Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2268 lines
74 KiB
2268 lines
74 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
/****************************************************************************************\ |
|
* split & merge * |
|
\****************************************************************************************/ |
|
|
|
template<typename T> static void |
|
split_( const T* src, T** dst, int len, int cn ) |
|
{ |
|
int k = cn % 4 ? cn % 4 : 4; |
|
int i, j; |
|
if( k == 1 ) |
|
{ |
|
T* dst0 = dst[0]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
dst0[i] = src[j]; |
|
} |
|
else if( k == 2 ) |
|
{ |
|
T *dst0 = dst[0], *dst1 = dst[1]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst0[i] = src[j]; |
|
dst1[i] = src[j+1]; |
|
} |
|
} |
|
else if( k == 3 ) |
|
{ |
|
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst0[i] = src[j]; |
|
dst1[i] = src[j+1]; |
|
dst2[i] = src[j+2]; |
|
} |
|
} |
|
else |
|
{ |
|
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2], *dst3 = dst[3]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst0[i] = src[j]; dst1[i] = src[j+1]; |
|
dst2[i] = src[j+2]; dst3[i] = src[j+3]; |
|
} |
|
} |
|
|
|
for( ; k < cn; k += 4 ) |
|
{ |
|
T *dst0 = dst[k], *dst1 = dst[k+1], *dst2 = dst[k+2], *dst3 = dst[k+3]; |
|
for( i = 0, j = k; i < len; i++, j += cn ) |
|
{ |
|
dst0[i] = src[j]; dst1[i] = src[j+1]; |
|
dst2[i] = src[j+2]; dst3[i] = src[j+3]; |
|
} |
|
} |
|
} |
|
|
|
template<typename T> static void |
|
merge_( const T** src, T* dst, int len, int cn ) |
|
{ |
|
int k = cn % 4 ? cn % 4 : 4; |
|
int i, j; |
|
if( k == 1 ) |
|
{ |
|
const T* src0 = src[0]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
dst[j] = src0[i]; |
|
} |
|
else if( k == 2 ) |
|
{ |
|
const T *src0 = src[0], *src1 = src[1]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; |
|
dst[j+1] = src1[i]; |
|
} |
|
} |
|
else if( k == 3 ) |
|
{ |
|
const T *src0 = src[0], *src1 = src[1], *src2 = src[2]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; |
|
dst[j+1] = src1[i]; |
|
dst[j+2] = src2[i]; |
|
} |
|
} |
|
else |
|
{ |
|
const T *src0 = src[0], *src1 = src[1], *src2 = src[2], *src3 = src[3]; |
|
for( i = j = 0; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; dst[j+1] = src1[i]; |
|
dst[j+2] = src2[i]; dst[j+3] = src3[i]; |
|
} |
|
} |
|
|
|
for( ; k < cn; k += 4 ) |
|
{ |
|
const T *src0 = src[k], *src1 = src[k+1], *src2 = src[k+2], *src3 = src[k+3]; |
|
for( i = 0, j = k; i < len; i++, j += cn ) |
|
{ |
|
dst[j] = src0[i]; dst[j+1] = src1[i]; |
|
dst[j+2] = src2[i]; dst[j+3] = src3[i]; |
|
} |
|
} |
|
} |
|
|
|
static void split8u(const uchar* src, uchar** dst, int len, int cn ) |
|
{ |
|
split_(src, dst, len, cn); |
|
} |
|
|
|
static void split16u(const ushort* src, ushort** dst, int len, int cn ) |
|
{ |
|
split_(src, dst, len, cn); |
|
} |
|
|
|
static void split32s(const int* src, int** dst, int len, int cn ) |
|
{ |
|
split_(src, dst, len, cn); |
|
} |
|
|
|
static void split64s(const int64* src, int64** dst, int len, int cn ) |
|
{ |
|
split_(src, dst, len, cn); |
|
} |
|
|
|
static void merge8u(const uchar** src, uchar* dst, int len, int cn ) |
|
{ |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
static void merge16u(const ushort** src, ushort* dst, int len, int cn ) |
|
{ |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
static void merge32s(const int** src, int* dst, int len, int cn ) |
|
{ |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
static void merge64s(const int64** src, int64* dst, int len, int cn ) |
|
{ |
|
merge_(src, dst, len, cn); |
|
} |
|
|
|
typedef void (*SplitFunc)(const uchar* src, uchar** dst, int len, int cn); |
|
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn); |
|
|
|
static SplitFunc getSplitFunc(int depth) |
|
{ |
|
static SplitFunc splitTab[] = |
|
{ |
|
(SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split16u), (SplitFunc)GET_OPTIMIZED(split16u), |
|
(SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split64s), 0 |
|
}; |
|
|
|
return splitTab[depth]; |
|
} |
|
|
|
static MergeFunc getMergeFunc(int depth) |
|
{ |
|
static MergeFunc mergeTab[] = |
|
{ |
|
(MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge16u), (MergeFunc)GET_OPTIMIZED(merge16u), |
|
(MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge64s), 0 |
|
}; |
|
|
|
return mergeTab[depth]; |
|
} |
|
|
|
} |
|
|
|
void cv::split(const Mat& src, Mat* mv) |
|
{ |
|
int k, depth = src.depth(), cn = src.channels(); |
|
if( cn == 1 ) |
|
{ |
|
src.copyTo(mv[0]); |
|
return; |
|
} |
|
|
|
SplitFunc func = getSplitFunc(depth); |
|
CV_Assert( func != 0 ); |
|
|
|
int esz = (int)src.elemSize(), esz1 = (int)src.elemSize1(); |
|
int blocksize0 = (BLOCK_SIZE + esz-1)/esz; |
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); |
|
const Mat** arrays = (const Mat**)(uchar*)_buf; |
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); |
|
|
|
arrays[0] = &src; |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
mv[k].create(src.dims, src.size, depth); |
|
arrays[k+1] = &mv[k]; |
|
} |
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1); |
|
int total = (int)it.size, blocksize = cn <= 4 ? total : std::min(total, blocksize0); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( int j = 0; j < total; j += blocksize ) |
|
{ |
|
int bsz = std::min(total - j, blocksize); |
|
func( ptrs[0], &ptrs[1], bsz, cn ); |
|
|
|
if( j + blocksize < total ) |
|
{ |
|
ptrs[0] += bsz*esz; |
|
for( k = 0; k < cn; k++ ) |
|
ptrs[k+1] += bsz*esz1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_split( InputArray _m, OutputArrayOfArrays _mv ) |
|
{ |
|
int type = _m.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), |
|
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; |
|
|
|
String dstargs, processelem, indexdecl; |
|
for (int i = 0; i < cn; ++i) |
|
{ |
|
dstargs += format("DECLARE_DST_PARAM(%d)", i); |
|
indexdecl += format("DECLARE_INDEX(%d)", i); |
|
processelem += format("PROCESS_ELEM(%d)", i); |
|
} |
|
|
|
ocl::Kernel k("split", ocl::core::split_merge_oclsrc, |
|
format("-D T=%s -D OP_SPLIT -D cn=%d -D DECLARE_DST_PARAMS=%s" |
|
" -D PROCESS_ELEMS_N=%s -D DECLARE_INDEX_N=%s", |
|
ocl::memopTypeToStr(depth), cn, dstargs.c_str(), |
|
processelem.c_str(), indexdecl.c_str())); |
|
if (k.empty()) |
|
return false; |
|
|
|
Size size = _m.size(); |
|
_mv.create(cn, 1, depth); |
|
for (int i = 0; i < cn; ++i) |
|
_mv.create(size, depth, i); |
|
|
|
std::vector<UMat> dst; |
|
_mv.getUMatVector(dst); |
|
|
|
int argidx = k.set(0, ocl::KernelArg::ReadOnly(_m.getUMat())); |
|
