Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
423 lines
17 KiB
423 lines
17 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other GpuMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or bpied warranties, including, but not limited to, the bpied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
#if !defined (HAVE_CUDA) |
|
|
|
void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); } |
|
double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; } |
|
double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; } |
|
Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); } |
|
Scalar cv::gpu::sum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); } |
|
Scalar cv::gpu::sqrSum(const GpuMat&) { throw_nogpu(); return Scalar(); } |
|
Scalar cv::gpu::sqrSum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); } |
|
void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&, GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&) { throw_nogpu(); } |
|
void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); } |
|
int cv::gpu::countNonZero(const GpuMat&) { throw_nogpu(); return 0; } |
|
int cv::gpu::countNonZero(const GpuMat&, GpuMat&) { throw_nogpu(); return 0; } |
|
|
|
#else |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// meanStdDev |
|
|
|
void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1); |
|
|
|
NppiSize sz; |
|
sz.width = src.cols; |
|
sz.height = src.rows; |
|
|
|
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), src.step, sz, mean.val, stddev.val) ); |
|
} |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// norm |
|
|
|
double cv::gpu::norm(const GpuMat& src1, int normType) |
|
{ |
|
return norm(src1, GpuMat(src1.size(), src1.type(), Scalar::all(0.0)), normType); |
|
} |
|
|
|
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType) |
|
{ |
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type()); |
|
|
|
CV_Assert(src1.type() == CV_8UC1); |
|
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2); |
|
|
|
typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2, |
|
NppiSize oSizeROI, Npp64f* pRetVal); |
|
|
|
static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R}; |
|
|
|
NppiSize sz; |
|
sz.width = src1.cols; |
|
sz.height = src1.rows; |
|
|
|
int funcIdx = normType >> 1; |
|
double retVal; |
|
|
|
nppSafeCall( npp_norm_diff_func[funcIdx](src1.ptr<Npp8u>(), src1.step, |
|
src2.ptr<Npp8u>(), src2.step, |
|
sz, &retVal) ); |
|
|
|
return retVal; |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// Sum |
|
|
|
namespace cv { namespace gpu { namespace mathfunc |
|
{ |
|
template <typename T> |
|
void sum_caller(const DevMem2D src, PtrStep buf, double* sum, int cn); |
|
|
|
template <typename T> |
|
void sum_multipass_caller(const DevMem2D src, PtrStep buf, double* sum, int cn); |
|
|
|
template <typename T> |
|
void sqsum_caller(const DevMem2D src, PtrStep buf, double* sum, int cn); |
|
|
|
template <typename T> |
|
void sqsum_multipass_caller(const DevMem2D src, PtrStep buf, double* sum, int cn); |
|
|
|
namespace sum |
|
{ |
|
void get_buf_size_required(int cols, int rows, int cn, int& bufcols, int& bufrows); |
|
} |
|
}}} |
|
|
|
|
|
Scalar cv::gpu::sum(const GpuMat& src) |
|
{ |
|
GpuMat buf; |
|
return sum(src, buf); |
|
} |
|
|
|
|
|
Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf) |
|
{ |
|
using namespace mathfunc; |
|
|
|
typedef void (*Caller)(const DevMem2D, PtrStep, double*, int); |
|
static const Caller callers[2][7] = |
|
{ { sum_multipass_caller<unsigned char>, sum_multipass_caller<char>, |
