out_right_eyes.clear();
out_left_eyes.reserve(numFaces);
out_right_eyes.reserve(numFaces);
for (std::size_t i = 0u; i < numFaces; i++) {
const auto &lm = in_landmarks_per_face[i];
const auto &rc = in_face_rcs[i];
// Left eye is defined by points 0/1 (x2),
// Right eye is defined by points 2/3 (x2)
const float *data = lm.ptr<float>();
out_left_eyes .push_back(surface & eyeBox(rc, data[0], data[1], data[2], data[3]));
out_right_eyes.push_back(surface & eyeBox(rc, data[4], data[5], data[6], data[7]));
}
}
};
GAPI_OCV_KERNEL(OCVProcessPoses, ProcessPoses) {
static void run(const std::vector<cv::Mat> &in_ys,
const std::vector<cv::Mat> &in_ps,
const std::vector<cv::Mat> &in_rs,
std::vector<cv::Mat> &out_poses) {
const std::size_t sz = in_ys.size();
GAPI_Assert(sz == in_ps.size() && sz == in_rs.size());
out_poses.clear();
for (std::size_t idx = 0u; idx < sz; idx++) {
cv::Mat pose(1, 3, CV_32FC1);
float *ptr = pose.ptr<float>();
ptr[0] = in_ys[idx].ptr<float>()[0];
ptr[1] = in_ps[idx].ptr<float>()[0];
ptr[2] = in_rs[idx].ptr<float>()[0];
out_poses.push_back(std::move(pose));
}
}
};
} // anonymous namespace
} // namespace custom
namespace vis {
namespace {
cv::Point2f midp(const cv::Rect &rc) {
return (rc.tl() + rc.br()) / 2;
};
void bbox(cv::Mat &m, const cv::Rect &rc) {
cv::rectangle(m, rc, cv::Scalar{0,255,0}, 2, cv::LINE_8, 0);
};
void pose(cv::Mat &m, const cv::Mat &p, const cv::Rect &face_rc) {
const auto *posePtr = p.ptr<float>();
const auto yaw = static_cast<double>(posePtr[0]);
const auto pitch = static_cast<double>(posePtr[1]);
const auto roll = static_cast<double>(posePtr[2]);
const auto sinY = std::sin(yaw * M_PI / 180.0);
const auto sinP = std::sin(pitch * M_PI / 180.0);
const auto sinR = std::sin(roll * M_PI / 180.0);
const auto cosY = std::cos(yaw * M_PI / 180.0);
const auto cosP = std::cos(pitch * M_PI / 180.0);
const auto cosR = std::cos(roll * M_PI / 180.0);
const auto axisLength = 0.4 * face_rc.width;
const auto xCenter = face_rc.x + face_rc.width / 2;
const auto yCenter = face_rc.y + face_rc.height / 2;
const auto center = cv::Point{xCenter, yCenter};
const auto axisln = cv::Point2d{axisLength, axisLength};
const auto ctr = cv::Matx<double,2,2>(cosR*cosY, sinY*sinP*sinR, 0.f, cosP*sinR);
const auto ctt = cv::Matx<double,2,2>(cosR*sinY*sinP, cosY*sinR, 0.f, -cosP*cosR);
const auto ctf = cv::Matx<double,2,2>(sinY*cosP, 0.f, 0.f, sinP);
// center to right
cv::line(m, center, center + static_cast<cv::Point>(ctr*axisln), cv::Scalar(0, 0, 255), 2);
// center to top
cv::line(m, center, center + static_cast<cv::Point>(ctt*axisln), cv::Scalar(0, 255, 0), 2);
// center to forward
cv::line(m, center, center + static_cast<cv::Point>(ctf*axisln), cv::Scalar(255, 0, 255), 2);
}
void vvec(cv::Mat &m, const cv::Mat &v, const cv::Rect &face_rc,
const cv::Rect &left_rc, const cv::Rect &right_rc) {
const auto scale = 0.002 * face_rc.width;
cv::Point3f gazeVector;
const auto *gazePtr = v.ptr<float>();
gazeVector.x = gazePtr[0];
gazeVector.y = gazePtr[1];
gazeVector.z = gazePtr[2];
gazeVector = gazeVector / cv::norm(gazeVector);
const double arrowLength = 0.4 * face_rc.width;
const auto left_mid = midp(left_rc);
const auto right_mid = midp(right_rc);
cv::Point2f gazeArrow;
gazeArrow.x = gazeVector.x;
gazeArrow.y = -gazeVector.y;
gazeArrow *= arrowLength;
cv::arrowedLine(m, left_mid, left_mid + gazeArrow, cv::Scalar(255, 0, 0), 2);
cv::arrowedLine(m, right_mid, right_mid + gazeArrow, cv::Scalar(255, 0, 0), 2);
cv::Point2f gazeAngles;
custom::gazeVectorToGazeAngles(gazeVector, gazeAngles);
cv::putText(m,
cv::format("gaze angles: (h=%0.0f, v=%0.0f)",
static_cast<double>(std::round(gazeAngles.x)),
static_cast<double>(std::round(gazeAngles.y))),
cv::Point(static_cast<int>(face_rc.tl().x),
static_cast<int>(face_rc.br().y + 12. * face_rc.width / 100.)),