for (int i = 0; i < cn; ++i) |
|
argidx = k.set(argidx, ocl::KernelArg::WriteOnlyNoSize(dst[i])); |
|
k.set(argidx, rowsPerWI); |
|
|
|
size_t globalsize[2] = { size.width, (size.height + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
void cv::split(InputArray _m, OutputArrayOfArrays _mv) |
|
{ |
|
CV_OCL_RUN(_m.dims() <= 2 && _mv.isUMatVector(), |
|
ocl_split(_m, _mv)) |
|
|
|
Mat m = _m.getMat(); |
|
if( m.empty() ) |
|
{ |
|
_mv.release(); |
|
return; |
|
} |
|
|
|
CV_Assert( !_mv.fixedType() || _mv.empty() || _mv.type() == m.depth() ); |
|
|
|
Size size = m.size(); |
|
int depth = m.depth(), cn = m.channels(); |
|
_mv.create(cn, 1, depth); |
|
for (int i = 0; i < cn; ++i) |
|
_mv.create(size, depth, i); |
|
|
|
std::vector<Mat> dst; |
|
_mv.getMatVector(dst); |
|
|
|
split(m, &dst[0]); |
|
} |
|
|
|
void cv::merge(const Mat* mv, size_t n, OutputArray _dst) |
|
{ |
|
CV_Assert( mv && n > 0 ); |
|
|
|
int depth = mv[0].depth(); |
|
bool allch1 = true; |
|
int k, cn = 0; |
|
size_t i; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth); |
|
allch1 = allch1 && mv[i].channels() == 1; |
|
cn += mv[i].channels(); |
|
} |
|
|
|
CV_Assert( 0 < cn && cn <= CV_CN_MAX ); |
|
_dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn)); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( n == 1 ) |
|
{ |
|
mv[0].copyTo(dst); |
|
return; |
|
} |
|
|
|
if( !allch1 ) |
|
{ |
|
AutoBuffer<int> pairs(cn*2); |
|
int j, ni=0; |
|
|
|
for( i = 0, j = 0; i < n; i++, j += ni ) |
|
{ |
|
ni = mv[i].channels(); |
|
for( k = 0; k < ni; k++ ) |
|
{ |
|
pairs[(j+k)*2] = j + k; |
|
pairs[(j+k)*2+1] = j + k; |
|
} |
|
} |
|
mixChannels( mv, n, &dst, 1, &pairs[0], cn ); |
|
return; |
|
} |
|
|
|
size_t esz = dst.elemSize(), esz1 = dst.elemSize1(); |
|
int blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz); |
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); |
|
const Mat** arrays = (const Mat**)(uchar*)_buf; |
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); |
|
|
|
arrays[0] = &dst; |
|
for( k = 0; k < cn; k++ ) |
|
arrays[k+1] = &mv[k]; |
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1); |
|
int total = (int)it.size, blocksize = cn <= 4 ? total : std::min(total, blocksize0); |
|
MergeFunc func = getMergeFunc(depth); |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( int j = 0; j < total; j += blocksize ) |
|
{ |
|
int bsz = std::min(total - j, blocksize); |
|
func( (const uchar**)&ptrs[1], ptrs[0], bsz, cn ); |
|
|
|
if( j + blocksize < total ) |
|
{ |
|
ptrs[0] += bsz*esz; |
|
for( int t = 0; t < cn; t++ ) |
|
ptrs[t+1] += bsz*esz1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_merge( InputArrayOfArrays _mv, OutputArray _dst ) |
|
{ |
|
std::vector<UMat> src, ksrc; |
|
_mv.getUMatVector(src); |
|
CV_Assert(!src.empty()); |
|
|
|
int type = src[0].type(), depth = CV_MAT_DEPTH(type), |
|
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; |
|
Size size = src[0].size(); |
|
|
|
for (size_t i = 0, srcsize = src.size(); i < srcsize; ++i) |
|
{ |
|
int itype = src[i].type(), icn = CV_MAT_CN(itype), idepth = CV_MAT_DEPTH(itype), |
|
esz1 = CV_ELEM_SIZE1(idepth); |
|
if (src[i].dims > 2) |
|
return false; |
|
|
|
CV_Assert(size == src[i].size() && depth == idepth); |
|
|
|
for (int cn = 0; cn < icn; ++cn) |
|
{ |
|
UMat tsrc = src[i]; |
|
tsrc.offset += cn * esz1; |
|
ksrc.push_back(tsrc); |
|
} |
|
} |
|
int dcn = (int)ksrc.size(); |
|
|
|
String srcargs, processelem, cndecl, indexdecl; |
|
for (int i = 0; i < dcn; ++i) |
|
{ |
|
srcargs += format("DECLARE_SRC_PARAM(%d)", i); |
|
processelem += format("PROCESS_ELEM(%d)", i); |
|
indexdecl += format("DECLARE_INDEX(%d)", i); |
|
cndecl += format(" -D scn%d=%d", i, ksrc[i].channels()); |
|
} |
|
|
|
ocl::Kernel k("merge", ocl::core::split_merge_oclsrc, |
|
format("-D OP_MERGE -D cn=%d -D T=%s -D DECLARE_SRC_PARAMS_N=%s" |
|
" -D DECLARE_INDEX_N=%s -D PROCESS_ELEMS_N=%s%s", |
|
dcn, ocl::memopTypeToStr(depth), srcargs.c_str(), |
|
indexdecl.c_str(), processelem.c_str(), cndecl.c_str())); |
|
if (k.empty()) |
|
return false; |
|
|
|
_dst.create(size, CV_MAKE_TYPE(depth, dcn)); |
|
UMat dst = _dst.getUMat(); |
|
|
|
int argidx = 0; |
|
for (int i = 0; i < dcn; ++i) |
|
argidx = k.set(argidx, ocl::KernelArg::ReadOnlyNoSize(ksrc[i])); |
|
argidx = k.set(argidx, ocl::KernelArg::WriteOnly(dst)); |
|
k.set(argidx, rowsPerWI); |
|
|
|
size_t globalsize[2] = { dst.cols, (dst.rows + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
void cv::merge(InputArrayOfArrays _mv, OutputArray _dst) |
|
{ |
|
CV_OCL_RUN(_mv.isUMatVector() && _dst.isUMat(), |
|
ocl_merge(_mv, _dst)) |
|
|
|
std::vector<Mat> mv; |
|
_mv.getMatVector(mv); |
|
merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* Generalized split/merge: mixing channels * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static void |
|
mixChannels_( const T** src, const int* sdelta, |
|
T** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
int i, k; |
|
for( k = 0; k < npairs; k++ ) |
|
{ |
|
const T* s = src[k]; |
|
T* d = dst[k]; |
|
int ds = sdelta[k], dd = ddelta[k]; |
|
if( s ) |
|
{ |
|
for( i = 0; i <= len - 2; i += 2, s += ds*2, d += dd*2 ) |
|
{ |
|
T t0 = s[0], t1 = s[ds]; |
|
d[0] = t0; d[dd] = t1; |
|
} |
|
if( i < len ) |
|
d[0] = s[0]; |
|
} |
|
else |
|
{ |
|
for( i = 0; i <= len - 2; i += 2, d += dd*2 ) |
|
d[0] = d[dd] = 0; |
|
if( i < len ) |
|
d[0] = 0; |
|
} |
|
} |
|
} |
|
|
|
|
|
static void mixChannels8u( const uchar** src, const int* sdelta, |
|
uchar** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
static void mixChannels16u( const ushort** src, const int* sdelta, |
|
ushort** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
static void mixChannels32s( const int** src, const int* sdelta, |
|
int** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
static void mixChannels64s( const int64** src, const int* sdelta, |
|
int64** dst, const int* ddelta, |
|
int len, int npairs ) |
|
{ |
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs); |
|
} |
|
|
|
typedef void (*MixChannelsFunc)( const uchar** src, const int* sdelta, |
|
uchar** dst, const int* ddelta, int len, int npairs ); |
|
|
|
static MixChannelsFunc getMixchFunc(int depth) |
|
{ |
|
static MixChannelsFunc mixchTab[] = |
|
{ |
|
(MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels16u, |
|
(MixChannelsFunc)mixChannels16u, (MixChannelsFunc)mixChannels32s, (MixChannelsFunc)mixChannels32s, |
|
(MixChannelsFunc)mixChannels64s, 0 |
|
}; |
|
|
|
return mixchTab[depth]; |
|
} |
|
|
|
} |
|
|
|
void cv::mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size_t npairs ) |
