Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
411 lines
14 KiB
411 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the OpenCV Foundation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
#include "debug.hpp" |
|
#include "opencv2/core/core_c.h" |
|
|
|
/* |
|
|
|
****Error Message******************************************************************************************************************** |
|
|
|
Downhill Simplex method in OpenCV dev 3.0.0 getting this error: |
|
|
|
OpenCV Error: Assertion failed (dims <= 2 && data && (unsigned)i0 < (unsigned)(s ize.p[0] * size.p[1]) |
|
&& elemSize() == (((((DataType<_Tp>::type) & ((512 - 1) << 3)) >> 3) + 1) << ((((sizeof(size_t)/4+1)16384|0x3a50) |
|
>> ((DataType<_Tp>::typ e) & ((1 << 3) - 1))2) & 3))) in cv::Mat::at, |
|
file C:\builds\master_PackSlave-w in32-vc12-shared\opencv\modules\core\include\opencv2/core/mat.inl.hpp, line 893 |
|
|
|
****Problem and Possible Fix********************************************************************************************************* |
|
|
|
DownhillSolverImpl::innerDownhillSimplex something looks broken here: |
|
Mat_<double> coord_sum(1,ndim,0.0),buf(1,ndim,0.0),y(1,ndim,0.0); |
|
nfunk = 0; |
|
for(i=0;i<ndim+1;++i) |
|
{ |
|
y(i) = f->calc(p[i]); |
|
} |
|
|
|
y has only ndim elements, while the loop goes over ndim+1 |
|
|
|
Edited the following for possible fix: |
|
|
|
Replaced y(1,ndim,0.0) ------> y(1,ndim+1,0.0) |
|
|
|
*********************************************************************************************************************************** |
|
|
|
The code below was used in tesing the source code. |
|
Created by @SareeAlnaghy |
|
|
|
#include <iostream> |
|
#include <cstdlib> |
|
#include <cmath> |
|
#include <algorithm> |
|
#include <opencv2\optim\optim.hpp> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
void test(Ptr<optim::DownhillSolver> solver, Ptr<optim::Solver::Function> ptr_F, Mat &P, Mat &step) |
|
{ |
|
try{ |
|
|
|
solver->setFunction(ptr_F); |
|
solver->setInitStep(step); |
|
double res = solver->minimize(P); |
|
|
|
cout << "res " << res << endl; |
|
} |
|
catch (exception e) |
|
{ |
|
cerr << "Error:: " << e.what() << endl; |
|
} |
|
} |
|
|
|
int main() |
|
{ |
|
|
|
class DistanceToLines :public optim::Solver::Function { |
|
public: |
|
double calc(const double* x)const{ |
|
|
|
return x[0] * x[0] + x[1] * x[1]; |
|
|
|
} |
|
}; |
|
|
|
Mat P = (Mat_<double>(1, 2) << 1.0, 1.0); |
|
Mat step = (Mat_<double>(2, 1) << -0.5, 0.5); |
|
|
|
Ptr<optim::Solver::Function> ptr_F(new DistanceToLines()); |
|
Ptr<optim::DownhillSolver> solver = optim::createDownhillSolver(); |
|
|
|
test(solver, ptr_F, P, step); |
|
|
|
system("pause"); |
|
return 0; |
|
} |
|
|
|
****Suggesttion for imporving Simplex implentation*************************************************************************************** |
|
|
|
Currently the downhilll simplex method outputs the function value that is minimized. It should also return the coordinate points where the |
|
function is minimized. This is very useful in many applications such as using back projection methods to find a point of intersection of |
|
multiple lines in three dimensions as not all lines intersect in three dimensions. |
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
|
|
namespace cv{namespace optim{ |
|
|
|
class DownhillSolverImpl : public DownhillSolver |
|
{ |
|
public: |
|
void getInitStep(OutputArray step) const; |
|
void setInitStep(InputArray step); |
|
Ptr<Function> getFunction() const; |
|
void setFunction(const Ptr<Function>& f); |
|
TermCriteria getTermCriteria() const; |
|