|
sum_multipass_caller<unsigned short>, sum_multipass_caller<short>, |
|
sum_multipass_caller<int>, sum_multipass_caller<float>, 0 }, |
|
{ sum_caller<unsigned char>, sum_caller<char>, |
|
sum_caller<unsigned short>, sum_caller<short>, |
|
sum_caller<int>, sum_caller<float>, 0 } }; |
|
|
|
Size bufSize; |
|
sum::get_buf_size_required(src.cols, src.rows, src.channels(), bufSize.width, bufSize.height); |
|
ensureSizeIsEnough(bufSize, CV_8U, buf); |
|
|
|
Caller caller = callers[hasAtomicsSupport(getDevice())][src.depth()]; |
|
if (!caller) CV_Error(CV_StsBadArg, "sum: unsupported type"); |
|
|
|
double result[4]; |
|
caller(src, buf, result, src.channels()); |
|
return Scalar(result[0], result[1], result[2], result[3]); |
|
} |
|
|
|
|
|
Scalar cv::gpu::sqrSum(const GpuMat& src) |
|
{ |
|
GpuMat buf; |
|
return sqrSum(src, buf); |
|
} |
|
|
|
|
|
Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf) |
|
{ |
|
using namespace mathfunc; |
|
|
|
typedef void (*Caller)(const DevMem2D, PtrStep, double*, int); |
|
static const Caller callers[2][7] = |
|
{ { sqsum_multipass_caller<unsigned char>, sqsum_multipass_caller<char>, |
|
sqsum_multipass_caller<unsigned short>, sqsum_multipass_caller<short>, |
|
sqsum_multipass_caller<int>, sqsum_multipass_caller<float>, 0 }, |
|
{ sqsum_caller<unsigned char>, sqsum_caller<char>, |
|
sqsum_caller<unsigned short>, sqsum_caller<short>, |
|
sqsum_caller<int>, sqsum_caller<float>, 0 } }; |
|
|
|
Size bufSize; |
|
sum::get_buf_size_required(src.cols, src.rows, src.channels(), bufSize.width, bufSize.height); |
|
ensureSizeIsEnough(bufSize, CV_8U, buf); |
|
|
|
Caller caller = callers[hasAtomicsSupport(getDevice())][src.depth()]; |
|
if (!caller) CV_Error(CV_StsBadArg, "sqrSum: unsupported type"); |
|
|
|
double result[4]; |
|
caller(src, buf, result, src.channels()); |
|
return Scalar(result[0], result[1], result[2], result[3]); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// Find min or max |
|
|
|
namespace cv { namespace gpu { namespace mathfunc { namespace minmax { |
|
|
|
void get_buf_size_required(int cols, int rows, int elem_size, int& bufcols, int& bufrows); |
|
|
|
template <typename T> |
|
void min_max_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf); |
|
|
|
template <typename T> |
|
void min_max_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf); |
|
|
|
template <typename T> |
|
void min_max_multipass_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf); |
|
|
|
template <typename T> |
|
void min_max_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf); |
|
|
|
}}}} |
|
|
|
|
|
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask) |
|
{ |
|
GpuMat buf; |
|
minMax(src, minVal, maxVal, mask, buf); |
|
} |
|
|
|
|
|
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf) |
|
{ |
|
using namespace mathfunc::minmax; |
|
|
|
typedef void (*Caller)(const DevMem2D, double*, double*, PtrStep); |
|
typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, PtrStep); |
|
|
|
static const Caller callers[2][7] = |
|
{ { min_max_multipass_caller<unsigned char>, min_max_multipass_caller<char>, |
|
min_max_multipass_caller<unsigned short>, min_max_multipass_caller<short>, |
|
min_max_multipass_caller<int>, min_max_multipass_caller<float>, 0 }, |
|
{ min_max_caller<unsigned char>, min_max_caller<char>, |
|
min_max_caller<unsigned short>, min_max_caller<short>, |
|
min_max_caller<int>, min_max_caller<float>, min_max_caller<double> } }; |
|
|
|
static const MaskedCaller masked_callers[2][7] = |
