mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
322 lines
11 KiB
322 lines
11 KiB
#include "opencv2/core/core_c.h" |
|
#include "opencv2/ml/ml.hpp" |
|
#include <stdio.h> |
|
|
|
static void help() |
|
{ |
|
printf("\nThis program demonstrated the use of OpenCV's decision tree function for learning and predicting data\n" |
|
"Usage :\n" |
|
"./mushroom <path to agaricus-lepiota.data>\n" |
|
"\n" |
|
"The sample demonstrates how to build a decision tree for classifying mushrooms.\n" |
|
"It uses the sample base agaricus-lepiota.data from UCI Repository, here is the link:\n" |
|
"\n" |
|
"Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).\n" |
|
"UCI Repository of machine learning databases\n" |
|
"[http://www.ics.uci.edu/~mlearn/MLRepository.html].\n" |
|
"Irvine, CA: University of California, Department of Information and Computer Science.\n" |
|
"\n" |
|
"// loads the mushroom database, which is a text file, containing\n" |
|
"// one training sample per row, all the input variables and the output variable are categorical,\n" |
|
"// the values are encoded by characters.\n\n"); |
|
} |
|
|
|
static int mushroom_read_database( const char* filename, CvMat** data, CvMat** missing, CvMat** responses ) |
|
{ |
|
const int M = 1024; |
|
FILE* f = fopen( filename, "rt" ); |
|
CvMemStorage* storage; |
|
CvSeq* seq; |
|
char buf[M+2], *ptr; |
|
float* el_ptr; |
|
CvSeqReader reader; |
|
int i, j, var_count = 0; |
|
|
|
if( !f ) |
|
return 0; |
|
|
|
// read the first line and determine the number of variables |
|
if( !fgets( buf, M, f )) |
|
{ |
|
fclose(f); |
|
return 0; |
|
} |
|
|
|
for( ptr = buf; *ptr != '\0'; ptr++ ) |
|
var_count += *ptr == ','; |
|
assert( ptr - buf == (var_count+1)*2 ); |
|
|
|
// create temporary memory storage to store the whole database |
|
el_ptr = new float[var_count+1]; |
|
storage = cvCreateMemStorage(); |
|
seq = cvCreateSeq( 0, sizeof(*seq), (var_count+1)*sizeof(float), storage ); |
|
|
|
for(;;) |
|
{ |
|
for( i = 0; i <= var_count; i++ ) |
|
{ |
|
int c = buf[i*2]; |
|
el_ptr[i] = c == '?' ? -1.f : (float)c; |
|
} |
|
if( i != var_count+1 ) |
|
break; |
|
cvSeqPush( seq, el_ptr ); |
|
if( !fgets( buf, M, f ) || !strchr( buf, ',' ) ) |
|
break; |
|
} |
|
fclose(f); |
|
|
|
// allocate the output matrices and copy the base there |
|
*data = cvCreateMat( seq->total, var_count, CV_32F ); |
|
*missing = cvCreateMat( seq->total, var_count, CV_8U ); |
|
*responses = cvCreateMat( seq->total, 1, CV_32F ); |
|
|
|
cvStartReadSeq( seq, &reader ); |
|
|
|
for( i = 0; i < seq->total; i++ ) |
|
{ |
|
const float* sdata = (float*)reader.ptr + 1; |
|
float* ddata = data[0]->data.fl + var_count*i; |
|
float* dr = responses[0]->data.fl + i; |
|
uchar* dm = missing[0]->data.ptr + var_count*i; |
|
|
|
for( j = 0; j < var_count; j++ ) |
|
{ |
|
ddata[j] = sdata[j]; |
|
dm[j] = sdata[j] < 0; |
|
} |
|
*dr = sdata[-1]; |
|
CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); |
|
} |
|
|
|
cvReleaseMemStorage( &storage ); |
|
delete el_ptr; |
|
return 1; |
|
} |
|
|
|
|
|
static CvDTree* mushroom_create_dtree( const CvMat* data, const CvMat* missing, |
|
const CvMat* responses, float p_weight ) |
|
{ |
|
CvDTree* dtree; |
|
CvMat* var_type; |
|
int i, hr1 = 0, hr2 = 0, p_total = 0; |
|
float priors[] = { 1, p_weight }; |
|
|
|