cv::FONT_HERSHEY_PLAIN, scale * 2, cv::Scalar::all(255), 1);
};
} // anonymous namespace
} // namespace vis
int main(int argc, char *argv[])
{
cv::CommandLineParser cmd(argc, argv, keys);
cmd.about(about);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
cv::GMat in;
cv::GMat faces = cv::gapi::infer<custom::Faces>(in);
cv::GOpaque<cv::Size> sz = cv::gapi::streaming::size(in);
cv::GArray<cv::Rect> faces_rc = custom::ParseSSD::on(faces, sz, true);
cv::GArray<cv::GMat> angles_y, angles_p, angles_r;
std::tie(angles_y, angles_p, angles_r) = cv::gapi::infer<custom::HeadPose>(faces_rc, in);
cv::GArray<cv::GMat> heads_pos = custom::ProcessPoses::on(angles_y, angles_p, angles_r);
cv::GArray<cv::GMat> landmarks = cv::gapi::infer<custom::Landmarks>(faces_rc, in);
cv::GArray<cv::Rect> left_eyes, right_eyes;
std::tie(left_eyes, right_eyes) = custom::ParseEyes::on(landmarks, faces_rc, sz);
cv::GArray<cv::GMat> gaze_vectors = cv::gapi::infer2<custom::Gaze>( in
, left_eyes
, right_eyes
, heads_pos);
cv::GComputation graph(cv::GIn(in),
cv::GOut( cv::gapi::copy(in)
, faces_rc
, left_eyes
, right_eyes
, heads_pos
, gaze_vectors));
const auto input_file_name = cmd.get<std::string>("input");
const auto face_model_path = cmd.get<std::string>("facem");
const auto head_model_path = cmd.get<std::string>("headm");
const auto lmrk_model_path = cmd.get<std::string>("landm");
const auto gaze_model_path = cmd.get<std::string>("gazem");
auto face_net = cv::gapi::ie::Params<custom::Faces> {
face_model_path, // path to topology IR
weights_path(face_model_path), // path to weights
cmd.get<std::string>("faced"), /// device specifier
};
auto head_net = cv::gapi::ie::Params<custom::HeadPose> {
head_model_path, // path to topology IR
weights_path(head_model_path), // path to weights
cmd.get<std::string>("headd"), // device specifier
}.cfgOutputLayers({"angle_y_fc", "angle_p_fc", "angle_r_fc"});
auto landmarks_net = cv::gapi::ie::Params<custom::Landmarks> {
lmrk_model_path, // path to topology IR
weights_path(lmrk_model_path), // path to weights
cmd.get<std::string>("landd"), // device specifier
};
auto gaze_net = cv::gapi::ie::Params<custom::Gaze> {
gaze_model_path, // path to topology IR
weights_path(gaze_model_path), // path to weights
cmd.get<std::string>("gazed"), // device specifier
}.cfgInputLayers({"left_eye_image", "right_eye_image", "head_pose_angles"});
auto kernels = cv::gapi::kernels< custom::OCVSize
, custom::OCVParseSSD
, custom::OCVParseEyes
, custom::OCVProcessPoses>();
auto networks = cv::gapi::networks(face_net, head_net, landmarks_net, gaze_net);
auto pipeline = graph.compileStreaming(cv::compile_args(networks, kernels));
cv::TickMeter tm;
cv::Mat image;
std::vector<cv::Rect> out_faces, out_right_eyes, out_left_eyes;
std::vector<cv::Mat> out_poses;
std::vector<cv::Mat> out_gazes;
std::size_t frames = 0u;
std::cout << "Reading " << input_file_name << std::endl;
pipeline.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name));
pipeline.start();
tm.start();
while (pipeline.pull(cv::gout( image
, out_faces
, out_left_eyes
, out_right_eyes
, out_poses
, out_gazes))) {
frames++;
// Visualize results on the frame
for (auto &&rc : out_faces) vis::bbox(image, rc);
for (auto &&rc : out_left_eyes) vis::bbox(image, rc);
for (auto &&rc : out_right_eyes) vis::bbox(image, rc);
for (std::size_t i = 0u; i < out_faces.size(); i++) {
vis::pose(image, out_poses[i], out_faces[i]);
vis::vvec(image, out_gazes[i], out_faces[i], out_left_eyes[i], out_right_eyes[i]);
}
tm.stop();
const auto fps_str = std::to_string(frames / tm.getTimeSec()) + " FPS";
cv::putText(image, fps_str, {0,32}, cv::FONT_HERSHEY_SIMPLEX, 1.0, {0,255,0}, 2);
cv::imshow("Out", image);
cv::waitKey(1);
tm.start();
}
tm.stop();
std::cout << "Processed " << frames << " frames"
<< " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
return 0;
}