|
{ |
|
if( npairs == 0 ) |
|
return; |
|
CV_Assert( src && nsrcs > 0 && dst && ndsts > 0 && fromTo && npairs > 0 ); |
|
|
|
size_t i, j, k, esz1 = dst[0].elemSize1(); |
|
int depth = dst[0].depth(); |
|
|
|
AutoBuffer<uchar> buf((nsrcs + ndsts + 1)*(sizeof(Mat*) + sizeof(uchar*)) + npairs*(sizeof(uchar*)*2 + sizeof(int)*6)); |
|
const Mat** arrays = (const Mat**)(uchar*)buf; |
|
uchar** ptrs = (uchar**)(arrays + nsrcs + ndsts); |
|
const uchar** srcs = (const uchar**)(ptrs + nsrcs + ndsts + 1); |
|
uchar** dsts = (uchar**)(srcs + npairs); |
|
int* tab = (int*)(dsts + npairs); |
|
int *sdelta = (int*)(tab + npairs*4), *ddelta = sdelta + npairs; |
|
|
|
for( i = 0; i < nsrcs; i++ ) |
|
arrays[i] = &src[i]; |
|
for( i = 0; i < ndsts; i++ ) |
|
arrays[i + nsrcs] = &dst[i]; |
|
ptrs[nsrcs + ndsts] = 0; |
|
|
|
for( i = 0; i < npairs; i++ ) |
|
{ |
|
int i0 = fromTo[i*2], i1 = fromTo[i*2+1]; |
|
if( i0 >= 0 ) |
|
{ |
|
for( j = 0; j < nsrcs; i0 -= src[j].channels(), j++ ) |
|
if( i0 < src[j].channels() ) |
|
break; |
|
CV_Assert(j < nsrcs && src[j].depth() == depth); |
|
tab[i*4] = (int)j; tab[i*4+1] = (int)(i0*esz1); |
|
sdelta[i] = src[j].channels(); |
|
} |
|
else |
|
{ |
|
tab[i*4] = (int)(nsrcs + ndsts); tab[i*4+1] = 0; |
|
sdelta[i] = 0; |
|
} |
|
|
|
for( j = 0; j < ndsts; i1 -= dst[j].channels(), j++ ) |
|
if( i1 < dst[j].channels() ) |
|
break; |
|
CV_Assert(i1 >= 0 && j < ndsts && dst[j].depth() == depth); |
|
tab[i*4+2] = (int)(j + nsrcs); tab[i*4+3] = (int)(i1*esz1); |
|
ddelta[i] = dst[j].channels(); |
|
} |
|
|
|
NAryMatIterator it(arrays, ptrs, (int)(nsrcs + ndsts)); |
|
int total = (int)it.size, blocksize = std::min(total, (int)((BLOCK_SIZE + esz1-1)/esz1)); |
|
MixChannelsFunc func = getMixchFunc(depth); |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( k = 0; k < npairs; k++ ) |
|
{ |
|
srcs[k] = ptrs[tab[k*4]] + tab[k*4+1]; |
|
dsts[k] = ptrs[tab[k*4+2]] + tab[k*4+3]; |
|
} |
|
|
|
for( int t = 0; t < total; t += blocksize ) |
|
{ |
|
int bsz = std::min(total - t, blocksize); |
|
func( srcs, sdelta, dsts, ddelta, bsz, (int)npairs ); |
|
|
|
if( t + blocksize < total ) |
|
for( k = 0; k < npairs; k++ ) |
|
{ |
|
srcs[k] += blocksize*sdelta[k]*esz1; |
|
dsts[k] += blocksize*ddelta[k]*esz1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static void getUMatIndex(const std::vector<UMat> & um, int cn, int & idx, int & cnidx) |
|
{ |
|
int totalChannels = 0; |
|
for (size_t i = 0, size = um.size(); i < size; ++i) |
|
{ |
|
int ccn = um[i].channels(); |
|
totalChannels += ccn; |
|
|
|
if (totalChannels == cn) |
|
{ |
|
idx = (int)(i + 1); |
|
cnidx = 0; |
|
return; |
|
} |
|
else if (totalChannels > cn) |
|
{ |
|
idx = (int)i; |
|
cnidx = i == 0 ? cn : (cn - totalChannels + ccn); |
|
return; |
|
} |
|
} |
|
|
|
idx = cnidx = -1; |
|
} |
|
|
|
static bool ocl_mixChannels(InputArrayOfArrays _src, InputOutputArrayOfArrays _dst, |
|
const int* fromTo, size_t npairs) |
|
{ |
|
std::vector<UMat> src, dst; |
|
_src.getUMatVector(src); |
|
_dst.getUMatVector(dst); |
|
|
|
size_t nsrc = src.size(), ndst = dst.size(); |
|
CV_Assert(nsrc > 0 && ndst > 0); |
|
|
|
Size size = src[0].size(); |
|
int depth = src[0].depth(), esz = CV_ELEM_SIZE(depth), |
|
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; |
|
|
|
for (size_t i = 1, ssize = src.size(); i < ssize; ++i) |
|
CV_Assert(src[i].size() == size && src[i].depth() == depth); |
|
for (size_t i = 0, dsize = dst.size(); i < dsize; ++i) |
|
CV_Assert(dst[i].size() == size && dst[i].depth() == depth); |
|
|
|
String declsrc, decldst, declproc, declcn, indexdecl; |
|
std::vector<UMat> srcargs(npairs), dstargs(npairs); |
|
|
|
for (size_t i = 0; i < npairs; ++i) |
|
{ |
|
int scn = fromTo[i<<1], dcn = fromTo[(i<<1) + 1]; |
|
int src_idx, src_cnidx, dst_idx, dst_cnidx; |
|
|
|
getUMatIndex(src, scn, src_idx, src_cnidx); |
|
getUMatIndex(dst, dcn, dst_idx, dst_cnidx); |
|
|
|
CV_Assert(dst_idx >= 0 && src_idx >= 0); |
|
|
|
srcargs[i] = src[src_idx]; |
|
srcargs[i].offset += src_cnidx * esz; |
|
|
|
dstargs[i] = dst[dst_idx]; |
|
dstargs[i].offset += dst_cnidx * esz; |
|
|
|
declsrc += format("DECLARE_INPUT_MAT(%d)", i); |
|
decldst += format("DECLARE_OUTPUT_MAT(%d)", i); |
|
indexdecl += format("DECLARE_INDEX(%d)", i); |
|
declproc += format("PROCESS_ELEM(%d)", i); |
|
declcn += format(" -D scn%d=%d -D dcn%d=%d", i, src[src_idx].channels(), i, dst[dst_idx].channels()); |
|
} |
|
|
|
ocl::Kernel k("mixChannels", ocl::core::mixchannels_oclsrc, |
|
format("-D T=%s -D DECLARE_INPUT_MAT_N=%s -D DECLARE_OUTPUT_MAT_N=%s" |
|
" -D PROCESS_ELEM_N=%s -D DECLARE_INDEX_N=%s%s", |
|
ocl::memopTypeToStr(depth), declsrc.c_str(), decldst.c_str(), |
|
declproc.c_str(), indexdecl.c_str(), declcn.c_str())); |
|
if (k.empty()) |
|
return false; |
|
|
|
int argindex = 0; |
|
for (size_t i = 0; i < npairs; ++i) |
|
argindex = k.set(argindex, ocl::KernelArg::ReadOnlyNoSize(srcargs[i])); |
|
for (size_t i = 0; i < npairs; ++i) |
|
argindex = k.set(argindex, ocl::KernelArg::WriteOnlyNoSize(dstargs[i])); |
|
argindex = k.set(argindex, size.height); |
|
argindex = k.set(argindex, size.width); |
|
k.set(argindex, rowsPerWI); |
|
|
|
size_t globalsize[2] = { size.width, (size.height + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, |
|
const int* fromTo, size_t npairs) |
|
{ |
|
if (npairs == 0 || fromTo == NULL) |
|
return; |
|
|
|
CV_OCL_RUN(dst.isUMatVector(), |
|
ocl_mixChannels(src, dst, fromTo, npairs)) |
|
|
|
bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT && |
|
src.kind() != _InputArray::STD_VECTOR_VECTOR && |
|
src.kind() != _InputArray::STD_VECTOR_UMAT; |
|
bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT && |
|
dst.kind() != _InputArray::STD_VECTOR_VECTOR && |
|
dst.kind() != _InputArray::STD_VECTOR_UMAT; |
|
int i; |
|
int nsrc = src_is_mat ? 1 : (int)src.total(); |
|
int ndst = dst_is_mat ? 1 : (int)dst.total(); |
|
|
|
CV_Assert(nsrc > 0 && ndst > 0); |
|
cv::AutoBuffer<Mat> _buf(nsrc + ndst); |
|
Mat* buf = _buf; |
|
for( i = 0; i < nsrc; i++ ) |
|
buf[i] = src.getMat(src_is_mat ? -1 : i); |
|
for( i = 0; i < ndst; i++ ) |
|
buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i); |
|
mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, fromTo, npairs); |
|
} |
|
|
|
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, |
|
const std::vector<int>& fromTo) |
|
{ |
|
if (fromTo.empty()) |
|
return; |
|
|
|
CV_OCL_RUN(dst.isUMatVector(), |
|
ocl_mixChannels(src, dst, &fromTo[0], fromTo.size()>>1)) |
|
|
|
bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT && |
|
src.kind() != _InputArray::STD_VECTOR_VECTOR && |