var_type = cvCreateMat( data->cols + 1, 1, CV_8U ); |
|
cvSet( var_type, cvScalarAll(CV_VAR_CATEGORICAL) ); // all the variables are categorical |
|
|
|
dtree = new CvDTree; |
|
|
|
dtree->train( data, CV_ROW_SAMPLE, responses, 0, 0, var_type, missing, |
|
CvDTreeParams( 8, // max depth |
|
10, // min sample count |
|
0, // regression accuracy: N/A here |
|
true, // compute surrogate split, as we have missing data |
|
15, // max number of categories (use sub-optimal algorithm for larger numbers) |
|
10, // the number of cross-validation folds |
|
true, // use 1SE rule => smaller tree |
|
true, // throw away the pruned tree branches |
|
priors // the array of priors, the bigger p_weight, the more attention |
|
// to the poisonous mushrooms |
|
// (a mushroom will be judjed to be poisonous with bigger chance) |
|
)); |
|
|
|
// compute hit-rate on the training database, demonstrates predict usage. |
|
for( i = 0; i < data->rows; i++ ) |
|
{ |
|
CvMat sample, mask; |
|
cvGetRow( data, &sample, i ); |
|
cvGetRow( missing, &mask, i ); |
|
double r = dtree->predict( &sample, &mask )->value; |
|
int d = fabs(r - responses->data.fl[i]) >= FLT_EPSILON; |
|
if( d ) |
|
{ |
|
if( r != 'p' ) |
|
hr1++; |
|
else |
|
hr2++; |
|
} |
|
p_total += responses->data.fl[i] == 'p'; |
|
} |
|
|
|
printf( "Results on the training database:\n" |
|
"\tPoisonous mushrooms mis-predicted: %d (%g%%)\n" |
|
"\tFalse-alarms: %d (%g%%)\n", hr1, (double)hr1*100/p_total, |
|
hr2, (double)hr2*100/(data->rows - p_total) ); |
|
|
|
cvReleaseMat( &var_type ); |
|
|
|
return dtree; |
|
} |
|
|
|
|
|
static const char* var_desc[] = |
|
{ |
|
"cap shape (bell=b,conical=c,convex=x,flat=f)", |
|
"cap surface (fibrous=f,grooves=g,scaly=y,smooth=s)", |
|
"cap color (brown=n,buff=b,cinnamon=c,gray=g,green=r,\n\tpink=p,purple=u,red=e,white=w,yellow=y)", |
|
"bruises? (bruises=t,no=f)", |
|
"odor (almond=a,anise=l,creosote=c,fishy=y,foul=f,\n\tmusty=m,none=n,pungent=p,spicy=s)", |
|
"gill attachment (attached=a,descending=d,free=f,notched=n)", |
|
"gill spacing (close=c,crowded=w,distant=d)", |
|
"gill size (broad=b,narrow=n)", |
|
"gill color (black=k,brown=n,buff=b,chocolate=h,gray=g,\n\tgreen=r,orange=o,pink=p,purple=u,red=e,white=w,yellow=y)", |
|
"stalk shape (enlarging=e,tapering=t)", |
|
"stalk root (bulbous=b,club=c,cup=u,equal=e,rhizomorphs=z,rooted=r)", |
|
"stalk surface above ring (ibrous=f,scaly=y,silky=k,smooth=s)", |
|
"stalk surface below ring (ibrous=f,scaly=y,silky=k,smooth=s)", |
|
"stalk color above ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)", |
|
"stalk color below ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)", |
|
"veil type (partial=p,universal=u)", |
|
"veil color (brown=n,orange=o,white=w,yellow=y)", |
|
"ring number (none=n,one=o,two=t)", |
|
"ring type (cobwebby=c,evanescent=e,flaring=f,large=l,\n\tnone=n,pendant=p,sheathing=s,zone=z)", |
|
"spore print color (black=k,brown=n,buff=b,chocolate=h,green=r,\n\torange=o,purple=u,white=w,yellow=y)", |
|
"population (abundant=a,clustered=c,numerous=n,\n\tscattered=s,several=v,solitary=y)", |
|
"habitat (grasses=g,leaves=l,meadows=m,paths=p\n\turban=u,waste=w,woods=d)", |
|
0 |
|
}; |
|
|
|
|
|
static void print_variable_importance( CvDTree* dtree ) |
|
{ |
|
const CvMat* var_importance = dtree->get_var_importance(); |
|
int i; |
|
char input[1000]; |
|
|