|
{ { min_max_mask_multipass_caller<unsigned char>, min_max_mask_multipass_caller<char>, |
|
min_max_mask_multipass_caller<unsigned short>, min_max_mask_multipass_caller<short>, |
|
min_max_mask_multipass_caller<int>, min_max_mask_multipass_caller<float>, 0 }, |
|
{ min_max_mask_caller<unsigned char>, min_max_mask_caller<char>, |
|
min_max_mask_caller<unsigned short>, min_max_mask_caller<short>, |
|
min_max_mask_caller<int>, min_max_mask_caller<float>, |
|
min_max_mask_caller<double> } }; |
|
|
|
|
|
CV_Assert(src.channels() == 1); |
|
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size())); |
|
CV_Assert(src.type() != CV_64F || hasNativeDoubleSupport(getDevice())); |
|
|
|
double minVal_; if (!minVal) minVal = &minVal_; |
|
double maxVal_; if (!maxVal) maxVal = &maxVal_; |
|
|
|
Size bufSize; |
|
get_buf_size_required(src.cols, src.rows, src.elemSize(), bufSize.width, bufSize.height); |
|
ensureSizeIsEnough(bufSize, CV_8U, buf); |
|
|
|
if (mask.empty()) |
|
{ |
|
Caller caller = callers[hasAtomicsSupport(getDevice())][src.type()]; |
|
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type"); |
|
caller(src, minVal, maxVal, buf); |
|
} |
|
else |
|
{ |
|
MaskedCaller caller = masked_callers[hasAtomicsSupport(getDevice())][src.type()]; |
|
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type"); |
|
caller(src, mask, minVal, maxVal, buf); |
|
} |
|
} |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////// |
|
// Locate min and max |
|
|
|
namespace cv { namespace gpu { namespace mathfunc { namespace minmaxloc { |
|
|
|
void get_buf_size_required(int cols, int rows, int elem_size, int& b1cols, |
|
int& b1rows, int& b2cols, int& b2rows); |
|
|
|
template <typename T> |
|
void min_max_loc_caller(const DevMem2D src, double* minval, double* maxval, |
|
int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf); |
|
|
|
template <typename T> |
|
void min_max_loc_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, |
|
int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf); |
|
|
|
template <typename T> |
|
void min_max_loc_multipass_caller(const DevMem2D src, double* minval, double* maxval, |
|
int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf); |
|
|
|
template <typename T> |
|
void min_max_loc_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, |
|
int minloc[2], int maxloc[2], PtrStep valBuf, PtrStep locBuf); |
|
}}}} |
|
|
|
|
|
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask) |
|
{ |
|
GpuMat valBuf, locBuf; |
|
minMaxLoc(src, minVal, maxVal, minLoc, maxLoc, mask, valBuf, locBuf); |
|
} |
|
|
|
|
|
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, |
|
const GpuMat& mask, GpuMat& valBuf, GpuMat& locBuf) |
|
{ |
|
using namespace mathfunc::minmaxloc; |
|
|
|
typedef void (*Caller)(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep); |
|
typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep); |
|
|
|
static const Caller callers[2][7] = |
|
{ { min_max_loc_multipass_caller<unsigned char>, min_max_loc_multipass_caller<char>, |
|
min_max_loc_multipass_caller<unsigned short>, min_max_loc_multipass_caller<short>, |
|
min_max_loc_multipass_caller<int>, min_max_loc_multipass_caller<float>, 0 }, |
|
{ min_max_loc_caller<unsigned char>, min_max_loc_caller<char>, |
|
min_max_loc_caller<unsigned short>, min_max_loc_caller<short>, |
|
min_max_loc_caller<int>, min_max_loc_caller<float>, min_max_loc_caller<double> } }; |
|
|
|
static const MaskedCaller masked_callers[2][7] = |
|