DownhillSolverImpl(); |
|
void setTermCriteria(const TermCriteria& termcrit); |
|
double minimize(InputOutputArray x); |
|
protected: |
|
Ptr<Solver::Function> _Function; |
|
TermCriteria _termcrit; |
|
Mat _step; |
|
Mat_<double> buf_x; |
|
|
|
private: |
|
inline void createInitialSimplex(Mat_<double>& simplex,Mat& step); |
|
inline double innerDownhillSimplex(cv::Mat_<double>& p,double MinRange,double MinError,int& nfunk, |
|
const Ptr<Solver::Function>& f,int nmax); |
|
inline double tryNewPoint(Mat_<double>& p,Mat_<double>& y,Mat_<double>& coord_sum,const Ptr<Solver::Function>& f,int ihi, |
|
double fac,Mat_<double>& ptry); |
|
}; |
|
|
|
double DownhillSolverImpl::tryNewPoint( |
|
Mat_<double>& p, |
|
Mat_<double>& y, |
|
Mat_<double>& coord_sum, |
|
const Ptr<Solver::Function>& f, |
|
int ihi, |
|
double fac, |
|
Mat_<double>& ptry |
|
) |
|
{ |
|
int ndim=p.cols; |
|
int j; |
|
double fac1,fac2,ytry; |
|
|
|
fac1=(1.0-fac)/ndim; |
|
fac2=fac1-fac; |
|
for (j=0;j<ndim;j++) |
|
{ |
|
ptry(j)=coord_sum(j)*fac1-p(ihi,j)*fac2; |
|
} |
|
ytry=f->calc((double*)ptry.data); |
|
if (ytry < y(ihi)) |
|
{ |
|
y(ihi)=ytry; |
|
for (j=0;j<ndim;j++) |
|
{ |
|
coord_sum(j) += ptry(j)-p(ihi,j); |
|
p(ihi,j)=ptry(j); |
|
} |
|
} |
|
|
|
return ytry; |
|
} |
|
|
|
/* |
|
Performs the actual minimization of Solver::Function f (after the initialization was done) |
|
|
|
The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that |
|
form a simplex - each row is an ndim vector. |
|
On output, nfunk gives the number of function evaluations taken. |
|
*/ |
|
double DownhillSolverImpl::innerDownhillSimplex( |
|
cv::Mat_<double>& p, |
|
double MinRange, |
|
double MinError, |
|
int& nfunk, |
|
const Ptr<Solver::Function>& f, |
|
int nmax |
|
) |
|
{ |
|
int ndim=p.cols; |
|
double res; |
|
int i,ihi,ilo,inhi,j,mpts=ndim+1; |
|
double error, range,ysave,ytry; |
|
Mat_<double> coord_sum(1,ndim,0.0),buf(1,ndim,0.0),y(1,ndim+1,0.0); |
|
|
|
nfunk = 0; |
|
|
|
for(i=0;i<ndim+1;++i) |
|
{ |
|
y(i) = f->calc(p[i]); |
|
} |
|
|
|
nfunk = ndim+1; |
|
|
|
reduce(p,coord_sum,0,CV_REDUCE_SUM); |
|
|
|
for (;;) |
|
{ |
|
ilo=0; |
|
/* find highest (worst), next-to-worst, and lowest |
|
(best) points by going through all of them. */ |
|
ihi = y(0)>y(1) ? (inhi=1,0) : (inhi=0,1); |
|
for (i=0;i<mpts;i++) |
|
{ |
|
if (y(i) <= y(ilo)) |
|
ilo=i; |
|
if (y(i) > y(ihi)) |
|
{ |
|
inhi=ihi; |
|
ihi=i; |
|
} |
|
else if (y(i) > y(inhi) && i != ihi) |
|
inhi=i; |
|
} |
|
|
|
/* check stop criterion */ |
|
error=fabs(y(ihi)-y(ilo)); |
|
range=0; |
|
for(i=0;i<ndim;++i) |
|
{ |
|
double min = p(0,i); |
|
double max = p(0,i); |
|
double d; |
|
for(j=1;j<=ndim;++j) |
|
{ |
|
if( min > p(j,i) ) min = p(j,i); |
|
if( max < p(j,i) ) max = p(j,i); |
|
} |
|
d = fabs(max-min); |
|
if(range < d) range = d; |
|
} |
|
|
|
if(range <= MinRange || error <= MinError) |
|
{ /* Put best point and value in first slot. */ |
|
std::swap(y(0),y(ilo)); |
|
for (i=0;i<ndim;i++) |
|
{ |
|
std::swap(p(0,i),p(ilo,i)); |
|
} |
|
break; |
|
} |
|
|
|
if (nfunk >= nmax){ |
|
dprintf(("nmax exceeded\n")); |
|
return y(ilo); |
|
} |
|
nfunk += 2; |
|
/*Begin a new iteration. First, reflect the worst point about the centroid of others */ |
|
ytry = tryNewPoint(p,y,coord_sum,f,ihi,-1.0,buf); |
|
if (ytry <= y(ilo)) |
|
{ /*If that's better than the best point, go twice as far in that direction*/ |
|
ytry = tryNewPoint(p,y,coord_sum,f,ihi,2.0,buf); |
|
} |
|
else if (ytry >= y(inhi)) |
|
{ /* The new point is worse than the second-highest, but better |
|
than the worst so do not go so far in that direction */ |
|
ysave = y(ihi); |
|
