mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
383 lines
15 KiB
383 lines
15 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective icvers. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_FAST_NLMEANS_MULTI_DENOISING_INVOKER_HPP__ |
|
#define __OPENCV_FAST_NLMEANS_MULTI_DENOISING_INVOKER_HPP__ |
|
|
|
#include "precomp.hpp" |
|
#include <limits> |
|
|
|
#include "fast_nlmeans_denoising_invoker_commons.hpp" |
|
#include "arrays.hpp" |
|
|
|
using namespace cv; |
|
|
|
template <typename T> |
|
struct FastNlMeansMultiDenoisingInvoker : ParallelLoopBody { |
|
public: |
|
FastNlMeansMultiDenoisingInvoker( |
|
const std::vector<Mat>& srcImgs, int imgToDenoiseIndex, int temporalWindowSize, |
|
Mat& dst, int template_window_size, int search_window_size, const float h); |
|
|
|
void operator() (const Range& range) const; |
|
|
|
private: |
|
void operator= (const FastNlMeansMultiDenoisingInvoker&); |
|
|
|
int rows_; |
|
int cols_; |
|
|
|
Mat& dst_; |
|
|
|
std::vector<Mat> extended_srcs_; |
|
Mat main_extended_src_; |
|
int border_size_; |
|
|
|
int template_window_size_; |
|
int search_window_size_; |
|
int temporal_window_size_; |
|
|
|
int template_window_half_size_; |
|
int search_window_half_size_; |
|
int temporal_window_half_size_; |
|
|
|
int fixed_point_mult_; |
|
int almost_template_window_size_sq_bin_shift; |
|
std::vector<int> almost_dist2weight; |
|
|
|
void calcDistSumsForFirstElementInRow( |
|
int i, |
|
Array3d<int>& dist_sums, |
|
Array4d<int>& col_dist_sums, |
|
Array4d<int>& up_col_dist_sums) const; |
|
|
|
void calcDistSumsForElementInFirstRow( |
|
int i, |
|
int j, |
|
int first_col_num, |
|
Array3d<int>& dist_sums, |
|
Array4d<int>& col_dist_sums, |
|
Array4d<int>& up_col_dist_sums) const; |
|
}; |
|
|
|
template <class T> |
|
FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker( |
|
const std::vector<Mat>& srcImgs, |
|
int imgToDenoiseIndex, |
|
int temporalWindowSize, |
|
cv::Mat& dst, |
|
int template_window_size, |
|
int search_window_size, |
|
const float h) : dst_(dst), extended_srcs_(srcImgs.size()) |
|
{ |
|
CV_Assert(srcImgs.size() > 0); |
|
CV_Assert(srcImgs[0].channels() == sizeof(T)); |
|
|
|
rows_ = srcImgs[0].rows; |
|
cols_ = srcImgs[0].cols; |
|
|
|
template_window_half_size_ = template_window_size / 2; |
|
search_window_half_size_ = search_window_size / 2; |
|
temporal_window_half_size_ = temporalWindowSize / 2; |
|
|
|
template_window_size_ = template_window_half_size_ * 2 + 1; |
|
search_window_size_ = search_window_half_size_ * 2 + 1; |
|
temporal_window_size_ = temporal_window_half_size_ * 2 + 1; |
|
|
|
border_size_ = search_window_half_size_ + template_window_half_size_; |
|
for (int i = 0; i < temporal_window_size_; i++) { |
|
copyMakeBorder( |
|
srcImgs[imgToDenoiseIndex - temporal_window_half_size_ + i], extended_srcs_[i], |
|
border_size_, border_size_, border_size_, border_size_, cv::BORDER_DEFAULT); |
|
} |
|
main_extended_src_ = extended_srcs_[temporal_window_half_size_]; |
|
|
|
const int max_estimate_sum_value = |
|
temporal_window_size_ * search_window_size_ * search_window_size_ * 255; |
|
|
|
fixed_point_mult_ = std::numeric_limits<int>::max() / max_estimate_sum_value; |
|
|
|
// precalc weight for every possible l2 dist between blocks |
|
// additional optimization of precalced weights to replace division(averaging) by binary shift |
|
int template_window_size_sq = template_window_size_ * template_window_size_; |
|
almost_template_window_size_sq_bin_shift = 0; |
|
while (1 << almost_template_window_size_sq_bin_shift < template_window_size_sq) { |
|
almost_template_window_size_sq_bin_shift++; |
|
} |
|
|
|
int almost_template_window_size_sq = 1 << almost_template_window_size_sq_bin_shift; |
|
double almost_dist2actual_dist_multiplier = |
|