|
src.kind() != _InputArray::STD_VECTOR_UMAT; |
|
bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT && |
|
dst.kind() != _InputArray::STD_VECTOR_VECTOR && |
|
dst.kind() != _InputArray::STD_VECTOR_UMAT; |
|
int i; |
|
int nsrc = src_is_mat ? 1 : (int)src.total(); |
|
int ndst = dst_is_mat ? 1 : (int)dst.total(); |
|
|
|
CV_Assert(fromTo.size()%2 == 0 && nsrc > 0 && ndst > 0); |
|
cv::AutoBuffer<Mat> _buf(nsrc + ndst); |
|
Mat* buf = _buf; |
|
for( i = 0; i < nsrc; i++ ) |
|
buf[i] = src.getMat(src_is_mat ? -1 : i); |
|
for( i = 0; i < ndst; i++ ) |
|
buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i); |
|
mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, &fromTo[0], fromTo.size()/2); |
|
} |
|
|
|
void cv::extractChannel(InputArray _src, OutputArray _dst, int coi) |
|
{ |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
CV_Assert( 0 <= coi && coi < cn ); |
|
int ch[] = { coi, 0 }; |
|
|
|
if (ocl::useOpenCL() && _src.dims() <= 2 && _dst.isUMat()) |
|
{ |
|
UMat src = _src.getUMat(); |
|
_dst.create(src.dims, &src.size[0], depth); |
|
UMat dst = _dst.getUMat(); |
|
mixChannels(std::vector<UMat>(1, src), std::vector<UMat>(1, dst), ch, 1); |
|
return; |
|
} |
|
|
|
Mat src = _src.getMat(); |
|
_dst.create(src.dims, &src.size[0], depth); |
|
Mat dst = _dst.getMat(); |
|
mixChannels(&src, 1, &dst, 1, ch, 1); |
|
} |
|
|
|
void cv::insertChannel(InputArray _src, InputOutputArray _dst, int coi) |
|
{ |
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype); |
|
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype); |
|
CV_Assert( _src.sameSize(_dst) && sdepth == ddepth ); |
|
CV_Assert( 0 <= coi && coi < dcn && scn == 1 ); |
|
|
|
int ch[] = { 0, coi }; |
|
if (ocl::useOpenCL() && _src.dims() <= 2 && _dst.isUMat()) |
|
{ |
|
UMat src = _src.getUMat(), dst = _dst.getUMat(); |
|
mixChannels(std::vector<UMat>(1, src), std::vector<UMat>(1, dst), ch, 1); |
|
return; |
|
} |
|
|
|
Mat src = _src.getMat(), dst = _dst.getMat(); |
|
mixChannels(&src, 1, &dst, 1, ch, 1); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* convertScale[Abs] * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename DT, typename WT> |
|
struct cvtScaleAbs_SSE2 |
|
{ |
|
int operator () (const T *, DT *, int, WT, WT) const |
|
{ |
|
return 0; |
|
} |
|
}; |
|
|
|
#if CV_SSE2 |
|
|
|
template <> |
|
struct cvtScaleAbs_SSE2<uchar, uchar, float> |
|
{ |
|
int operator () (const uchar * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 16; x += 16) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src + x)); |
|
__m128i v_src12 = _mm_unpacklo_epi8(v_src, v_zero_i), v_src_34 = _mm_unpackhi_epi8(v_src, v_zero_i); |
|
__m128 v_dst1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src12, v_zero_i)), v_scale), v_shift); |
|
v_dst1 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst1), v_dst1); |
|
__m128 v_dst2 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src12, v_zero_i)), v_scale), v_shift); |
|
v_dst2 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst2), v_dst2); |
|
__m128 v_dst3 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src_34, v_zero_i)), v_scale), v_shift); |
|
v_dst3 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst3), v_dst3); |
|
__m128 v_dst4 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src_34, v_zero_i)), v_scale), v_shift); |
|
v_dst4 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst4), v_dst4); |
|
|
|
__m128i v_dst_i = _mm_packus_epi16(_mm_packs_epi32(_mm_cvtps_epi32(v_dst1), _mm_cvtps_epi32(v_dst2)), |
|
_mm_packs_epi32(_mm_cvtps_epi32(v_dst3), _mm_cvtps_epi32(v_dst4))); |
|
_mm_storeu_si128((__m128i *)(dst + x), v_dst_i); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SSE2<ushort, uchar, float> |
|
{ |
|
int operator () (const ushort * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src + x)); |
|
__m128 v_dst1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpacklo_epi16(v_src, v_zero_i)), v_scale), v_shift); |
|
v_dst1 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst1), v_dst1); |
|
__m128 v_dst2 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpackhi_epi16(v_src, v_zero_i)), v_scale), v_shift); |
|
v_dst2 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst2), v_dst2); |
|
|
|
__m128i v_dst_i = _mm_packus_epi16(_mm_packs_epi32(_mm_cvtps_epi32(v_dst1), _mm_cvtps_epi32(v_dst2)), v_zero_i); |
|
_mm_storel_epi64((__m128i *)(dst + x), v_dst_i); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SSE2<short, uchar, float> |
|
{ |
|
int operator () (const short * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 8; x += 8) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src + x)); |
|
__m128 v_dst1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(v_src, v_src), 16)), v_scale), v_shift); |
|
v_dst1 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst1), v_dst1); |
|
__m128 v_dst2 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(v_src, v_src), 16)), v_scale), v_shift); |
|
v_dst2 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst2), v_dst2); |
|
|
|
__m128i v_dst_i = _mm_packus_epi16(_mm_packs_epi32(_mm_cvtps_epi32(v_dst1), _mm_cvtps_epi32(v_dst2)), v_zero_i); |
|
_mm_storel_epi64((__m128i *)(dst + x), v_dst_i); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SSE2<int, uchar, float> |
|
{ |
|
int operator () (const int * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 8; x += 4) |
|
{ |
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(src + x)); |
|
__m128 v_dst1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(v_src), v_scale), v_shift); |
|
v_dst1 = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst1), v_dst1); |
|
|
|
__m128i v_dst_i = _mm_packus_epi16(_mm_packs_epi32(_mm_cvtps_epi32(v_dst1), v_zero_i), v_zero_i); |
|
_mm_storel_epi64((__m128i *)(dst + x), v_dst_i); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
template <> |
|
struct cvtScaleAbs_SSE2<float, uchar, float> |
|
{ |
|
int operator () (const float * src, uchar * dst, int width, |
|
float scale, float shift) const |
|
{ |
|
int x = 0; |
|
|
|
if (USE_SSE2) |
|
{ |
|
__m128 v_scale = _mm_set1_ps(scale), v_shift = _mm_set1_ps(shift), |
|
v_zero_f = _mm_setzero_ps(); |
|
__m128i v_zero_i = _mm_setzero_si128(); |
|
|
|
for ( ; x <= width - 8; x += 4) |
|
{ |
|
__m128 v_dst = _mm_add_ps(_mm_mul_ps(_mm_loadu_ps(src + x), v_scale), v_shift); |
|
v_dst = _mm_max_ps(_mm_sub_ps(v_zero_f, v_dst), v_dst); |
|
|
|
__m128i v_dst_i = _mm_packs_epi32(_mm_cvtps_epi32(v_dst), v_zero_i); |
|
_mm_storel_epi64((__m128i *)(dst + x), _mm_packus_epi16(v_dst_i, v_zero_i)); |
|
} |