ytry = tryNewPoint(p,y,coord_sum,f,ihi,0.5,buf); |
|
if (ytry >= ysave) |
|
{ /* Can't seem to improve things. Contract the simplex to good point |
|
in hope to find a simplex landscape. */ |
|
for (i=0;i<mpts;i++) |
|
{ |
|
if (i != ilo) |
|
{ |
|
for (j=0;j<ndim;j++) |
|
{ |
|
p(i,j) = coord_sum(j) = 0.5*(p(i,j)+p(ilo,j)); |
|
} |
|
y(i)=f->calc((double*)coord_sum.data); |
|
} |
|
} |
|
nfunk += ndim; |
|
reduce(p,coord_sum,0,CV_REDUCE_SUM); |
|
} |
|
} else --(nfunk); /* correct nfunk */ |
|
dprintf(("this is simplex on iteration %d\n",nfunk)); |
|
print_matrix(p); |
|
} /* go to next iteration. */ |
|
res = y(0); |
|
|
|
return res; |
|
} |
|
|
|
void DownhillSolverImpl::createInitialSimplex(Mat_<double>& simplex,Mat& step){ |
|
for(int i=1;i<=step.cols;++i) |
|
{ |
|
simplex.row(0).copyTo(simplex.row(i)); |
|
simplex(i,i-1)+= 0.5*step.at<double>(0,i-1); |
|
} |
|
simplex.row(0) -= 0.5*step; |
|
|
|
dprintf(("this is simplex\n")); |
|
print_matrix(simplex); |
|
} |
|
|
|
double DownhillSolverImpl::minimize(InputOutputArray x){ |
|
dprintf(("hi from minimize\n")); |
|
CV_Assert(_Function.empty()==false); |
|
dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon)); |
|
dprintf(("step\n")); |
|
print_matrix(_step); |
|
|
|
Mat x_mat=x.getMat(); |
|
CV_Assert(MIN(x_mat.rows,x_mat.cols)==1); |
|
CV_Assert(MAX(x_mat.rows,x_mat.cols)==_step.cols); |
|
CV_Assert(x_mat.type()==CV_64FC1); |
|
|
|
Mat_<double> proxy_x; |
|
|
|
if(x_mat.rows>1){ |
|
buf_x.create(1,_step.cols); |
|
Mat_<double> proxy(_step.cols,1,(double*)buf_x.data); |
|
x_mat.copyTo(proxy); |
|
proxy_x=buf_x; |
|
}else{ |
|
proxy_x=x_mat; |
|
} |
|
|
|
int count=0; |
|
int ndim=_step.cols; |
|
Mat_<double> simplex=Mat_<double>(ndim+1,ndim,0.0); |
|
|
|
simplex.row(0).copyTo(proxy_x); |
|
createInitialSimplex(simplex,_step); |
|
double res = innerDownhillSimplex( |
|
simplex,_termcrit.epsilon, _termcrit.epsilon, count,_Function,_termcrit.maxCount); |
|
simplex.row(0).copyTo(proxy_x); |
|
|
|
dprintf(("%d iterations done\n",count)); |
|
|
|
if(x_mat.rows>1){ |
|
Mat(x_mat.rows, 1, CV_64F, (double*)proxy_x.data).copyTo(x); |
|
} |
|
return res; |
|
} |
|
DownhillSolverImpl::DownhillSolverImpl(){ |
|
_Function=Ptr<Function>(); |
|
_step=Mat_<double>(); |
|
} |
|
Ptr<Solver::Function> DownhillSolverImpl::getFunction()const{ |
|
return _Function; |
|
} |
|
void DownhillSolverImpl::setFunction(const Ptr<Function>& f){ |
|
_Function=f; |
|
} |
|
TermCriteria DownhillSolverImpl::getTermCriteria()const{ |
|
return _termcrit; |
|
} |
|
void DownhillSolverImpl::setTermCriteria(const TermCriteria& termcrit){ |
|
CV_Assert(termcrit.type==(TermCriteria::MAX_ITER+TermCriteria::EPS) && termcrit.epsilon>0 && termcrit.maxCount>0); |
|
_termcrit=termcrit; |
|
} |
|
// both minRange & minError are specified by termcrit.epsilon; In addition, user may specify the number of iterations that the algorithm does. |
|
Ptr<DownhillSolver> createDownhillSolver(const Ptr<Solver::Function>& f, InputArray initStep, TermCriteria termcrit){ |
|
DownhillSolver *DS=new DownhillSolverImpl(); |
|
DS->setFunction(f); |
|
DS->setInitStep(initStep); |
|
DS->setTermCriteria(termcrit); |
|
return Ptr<DownhillSolver>(DS); |
|
} |
|
void DownhillSolverImpl::getInitStep(OutputArray step)const{ |
|
_step.copyTo(step); |
|
} |
|
void DownhillSolverImpl::setInitStep(InputArray step){ |
|
//set dimensionality and make a deep copy of step |
|
Mat m=step.getMat(); |
|
dprintf(("m.cols=%d\nm.rows=%d\n",m.cols,m.rows)); |
|
CV_Assert(MIN(m.cols,m.rows)==1 && m.type()==CV_64FC1); |
|
if(m.rows==1){ |
|
m.copyTo(_step); |
|
}else{ |
|
transpose(m,_step); |
|
} |
|
} |
|
}}
|
|
|