((double) almost_template_window_size_sq) / template_window_size_sq; |
|
|
|
int max_dist = 255 * 255 * sizeof(T); |
|
int almost_max_dist = (int) (max_dist / almost_dist2actual_dist_multiplier + 1); |
|
almost_dist2weight.resize(almost_max_dist); |
|
|
|
const double WEIGHT_THRESHOLD = 0.001; |
|
for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++) { |
|
double dist = almost_dist * almost_dist2actual_dist_multiplier; |
|
int weight = cvRound(fixed_point_mult_ * std::exp(-dist / (h * h * sizeof(T)))); |
|
|
|
if (weight < WEIGHT_THRESHOLD * fixed_point_mult_) { |
|
weight = 0; |
|
} |
|
|
|
almost_dist2weight[almost_dist] = weight; |
|
} |
|
CV_Assert(almost_dist2weight[0] == fixed_point_mult_); |
|
// additional optimization init end |
|
|
|
if (dst_.empty()) { |
|
dst_ = Mat::zeros(srcImgs[0].size(), srcImgs[0].type()); |
|
} |
|
} |
|
|
|
template <class T> |
|
void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const { |
|
int row_from = range.start; |
|
int row_to = range.end - 1; |
|
|
|
Array3d<int> dist_sums(temporal_window_size_, search_window_size_, search_window_size_); |
|
|
|
// for lazy calc optimization |
|
Array4d<int> col_dist_sums( |
|
template_window_size_, temporal_window_size_, search_window_size_, search_window_size_); |
|
|
|
int first_col_num = -1; |
|
|
|
Array4d<int> up_col_dist_sums( |
|
cols_, temporal_window_size_, search_window_size_, search_window_size_); |
|
|
|
for (int i = row_from; i <= row_to; i++) { |
|
for (int j = 0; j < cols_; j++) { |
|
int search_window_y = i - search_window_half_size_; |
|
int search_window_x = j - search_window_half_size_; |
|
|
|
// calc dist_sums |
|
if (j == 0) { |
|
calcDistSumsForFirstElementInRow(i, dist_sums, col_dist_sums, up_col_dist_sums); |
|
first_col_num = 0; |
|
|
|
} else { // calc cur dist_sums using previous dist_sums |
|
if (i == row_from) { |
|
calcDistSumsForElementInFirstRow(i, j, first_col_num, |
|
dist_sums, col_dist_sums, up_col_dist_sums); |
|
|
|
} else { |
|
int ay = border_size_ + i; |
|
int ax = border_size_ + j + template_window_half_size_; |
|
|
|
int start_by = |
|
border_size_ + i - search_window_half_size_; |
|
|
|
int start_bx = |
|
border_size_ + j - search_window_half_size_ + template_window_half_size_; |
|
|
|
T a_up = main_extended_src_.at<T>(ay - template_window_half_size_ - 1, ax); |
|
T a_down = main_extended_src_.at<T>(ay + template_window_half_size_, ax); |
|
|
|
// copy class member to local variable for optimization |
|
int search_window_size = search_window_size_; |
|
|
|
for (int d = 0; d < temporal_window_size_; d++) { |
|
Mat cur_extended_src = extended_srcs_[d]; |
|
Array2d<int> cur_dist_sums = dist_sums[d]; |
|
Array2d<int> cur_col_dist_sums = col_dist_sums[first_col_num][d]; |
|
Array2d<int> cur_up_col_dist_sums = up_col_dist_sums[j][d]; |
|
for (int y = 0; y < search_window_size; y++) { |
|
int* dist_sums_row = cur_dist_sums.row_ptr(y); |
|
|
|
int* col_dist_sums_row = cur_col_dist_sums.row_ptr(y); |
|
|
|
int* up_col_dist_sums_row = cur_up_col_dist_sums.row_ptr(y); |
|
|
|
const T* b_up_ptr = |
|
cur_extended_src.ptr<T>(start_by - template_window_half_size_ - 1 + y); |
|
const T* b_down_ptr = |
|
cur_extended_src.ptr<T>(start_by + template_window_half_size_ + y); |
|
|
|
for (int x = 0; x < search_window_size; x++) { |
|
dist_sums_row[x] -= col_dist_sums_row[x]; |
|
|
|
col_dist_sums_row[x] = up_col_dist_sums_row[x] + |
|
calcUpDownDist( |
|
a_up, a_down, |
|
b_up_ptr[start_bx + x], b_down_ptr[start_bx + x] |
|
); |
|
|
|
dist_sums_row[x] += col_dist_sums_row[x]; |
|
|
|
up_col_dist_sums_row[x] = col_dist_sums_row[x]; |
|
|
|
} |
|
} |
|
} |
|
} |
|
|
|
first_col_num = (first_col_num + 1) % template_window_size_; |
|
} |
|
|
|
// calc weights |
|
int weights_sum = 0; |
|
|
|
int estimation[3]; |
|
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++) { |