|
} |
|
|
|
return x; |
|
} |
|
}; |
|
|
|
#endif |
|
|
|
template<typename T, typename DT, typename WT> static void |
|
cvtScaleAbs_( const T* src, size_t sstep, |
|
DT* dst, size_t dstep, Size size, |
|
WT scale, WT shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
cvtScaleAbs_SSE2<T, DT, WT> vop; |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = vop(src, dst, size.width, scale, shift); |
|
|
|
#if CV_ENABLE_UNROLLED |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
DT t0, t1; |
|
t0 = saturate_cast<DT>(std::abs(src[x]*scale + shift)); |
|
t1 = saturate_cast<DT>(std::abs(src[x+1]*scale + shift)); |
|
dst[x] = t0; dst[x+1] = t1; |
|
t0 = saturate_cast<DT>(std::abs(src[x+2]*scale + shift)); |
|
t1 = saturate_cast<DT>(std::abs(src[x+3]*scale + shift)); |
|
dst[x+2] = t0; dst[x+3] = t1; |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<DT>(std::abs(src[x]*scale + shift)); |
|
} |
|
} |
|
|
|
template<typename T, typename DT, typename WT> static void |
|
cvtScale_( const T* src, size_t sstep, |
|
DT* dst, size_t dstep, Size size, |
|
WT scale, WT shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
DT t0, t1; |
|
t0 = saturate_cast<DT>(src[x]*scale + shift); |
|
t1 = saturate_cast<DT>(src[x+1]*scale + shift); |
|
dst[x] = t0; dst[x+1] = t1; |
|
t0 = saturate_cast<DT>(src[x+2]*scale + shift); |
|
t1 = saturate_cast<DT>(src[x+3]*scale + shift); |
|
dst[x+2] = t0; dst[x+3] = t1; |
|
} |
|
#endif |
|
|
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<DT>(src[x]*scale + shift); |
|
} |
|
} |
|
|
|
//vz optimized template specialization |
|
template<> void |
|
cvtScale_<short, short, float>( const short* src, size_t sstep, |
|
short* dst, size_t dstep, Size size, |
|
float scale, float shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
#if CV_SSE2 |
|
if(USE_SSE2) |
|
{ |
|
__m128 scale128 = _mm_set1_ps (scale); |
|
__m128 shift128 = _mm_set1_ps (shift); |
|
for(; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m128i r0 = _mm_loadl_epi64((const __m128i*)(src + x)); |
|
__m128i r1 = _mm_loadl_epi64((const __m128i*)(src + x + 4)); |
|
__m128 rf0 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r0, r0), 16)); |
|
__m128 rf1 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r1, r1), 16)); |
|
rf0 = _mm_add_ps(_mm_mul_ps(rf0, scale128), shift128); |
|
rf1 = _mm_add_ps(_mm_mul_ps(rf1, scale128), shift128); |
|
r0 = _mm_cvtps_epi32(rf0); |
|
r1 = _mm_cvtps_epi32(rf1); |
|
r0 = _mm_packs_epi32(r0, r1); |
|
_mm_storeu_si128((__m128i*)(dst + x), r0); |
|
} |
|
} |
|
#endif |
|
|
|
for(; x < size.width; x++ ) |
|
dst[x] = saturate_cast<short>(src[x]*scale + shift); |
|
} |
|
} |
|
|
|
template<> void |
|
cvtScale_<short, int, float>( const short* src, size_t sstep, |
|
int* dst, size_t dstep, Size size, |
|
float scale, float shift ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
|
|
#if CV_SSE2 |
|
if(USE_SSE2)//~5X |
|
{ |
|
__m128 scale128 = _mm_set1_ps (scale); |
|
__m128 shift128 = _mm_set1_ps (shift); |
|
for(; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m128i r0 = _mm_loadl_epi64((const __m128i*)(src + x)); |
|
__m128i r1 = _mm_loadl_epi64((const __m128i*)(src + x + 4)); |
|
__m128 rf0 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r0, r0), 16)); |
|
__m128 rf1 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r1, r1), 16)); |
|
rf0 = _mm_add_ps(_mm_mul_ps(rf0, scale128), shift128); |
|
rf1 = _mm_add_ps(_mm_mul_ps(rf1, scale128), shift128); |
|
r0 = _mm_cvtps_epi32(rf0); |
|
r1 = _mm_cvtps_epi32(rf1); |
|
|
|
_mm_storeu_si128((__m128i*)(dst + x), r0); |
|
_mm_storeu_si128((__m128i*)(dst + x + 4), r1); |
|
} |
|
} |
|
#endif |
|
|
|
//We will wait Haswell |
|
/* |
|
#if CV_AVX |
|
if(USE_AVX)//2X - bad variant |
|
{ |
|
////TODO:AVX implementation (optimization?) required |
|
__m256 scale256 = _mm256_set1_ps (scale); |
|
__m256 shift256 = _mm256_set1_ps (shift); |
|
for(; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m256i buf = _mm256_set_epi32((int)(*(src+x+7)),(int)(*(src+x+6)),(int)(*(src+x+5)),(int)(*(src+x+4)),(int)(*(src+x+3)),(int)(*(src+x+2)),(int)(*(src+x+1)),(int)(*(src+x))); |
|
__m256 r0 = _mm256_add_ps( _mm256_mul_ps(_mm256_cvtepi32_ps (buf), scale256), shift256); |
|
__m256i res = _mm256_cvtps_epi32(r0); |
|
_mm256_storeu_si256 ((__m256i*)(dst+x), res); |
|
} |
|
} |
|
#endif*/ |
|
|
|
for(; x < size.width; x++ ) |
|
dst[x] = saturate_cast<int>(src[x]*scale + shift); |
|
} |
|
} |
|
|
|
template<typename T, typename DT> static void |
|
cvt_( const T* src, size_t sstep, |
|
DT* dst, size_t dstep, Size size ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
DT t0, t1; |
|
t0 = saturate_cast<DT>(src[x]); |
|
t1 = saturate_cast<DT>(src[x+1]); |
|
dst[x] = t0; dst[x+1] = t1; |
|
t0 = saturate_cast<DT>(src[x+2]); |
|
t1 = saturate_cast<DT>(src[x+3]); |
|
dst[x+2] = t0; dst[x+3] = t1; |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<DT>(src[x]); |
|
} |
|
} |
|
|
|
//vz optimized template specialization, test Core_ConvertScale/ElemWiseTest |
|
template<> void |
|
cvt_<float, short>( const float* src, size_t sstep, |
|
short* dst, size_t dstep, Size size ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
int x = 0; |
|
#if CV_SSE2 |
|
if(USE_SSE2){ |
|
for( ; x <= size.width - 8; x += 8 ) |
|
{ |
|
__m128 src128 = _mm_loadu_ps (src + x); |
|
__m128i src_int128 = _mm_cvtps_epi32 (src128); |
|
|
|
src128 = _mm_loadu_ps (src + x + 4); |
|
__m128i src1_int128 = _mm_cvtps_epi32 (src128); |
|
|
|
src1_int128 = _mm_packs_epi32(src_int128, src1_int128); |
|
_mm_storeu_si128((__m128i*)(dst + x),src1_int128); |
|
} |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
dst[x] = saturate_cast<short>(src[x]); |
|
} |
|
|
|
} |
|
|
|
|
|
template<typename T> static void |
|
cpy_( const T* src, size_t sstep, T* dst, size_t dstep, Size size ) |
|
{ |
|
sstep /= sizeof(src[0]); |
|
dstep /= sizeof(dst[0]); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
memcpy(dst, src, size.width*sizeof(src[0])); |
|
} |
|
|
|
#define DEF_CVT_SCALE_ABS_FUNC(suffix, tfunc, stype, dtype, wtype) \ |
|
static void cvtScaleAbs##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double* scale) \ |
|
{ \ |
|
tfunc(src, sstep, dst, dstep, size, (wtype)scale[0], (wtype)scale[1]); \ |
|
} |
|
|
|
#define DEF_CVT_SCALE_FUNC(suffix, stype, dtype, wtype) \ |
|
static void cvtScale##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double* scale) \ |
|
{ \ |
|
cvtScale_(src, sstep, dst, dstep, size, (wtype)scale[0], (wtype)scale[1]); \ |
|
} |
|
|
|
#if defined(HAVE_IPP) |
|