{ { min_max_loc_mask_multipass_caller<unsigned char>, min_max_loc_mask_multipass_caller<char>, |
|
min_max_loc_mask_multipass_caller<unsigned short>, min_max_loc_mask_multipass_caller<short>, |
|
min_max_loc_mask_multipass_caller<int>, min_max_loc_mask_multipass_caller<float>, 0 }, |
|
{ min_max_loc_mask_caller<unsigned char>, min_max_loc_mask_caller<char>, |
|
min_max_loc_mask_caller<unsigned short>, min_max_loc_mask_caller<short>, |
|
min_max_loc_mask_caller<int>, min_max_loc_mask_caller<float>, min_max_loc_mask_caller<double> } }; |
|
|
|
CV_Assert(src.channels() == 1); |
|
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size())); |
|
CV_Assert(src.type() != CV_64F || hasNativeDoubleSupport(getDevice())); |
|
|
|
double minVal_; if (!minVal) minVal = &minVal_; |
|
double maxVal_; if (!maxVal) maxVal = &maxVal_; |
|
int minLoc_[2]; |
|
int maxLoc_[2]; |
|
|
|
Size valBufSize, locBufSize; |
|
get_buf_size_required(src.cols, src.rows, src.elemSize(), valBufSize.width, |
|
valBufSize.height, locBufSize.width, locBufSize.height); |
|
ensureSizeIsEnough(valBufSize, CV_8U, valBuf); |
|
ensureSizeIsEnough(locBufSize, CV_8U, locBuf); |
|
|
|
if (mask.empty()) |
|
{ |
|
Caller caller = callers[hasAtomicsSupport(getDevice())][src.type()]; |
|
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type"); |
|
caller(src, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf); |
|
} |
|
else |
|
{ |
|
MaskedCaller caller = masked_callers[hasAtomicsSupport(getDevice())][src.type()]; |
|
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type"); |
|
caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf); |
|
} |
|
|
|
if (minLoc) { minLoc->x = minLoc_[0]; minLoc->y = minLoc_[1]; } |
|
if (maxLoc) { maxLoc->x = maxLoc_[0]; maxLoc->y = maxLoc_[1]; } |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Count non-zero elements |
|
|
|
namespace cv { namespace gpu { namespace mathfunc { namespace countnonzero { |
|
|
|
void get_buf_size_required(int cols, int rows, int& bufcols, int& bufrows); |
|
|
|
template <typename T> |
|
int count_non_zero_caller(const DevMem2D src, PtrStep buf); |
|
|
|
template <typename T> |
|
int count_non_zero_multipass_caller(const DevMem2D src, PtrStep buf); |
|
|
|
}}}} |
|
|
|
|
|
int cv::gpu::countNonZero(const GpuMat& src) |
|
{ |
|
GpuMat buf; |
|
return countNonZero(src, buf); |
|
} |
|
|
|
|
|
int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf) |
|
{ |
|
using namespace mathfunc::countnonzero; |
|
|
|
typedef int (*Caller)(const DevMem2D src, PtrStep buf); |
|
|
|
static const Caller callers[2][7] = |
|
{ { count_non_zero_multipass_caller<unsigned char>, count_non_zero_multipass_caller<char>, |
|
count_non_zero_multipass_caller<unsigned short>, count_non_zero_multipass_caller<short>, |
|
count_non_zero_multipass_caller<int>, count_non_zero_multipass_caller<float>, 0}, |
|
{ count_non_zero_caller<unsigned char>, count_non_zero_caller<char>, |
|
count_non_zero_caller<unsigned short>, count_non_zero_caller<short>, |
|
count_non_zero_caller<int>, count_non_zero_caller<float>, count_non_zero_caller<double> } }; |
|
|
|
CV_Assert(src.channels() == 1); |
|
CV_Assert(src.type() != CV_64F || hasNativeDoubleSupport(getDevice())); |
|
|
|
Size bufSize; |
|
get_buf_size_required(src.cols, src.rows, bufSize.width, bufSize.height); |
|
ensureSizeIsEnough(bufSize, CV_8U, buf); |
|
|
|
Caller caller = callers[hasAtomicsSupport(getDevice())][src.type()]; |
|
if (!caller) CV_Error(CV_StsBadArg, "countNonZero: unsupported type"); |
|
return caller(src, buf); |
|
} |
|
|
|
#endif
|
|
|