|
if( !var_importance ) |
|
{ |
|
printf( "Error: Variable importance can not be retrieved\n" ); |
|
return; |
|
} |
|
|
|
printf( "Print variable importance information? (y/n) " ); |
|
int values_read = scanf( "%1s", input ); |
|
CV_Assert(values_read == 1); |
|
|
|
if( input[0] != 'y' && input[0] != 'Y' ) |
|
return; |
|
|
|
for( i = 0; i < var_importance->cols*var_importance->rows; i++ ) |
|
{ |
|
double val = var_importance->data.db[i]; |
|
char buf[100]; |
|
int len = (int)(strchr( var_desc[i], '(' ) - var_desc[i] - 1); |
|
strncpy( buf, var_desc[i], len ); |
|
buf[len] = '\0'; |
|
printf( "%s", buf ); |
|
printf( ": %g%%\n", val*100. ); |
|
} |
|
} |
|
|
|
static void interactive_classification( CvDTree* dtree ) |
|
{ |
|
char input[1000]; |
|
const CvDTreeNode* root; |
|
CvDTreeTrainData* data; |
|
|
|
if( !dtree ) |
|
return; |
|
|
|
root = dtree->get_root(); |
|
data = dtree->get_data(); |
|
|
|
for(;;) |
|
{ |
|
const CvDTreeNode* node; |
|
|
|
printf( "Start/Proceed with interactive mushroom classification (y/n): " ); |
|
int values_read = scanf( "%1s", input ); |
|
CV_Assert(values_read == 1); |
|
|
|
if( input[0] != 'y' && input[0] != 'Y' ) |
|
break; |
|
printf( "Enter 1-letter answers, '?' for missing/unknown value...\n" ); |
|
|
|
// custom version of predict |
|
node = root; |
|
for(;;) |
|
{ |
|
CvDTreeSplit* split = node->split; |
|
int dir = 0; |
|
|
|
if( !node->left || node->Tn <= dtree->get_pruned_tree_idx() || !node->split ) |
|
break; |
|
|
|
for( ; split != 0; ) |
|
{ |
|
int vi = split->var_idx, j; |
|
int count = data->cat_count->data.i[vi]; |
|
const int* map = data->cat_map->data.i + data->cat_ofs->data.i[vi]; |
|
|
|
printf( "%s: ", var_desc[vi] ); |
|
values_read = scanf( "%1s", input ); |
|
CV_Assert(values_read == 1); |
|
|
|
if( input[0] == '?' ) |
|
{ |
|
split = split->next; |
|
continue; |
|
} |
|
|
|
// convert the input character to the normalized value of the variable |
|
for( j = 0; j < count; j++ ) |
|
if( map[j] == input[0] ) |
|
break; |
|
if( j < count ) |
|
{ |
|
dir = (split->subset[j>>5] & (1 << (j&31))) ? -1 : 1; |
|
if( split->inversed ) |
|
dir = -dir; |
|
break; |
|
} |
|
else |
|
printf( "Error: unrecognized value\n" ); |
|
} |
|
|
|
if( !dir ) |
|
{ |
|
printf( "Impossible to classify the sample\n"); |
|
node = 0; |
|
break; |
|
} |
|
node = dir < 0 ? node->left : node->right; |
|
} |
|
|
|
if( node ) |
|
printf( "Prediction result: the mushroom is %s\n", |
|
node->class_idx == 0 ? "EDIBLE" : "POISONOUS" ); |
|
printf( "\n-----------------------------\n" ); |
|
} |
|
} |
|
|
|
|
|
int main( int argc, char** argv ) |
|
{ |
|
CvMat *data = 0, *missing = 0, *responses = 0; |
|
CvDTree* dtree; |
|
const char* base_path = argc >= 2 ? argv[1] : "agaricus-lepiota.data"; |
|
|
|
help(); |
|
|
|
if( !mushroom_read_database( base_path, &data, &missing, &responses ) ) |
|
{ |
|
printf( "\nUnable to load the training database\n\n"); |
|
help(); |
|
return -1; |
|
} |
|
|
|
dtree = mushroom_create_dtree( data, missing, responses, |
|
10 // poisonous mushrooms will have 10x higher weight in the decision tree |
|
); |
|
cvReleaseMat( &data ); |
|
cvReleaseMat( &missing ); |
|
cvReleaseMat( &responses ); |
|
|
|
print_variable_importance( dtree ); |
|
interactive_classification( dtree ); |
|
delete dtree; |
|
|
|
return 0; |
|
}
|
|
|