#define DEF_CVT_FUNC_F(suffix, stype, dtype, ippFavor) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
if (src && dst)\ |
|
{\ |
|
if (ippiConvert_##ippFavor(src, (int)sstep, dst, (int)dstep, ippiSize(size.width, size.height)) >= 0) \ |
|
return; \ |
|
setIppErrorStatus(); \ |
|
}\ |
|
cvt_(src, sstep, dst, dstep, size); \ |
|
} |
|
|
|
#define DEF_CVT_FUNC_F2(suffix, stype, dtype, ippFavor) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
if (src && dst)\ |
|
{\ |
|
if (ippiConvert_##ippFavor(src, (int)sstep, dst, (int)dstep, ippiSize(size.width, size.height), ippRndFinancial, 0) >= 0) \ |
|
return; \ |
|
setIppErrorStatus(); \ |
|
}\ |
|
cvt_(src, sstep, dst, dstep, size); \ |
|
} |
|
#else |
|
#define DEF_CVT_FUNC_F(suffix, stype, dtype, ippFavor) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
cvt_(src, sstep, dst, dstep, size); \ |
|
} |
|
#define DEF_CVT_FUNC_F2 DEF_CVT_FUNC_F |
|
#endif |
|
|
|
#define DEF_CVT_FUNC(suffix, stype, dtype) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
dtype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
cvt_(src, sstep, dst, dstep, size); \ |
|
} |
|
|
|
#define DEF_CPY_FUNC(suffix, stype) \ |
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \ |
|
stype* dst, size_t dstep, Size size, double*) \ |
|
{ \ |
|
cpy_(src, sstep, dst, dstep, size); \ |
|
} |
|
|
|
|
|
DEF_CVT_SCALE_ABS_FUNC(8u, cvtScaleAbs_, uchar, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(8s8u, cvtScaleAbs_, schar, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(16u8u, cvtScaleAbs_, ushort, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(16s8u, cvtScaleAbs_, short, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(32s8u, cvtScaleAbs_, int, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(32f8u, cvtScaleAbs_, float, uchar, float) |
|
DEF_CVT_SCALE_ABS_FUNC(64f8u, cvtScaleAbs_, double, uchar, float) |
|
|
|
DEF_CVT_SCALE_FUNC(8u, uchar, uchar, float) |
|
DEF_CVT_SCALE_FUNC(8s8u, schar, uchar, float) |
|
DEF_CVT_SCALE_FUNC(16u8u, ushort, uchar, float) |
|
DEF_CVT_SCALE_FUNC(16s8u, short, uchar, float) |
|
DEF_CVT_SCALE_FUNC(32s8u, int, uchar, float) |
|
DEF_CVT_SCALE_FUNC(32f8u, float, uchar, float) |
|
DEF_CVT_SCALE_FUNC(64f8u, double, uchar, float) |
|
|
|
DEF_CVT_SCALE_FUNC(8u8s, uchar, schar, float) |
|
DEF_CVT_SCALE_FUNC(8s, schar, schar, float) |
|
DEF_CVT_SCALE_FUNC(16u8s, ushort, schar, float) |
|
DEF_CVT_SCALE_FUNC(16s8s, short, schar, float) |
|
DEF_CVT_SCALE_FUNC(32s8s, int, schar, float) |
|
DEF_CVT_SCALE_FUNC(32f8s, float, schar, float) |
|
DEF_CVT_SCALE_FUNC(64f8s, double, schar, float) |
|
|
|
DEF_CVT_SCALE_FUNC(8u16u, uchar, ushort, float) |
|
DEF_CVT_SCALE_FUNC(8s16u, schar, ushort, float) |
|
DEF_CVT_SCALE_FUNC(16u, ushort, ushort, float) |
|
DEF_CVT_SCALE_FUNC(16s16u, short, ushort, float) |
|
DEF_CVT_SCALE_FUNC(32s16u, int, ushort, float) |
|
DEF_CVT_SCALE_FUNC(32f16u, float, ushort, float) |
|
DEF_CVT_SCALE_FUNC(64f16u, double, ushort, float) |
|
|
|
DEF_CVT_SCALE_FUNC(8u16s, uchar, short, float) |
|
DEF_CVT_SCALE_FUNC(8s16s, schar, short, float) |
|
DEF_CVT_SCALE_FUNC(16u16s, ushort, short, float) |
|
DEF_CVT_SCALE_FUNC(16s, short, short, float) |
|
DEF_CVT_SCALE_FUNC(32s16s, int, short, float) |
|
DEF_CVT_SCALE_FUNC(32f16s, float, short, float) |
|
DEF_CVT_SCALE_FUNC(64f16s, double, short, float) |
|
|
|
DEF_CVT_SCALE_FUNC(8u32s, uchar, int, float) |
|
DEF_CVT_SCALE_FUNC(8s32s, schar, int, float) |
|
DEF_CVT_SCALE_FUNC(16u32s, ushort, int, float) |
|
DEF_CVT_SCALE_FUNC(16s32s, short, int, float) |
|
DEF_CVT_SCALE_FUNC(32s, int, int, double) |
|
DEF_CVT_SCALE_FUNC(32f32s, float, int, float) |
|
DEF_CVT_SCALE_FUNC(64f32s, double, int, double) |
|
|
|
DEF_CVT_SCALE_FUNC(8u32f, uchar, float, float) |
|
DEF_CVT_SCALE_FUNC(8s32f, schar, float, float) |
|
DEF_CVT_SCALE_FUNC(16u32f, ushort, float, float) |
|
DEF_CVT_SCALE_FUNC(16s32f, short, float, float) |
|
DEF_CVT_SCALE_FUNC(32s32f, int, float, double) |
|
DEF_CVT_SCALE_FUNC(32f, float, float, float) |
|
DEF_CVT_SCALE_FUNC(64f32f, double, float, double) |
|
|
|
DEF_CVT_SCALE_FUNC(8u64f, uchar, double, double) |
|
DEF_CVT_SCALE_FUNC(8s64f, schar, double, double) |
|
DEF_CVT_SCALE_FUNC(16u64f, ushort, double, double) |
|
DEF_CVT_SCALE_FUNC(16s64f, short, double, double) |
|
DEF_CVT_SCALE_FUNC(32s64f, int, double, double) |
|
DEF_CVT_SCALE_FUNC(32f64f, float, double, double) |
|
DEF_CVT_SCALE_FUNC(64f, double, double, double) |
|
|
|
DEF_CPY_FUNC(8u, uchar) |
|
DEF_CVT_FUNC_F(8s8u, schar, uchar, 8s8u_C1Rs) |
|
DEF_CVT_FUNC_F(16u8u, ushort, uchar, 16u8u_C1R) |
|
DEF_CVT_FUNC_F(16s8u, short, uchar, 16s8u_C1R) |
|
DEF_CVT_FUNC_F(32s8u, int, uchar, 32s8u_C1R) |
|
DEF_CVT_FUNC_F2(32f8u, float, uchar, 32f8u_C1RSfs) |
|
DEF_CVT_FUNC(64f8u, double, uchar) |
|
|
|
DEF_CVT_FUNC_F2(8u8s, uchar, schar, 8u8s_C1RSfs) |
|
DEF_CVT_FUNC_F2(16u8s, ushort, schar, 16u8s_C1RSfs) |
|
DEF_CVT_FUNC_F2(16s8s, short, schar, 16s8s_C1RSfs) |
|
DEF_CVT_FUNC_F(32s8s, int, schar, 32s8s_C1R) |
|
DEF_CVT_FUNC_F2(32f8s, float, schar, 32f8s_C1RSfs) |
|
DEF_CVT_FUNC(64f8s, double, schar) |
|
|
|
DEF_CVT_FUNC_F(8u16u, uchar, ushort, 8u16u_C1R) |
|
DEF_CVT_FUNC_F(8s16u, schar, ushort, 8s16u_C1Rs) |
|
DEF_CPY_FUNC(16u, ushort) |
|
DEF_CVT_FUNC_F(16s16u, short, ushort, 16s16u_C1Rs) |
|
DEF_CVT_FUNC_F2(32s16u, int, ushort, 32s16u_C1RSfs) |
|
DEF_CVT_FUNC_F2(32f16u, float, ushort, 32f16u_C1RSfs) |
|
DEF_CVT_FUNC(64f16u, double, ushort) |
|
|
|
DEF_CVT_FUNC_F(8u16s, uchar, short, 8u16s_C1R) |
|
DEF_CVT_FUNC_F(8s16s, schar, short, 8s16s_C1R) |
|
DEF_CVT_FUNC_F2(16u16s, ushort, short, 16u16s_C1RSfs) |
|
DEF_CVT_FUNC_F2(32s16s, int, short, 32s16s_C1RSfs) |
|
DEF_CVT_FUNC_F2(32f16s, float, short, 32f16s_C1RSfs) |
|
DEF_CVT_FUNC(64f16s, double, short) |
|
|
|
DEF_CVT_FUNC_F(8u32s, uchar, int, 8u32s_C1R) |
|
DEF_CVT_FUNC_F(8s32s, schar, int, 8s32s_C1R) |
|
DEF_CVT_FUNC_F(16u32s, ushort, int, 16u32s_C1R) |
|
DEF_CVT_FUNC_F(16s32s, short, int, 16s32s_C1R) |
|
DEF_CPY_FUNC(32s, int) |
|
DEF_CVT_FUNC_F2(32f32s, float, int, 32f32s_C1RSfs) |
|
DEF_CVT_FUNC(64f32s, double, int) |
|
|
|
DEF_CVT_FUNC_F(8u32f, uchar, float, 8u32f_C1R) |
|
DEF_CVT_FUNC_F(8s32f, schar, float, 8s32f_C1R) |
|
DEF_CVT_FUNC_F(16u32f, ushort, float, 16u32f_C1R) |
|
DEF_CVT_FUNC_F(16s32f, short, float, 16s32f_C1R) |
|
DEF_CVT_FUNC_F(32s32f, int, float, 32s32f_C1R) |
|
DEF_CVT_FUNC(64f32f, double, float) |
|
|
|
DEF_CVT_FUNC(8u64f, uchar, double) |
|
DEF_CVT_FUNC(8s64f, schar, double) |
|
DEF_CVT_FUNC(16u64f, ushort, double) |
|
DEF_CVT_FUNC(16s64f, short, double) |
|
DEF_CVT_FUNC(32s64f, int, double) |
|
DEF_CVT_FUNC(32f64f, float, double) |
|
DEF_CPY_FUNC(64s, int64) |
|
|
|