|
estimation[channel_num] = 0; |
|
} |
|
for (int d = 0; d < temporal_window_size_; d++) { |
|
const Mat& esrc_d = extended_srcs_[d]; |
|
for (int y = 0; y < search_window_size_; y++) { |
|
const T* cur_row_ptr = esrc_d.ptr<T>(border_size_ + search_window_y + y); |
|
|
|
int* dist_sums_row = dist_sums.row_ptr(d, y); |
|
|
|
for (int x = 0; x < search_window_size_; x++) { |
|
int almostAvgDist = |
|
dist_sums_row[x] >> almost_template_window_size_sq_bin_shift; |
|
|
|
int weight = almost_dist2weight[almostAvgDist]; |
|
weights_sum += weight; |
|
|
|
T p = cur_row_ptr[border_size_ + search_window_x + x]; |
|
incWithWeight(estimation, weight, p); |
|
} |
|
} |
|
} |
|
|
|
for (size_t channel_num = 0; channel_num < sizeof(T); channel_num++) |
|
estimation[channel_num] = ((unsigned)estimation[channel_num] + weights_sum / 2) / weights_sum; |
|
|
|
dst_.at<T>(i,j) = saturateCastFromArray<T>(estimation); |
|
|
|
} |
|
} |
|
} |
|
|
|
template <class T> |
|
inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRow( |
|
int i, |
|
Array3d<int>& dist_sums, |
|
Array4d<int>& col_dist_sums, |
|
Array4d<int>& up_col_dist_sums) const |
|
{ |
|
int j = 0; |
|
|
|
for (int d = 0; d < temporal_window_size_; d++) { |
|
Mat cur_extended_src = extended_srcs_[d]; |
|
for (int y = 0; y < search_window_size_; y++) { |
|
for (int x = 0; x < search_window_size_; x++) { |
|
dist_sums[d][y][x] = 0; |
|
for (int tx = 0; tx < template_window_size_; tx++) { |
|
col_dist_sums[tx][d][y][x] = 0; |
|
} |
|
|
|
int start_y = i + y - search_window_half_size_; |
|
int start_x = j + x - search_window_half_size_; |
|
|
|
int* dist_sums_ptr = &dist_sums[d][y][x]; |
|
int* col_dist_sums_ptr = &col_dist_sums[0][d][y][x]; |
|
int col_dist_sums_step = col_dist_sums.step_size(0); |
|
for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++) { |
|
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) { |
|
int dist = calcDist<T>( |
|
main_extended_src_.at<T>( |
|
border_size_ + i + ty, border_size_ + j + tx), |
|
cur_extended_src.at<T>( |
|
border_size_ + start_y + ty, border_size_ + start_x + tx) |
|
); |
|
|
|
*dist_sums_ptr += dist; |
|
*col_dist_sums_ptr += dist; |
|
} |
|
col_dist_sums_ptr += col_dist_sums_step; |
|
} |
|
|
|
up_col_dist_sums[j][d][y][x] = col_dist_sums[template_window_size_ - 1][d][y][x]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
template <class T> |
|
inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRow( |
|
int i, |
|
int j, |
|
int first_col_num, |
|
Array3d<int>& dist_sums, |
|
Array4d<int>& col_dist_sums, |
|
Array4d<int>& up_col_dist_sums) const |
|
{ |
|
int ay = border_size_ + i; |
|
int ax = border_size_ + j + template_window_half_size_; |
|
|
|
int start_by = border_size_ + i - search_window_half_size_; |
|
int start_bx = border_size_ + j - search_window_half_size_ + template_window_half_size_; |
|
|
|
int new_last_col_num = first_col_num; |
|
|
|
for (int d = 0; d < temporal_window_size_; d++) { |
|
Mat cur_extended_src = extended_srcs_[d]; |
|
for (int y = 0; y < search_window_size_; y++) { |
|
for (int x = 0; x < search_window_size_; x++) { |
|
dist_sums[d][y][x] -= col_dist_sums[first_col_num][d][y][x]; |
|
|
|
col_dist_sums[new_last_col_num][d][y][x] = 0; |
|
int by = start_by + y; |
|
int bx = start_bx + x; |
|
|
|
int* col_dist_sums_ptr = &col_dist_sums[new_last_col_num][d][y][x]; |
|
for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) { |
|
*col_dist_sums_ptr += |
|
calcDist<T>( |
|
main_extended_src_.at<T>(ay + ty, ax), |
|
cur_extended_src.at<T>(by + ty, bx) |
|
); |
|
} |
|
|
|
dist_sums[d][y][x] += col_dist_sums[new_last_col_num][d][y][x]; |
|
|
|
up_col_dist_sums[j][d][y][x] = col_dist_sums[new_last_col_num][d][y][x]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#endif
|
|
|