static BinaryFunc getCvtScaleAbsFunc(int depth) |
|
{ |
|
static BinaryFunc cvtScaleAbsTab[] = |
|
{ |
|
(BinaryFunc)cvtScaleAbs8u, (BinaryFunc)cvtScaleAbs8s8u, (BinaryFunc)cvtScaleAbs16u8u, |
|
(BinaryFunc)cvtScaleAbs16s8u, (BinaryFunc)cvtScaleAbs32s8u, (BinaryFunc)cvtScaleAbs32f8u, |
|
(BinaryFunc)cvtScaleAbs64f8u, 0 |
|
}; |
|
|
|
return cvtScaleAbsTab[depth]; |
|
} |
|
|
|
BinaryFunc getConvertFunc(int sdepth, int ddepth) |
|
{ |
|
static BinaryFunc cvtTab[][8] = |
|
{ |
|
{ |
|
(BinaryFunc)(cvt8u), (BinaryFunc)GET_OPTIMIZED(cvt8s8u), (BinaryFunc)GET_OPTIMIZED(cvt16u8u), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s8u), (BinaryFunc)GET_OPTIMIZED(cvt32s8u), (BinaryFunc)GET_OPTIMIZED(cvt32f8u), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f8u), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u8s), (BinaryFunc)cvt8u, (BinaryFunc)GET_OPTIMIZED(cvt16u8s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s8s), (BinaryFunc)GET_OPTIMIZED(cvt32s8s), (BinaryFunc)GET_OPTIMIZED(cvt32f8s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f8s), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u16u), (BinaryFunc)GET_OPTIMIZED(cvt8s16u), (BinaryFunc)cvt16u, |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s16u), (BinaryFunc)GET_OPTIMIZED(cvt32s16u), (BinaryFunc)GET_OPTIMIZED(cvt32f16u), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f16u), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u16s), (BinaryFunc)GET_OPTIMIZED(cvt8s16s), (BinaryFunc)GET_OPTIMIZED(cvt16u16s), |
|
(BinaryFunc)cvt16u, (BinaryFunc)GET_OPTIMIZED(cvt32s16s), (BinaryFunc)GET_OPTIMIZED(cvt32f16s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f16s), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u32s), (BinaryFunc)GET_OPTIMIZED(cvt8s32s), (BinaryFunc)GET_OPTIMIZED(cvt16u32s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s32s), (BinaryFunc)cvt32s, (BinaryFunc)GET_OPTIMIZED(cvt32f32s), |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f32s), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u32f), (BinaryFunc)GET_OPTIMIZED(cvt8s32f), (BinaryFunc)GET_OPTIMIZED(cvt16u32f), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s32f), (BinaryFunc)GET_OPTIMIZED(cvt32s32f), (BinaryFunc)cvt32s, |
|
(BinaryFunc)GET_OPTIMIZED(cvt64f32f), 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvt8u64f), (BinaryFunc)GET_OPTIMIZED(cvt8s64f), (BinaryFunc)GET_OPTIMIZED(cvt16u64f), |
|
(BinaryFunc)GET_OPTIMIZED(cvt16s64f), (BinaryFunc)GET_OPTIMIZED(cvt32s64f), (BinaryFunc)GET_OPTIMIZED(cvt32f64f), |
|
(BinaryFunc)(cvt64s), 0 |
|
}, |
|
{ |
|
0, 0, 0, 0, 0, 0, 0, 0 |
|
} |
|
}; |
|
|
|
return cvtTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)]; |
|
} |
|
|
|
static BinaryFunc getConvertScaleFunc(int sdepth, int ddepth) |
|
{ |
|
static BinaryFunc cvtScaleTab[][8] = |
|
{ |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8u), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8u), |
|
(BinaryFunc)cvtScale64f8u, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u8s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8s), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8s), |
|
(BinaryFunc)cvtScale64f8s, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16u), |
|
(BinaryFunc)cvtScale64f16u, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u16s), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16s), |
|
(BinaryFunc)cvtScale64f16s, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32s), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f32s), |
|
(BinaryFunc)cvtScale64f32s, 0 |
|
}, |
|
{ |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32f), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32f), |
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32f), |
|
(BinaryFunc)cvtScale64f32f, 0 |
|
}, |
|
{ |
|
(BinaryFunc)cvtScale8u64f, (BinaryFunc)cvtScale8s64f, (BinaryFunc)cvtScale16u64f, |
|
(BinaryFunc)cvtScale16s64f, (BinaryFunc)cvtScale32s64f, (BinaryFunc)cvtScale32f64f, |
|
(BinaryFunc)cvtScale64f, 0 |
|
}, |
|
{ |
|
0, 0, 0, 0, 0, 0, 0, 0 |
|
} |
|
}; |
|
|
|
return cvtScaleTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)]; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta ) |
|
{ |
|
const ocl::Device & d = ocl::Device::getDefault(); |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), |
|
kercn = ocl::predictOptimalVectorWidth(_src, _dst), rowsPerWI = d.isIntel() ? 4 : 1; |
|
bool doubleSupport = d.doubleFPConfig() > 0; |
|
|
|
if (!doubleSupport && depth == CV_64F) |
|
return false; |
|
|
|
char cvt[2][50]; |
|
int wdepth = std::max(depth, CV_32F); |
|
ocl::Kernel k("KF", ocl::core::arithm_oclsrc, |
|
format("-D OP_CONVERT_SCALE_ABS -D UNARY_OP -D dstT=%s -D srcT1=%s" |
|
" -D workT=%s -D wdepth=%d -D convertToWT1=%s -D convertToDT=%s" |
|
" -D workT1=%s -D rowsPerWI=%d%s", |
|
ocl::typeToStr(CV_8UC(kercn)), |
|
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), |
|
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)), wdepth, |
|
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]), |
|
ocl::convertTypeStr(wdepth, CV_8U, kercn, cvt[1]), |
|
ocl::typeToStr(wdepth), rowsPerWI, |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "")); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
_dst.create(src.size(), CV_8UC(cn)); |
|
UMat dst = _dst.getUMat(); |
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), |
|
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn); |
|
|
|
if (wdepth == CV_32F) |
|
k.args(srcarg, dstarg, (float)alpha, (float)beta); |
|
else if (wdepth == CV_64F) |
|
k.args(srcarg, dstarg, alpha, beta); |
|
|
|
size_t globalsize[2] = { src.cols * cn / kercn, (src.rows + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
void cv::convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta ) |
|
{ |
|
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), |
|
ocl_convertScaleAbs(_src, _dst, alpha, beta)) |
|
|
|
Mat src = _src.getMat(); |
|
int cn = src.channels(); |
|
double scale[] = {alpha, beta}; |
|
_dst.create( src.dims, src.size, CV_8UC(cn) ); |
|
Mat dst = _dst.getMat(); |
|
BinaryFunc func = getCvtScaleAbsFunc(src.depth()); |
|
CV_Assert( func != 0 ); |
|
|
|
if( src.dims <= 2 ) |
|
{ |
|
Size sz = getContinuousSize(src, dst, cn); |
|
func( src.data, src.step, 0, 0, dst.data, dst.step, sz, scale ); |
|
} |
|
else |
|
{ |
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Size sz((int)it.size*cn, 1); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func( ptrs[0], 0, 0, 0, ptrs[1], 0, sz, scale ); |
|
} |
|
} |
|
|
|
void cv::Mat::convertTo(OutputArray _dst, int _type, double alpha, double beta) const |
|
{ |
|
bool noScale = fabs(alpha-1) < DBL_EPSILON && fabs(beta) < DBL_EPSILON; |
|
|
|
if( _type < 0 ) |
|
_type = _dst.fixedType() ? _dst.type() : type(); |
|
else |
|
_type = CV_MAKETYPE(CV_MAT_DEPTH(_type), channels()); |
|
|
|
int sdepth = depth(), ddepth = CV_MAT_DEPTH(_type); |
|
if( sdepth == ddepth && noScale ) |
|
{ |
|
copyTo(_dst); |
|
return; |
|
} |
|
|
|
Mat src = *this; |
|
|
|
BinaryFunc func = noScale ? getConvertFunc(sdepth, ddepth) : getConvertScaleFunc(sdepth, ddepth); |
|
double scale[] = {alpha, beta}; |
|
int cn = channels(); |
|
CV_Assert( func != 0 ); |
|
|
|
if( dims <= 2 ) |
|
{ |
|
_dst.create( size(), _type ); |
|
Mat dst = _dst.getMat(); |
|
Size sz = getContinuousSize(src, dst, cn); |
|
func( src.data, src.step, 0, 0, dst.data, dst.step, sz, scale ); |
|
} |
|
else |
|
{ |
|
_dst.create( dims, size, _type ); |
|
Mat dst = _dst.getMat(); |
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Size sz((int)(it.size*cn), 1); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func(ptrs[0], 1, 0, 0, ptrs[1], 1, sz, scale); |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* LUT Transform * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static void |
|
LUT8u_( const uchar* src, const T* lut, T* dst, int len, int cn, int lutcn ) |
|
{ |
|
if( lutcn == 1 ) |
|
{ |
|
for( int i = 0; i < len*cn; i++ ) |
|
dst[i] = lut[src[i]]; |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len*cn; i += cn ) |
|
for( int k = 0; k < cn; k++ ) |
|
dst[i+k] = lut[src[i+k]*cn+k]; |
|
} |
|
} |
|
|
|
static void LUT8u_8u( const uchar* src, const uchar* lut, uchar* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_8s( const uchar* src, const schar* lut, schar* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_16u( const uchar* src, const ushort* lut, ushort* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_16s( const uchar* src, const short* lut, short* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_32s( const uchar* src, const int* lut, int* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_32f( const uchar* src, const float* lut, float* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
static void LUT8u_64f( const uchar* src, const double* lut, double* dst, int len, int cn, int lutcn ) |
|
{ |
|
LUT8u_( src, lut, dst, len, cn, lutcn ); |
|
} |
|
|
|
typedef void (*LUTFunc)( const uchar* src, const uchar* lut, uchar* dst, int len, int cn, int lutcn ); |
|
|
|
static LUTFunc lutTab[] = |
|
{ |
|
(LUTFunc)LUT8u_8u, (LUTFunc)LUT8u_8s, (LUTFunc)LUT8u_16u, (LUTFunc)LUT8u_16s, |
|
(LUTFunc)LUT8u_32s, (LUTFunc)LUT8u_32f, (LUTFunc)LUT8u_64f, 0 |
|
}; |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_LUT(InputArray _src, InputArray _lut, OutputArray _dst) |
|
{ |
|
int lcn = _lut.channels(), dcn = _src.channels(), ddepth = _lut.depth(); |
|
|
|
UMat src = _src.getUMat(), lut = _lut.getUMat(); |
|
_dst.create(src.size(), CV_MAKETYPE(ddepth, dcn)); |
|
UMat dst = _dst.getUMat(); |
|
int kercn = lcn == 1 ? std::min(4, ocl::predictOptimalVectorWidth(_dst)) : dcn; |
|
|
|
ocl::Kernel k("LUT", ocl::core::lut_oclsrc, |
|
format("-D dcn=%d -D lcn=%d -D srcT=%s -D dstT=%s", kercn, lcn, |
|
ocl::typeToStr(src.depth()), ocl::memopTypeToStr(ddepth))); |
|
if (k.empty()) |
|
return false; |
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::ReadOnlyNoSize(lut), |
|
ocl::KernelArg::WriteOnly(dst, dcn, kercn)); |
|
|
|
size_t globalSize[2] = { dst.cols * dcn / kercn, (dst.rows + 3) / 4 }; |
|
return k.run(2, globalSize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
#if defined(HAVE_IPP) |
|
namespace ipp { |
|
|
|
#if 0 // there are no performance benefits (PR #2653) |
|
class IppLUTParallelBody_LUTC1 : public ParallelLoopBody |
|
{ |
|
public: |
|
bool* ok; |
|
const Mat& src_; |
|
const Mat& lut_; |
|
Mat& dst_; |
|
|
|
typedef IppStatus (*IppFn)(const Ipp8u* pSrc, int srcStep, void* pDst, int dstStep, |
|
IppiSize roiSize, const void* pTable, int nBitSize); |
|
IppFn fn; |
|
|
|
int width; |
|
|
|
IppLUTParallelBody_LUTC1(const Mat& src, const Mat& lut, Mat& dst, bool* _ok) |
|
: ok(_ok), src_(src), lut_(lut), dst_(dst) |
|
{ |
|
width = dst.cols * dst.channels(); |
|
|
|
size_t elemSize1 = CV_ELEM_SIZE1(dst.depth()); |
|
|
|
fn = |
|
elemSize1 == 1 ? (IppFn)ippiLUTPalette_8u_C1R : |
|
elemSize1 == 4 ? (IppFn)ippiLUTPalette_8u32u_C1R : |
|
NULL; |
|
|
|
*ok = (fn != NULL); |
|
} |
|
|
|
void operator()( const cv::Range& range ) const |
|
{ |
|
if (!*ok) |
|
return; |
|
|
|
const int row0 = range.start; |
|
const int row1 = range.end; |
|
|
|
Mat src = src_.rowRange(row0, row1); |
|
Mat dst = dst_.rowRange(row0, row1); |
|
|
|
IppiSize sz = { width, dst.rows }; |
|
|
|
CV_DbgAssert(fn != NULL); |
|
if (fn(src.data, (int)src.step[0], dst.data, (int)dst.step[0], sz, lut_.data, 8) < 0) |
|
{ |
|
setIppErrorStatus(); |
|
*ok = false; |
|
} |
|
} |
|
private: |
|
IppLUTParallelBody_LUTC1(const IppLUTParallelBody_LUTC1&); |
|
IppLUTParallelBody_LUTC1& operator=(const IppLUTParallelBody_LUTC1&); |
|
}; |
|
#endif |
|
|
|
class IppLUTParallelBody_LUTCN : public ParallelLoopBody |
|
{ |
|
public: |
|
bool *ok; |
|
const Mat& src_; |
|
const Mat& lut_; |
|
Mat& dst_; |
|
|
|
int lutcn; |
|
|
|
uchar* lutBuffer; |
|
uchar* lutTable[4]; |
|
|
|
IppLUTParallelBody_LUTCN(const Mat& src, const Mat& lut, Mat& dst, bool* _ok) |
|
: ok(_ok), src_(src), lut_(lut), dst_(dst), lutBuffer(NULL) |
|
{ |
|
lutcn = lut.channels(); |
|
IppiSize sz256 = {256, 1}; |
|
|
|
size_t elemSize1 = dst.elemSize1(); |
|
CV_DbgAssert(elemSize1 == 1); |
|
lutBuffer = (uchar*)ippMalloc(256 * (int)elemSize1 * 4); |
|
lutTable[0] = lutBuffer + 0; |
|
lutTable[1] = lutBuffer + 1 * 256 * elemSize1; |
|
lutTable[2] = lutBuffer + 2 * 256 * elemSize1; |
|
lutTable[3] = lutBuffer + 3 * 256 * elemSize1; |
|
|
|
CV_DbgAssert(lutcn == 3 || lutcn == 4); |
|
if (lutcn == 3) |
|
{ |
|
IppStatus status = ippiCopy_8u_C3P3R(lut.data, (int)lut.step[0], lutTable, (int)lut.step[0], sz256); |
|
if (status < 0) |
|
{ |
|
setIppErrorStatus(); |
|
return; |
|
} |
|
} |
|
else if (lutcn == 4) |
|
{ |
|
IppStatus status = ippiCopy_8u_C4P4R(lut.data, (int)lut.step[0], lutTable, (int)lut.step[0], sz256); |
|
if (status < 0) |
|
{ |
|
setIppErrorStatus(); |
|
return; |
|
} |
|
} |
|
|
|
*ok = true; |
|
} |
|
|
|
~IppLUTParallelBody_LUTCN() |
|
{ |
|
if (lutBuffer != NULL) |
|
ippFree(lutBuffer); |
|
lutBuffer = NULL; |
|
lutTable[0] = NULL; |
|
} |
|
|
|
void operator()( const cv::Range& range ) const |
|
{ |
|
if (!*ok) |
|
return; |
|
|
|
const int row0 = range.start; |
|
const int row1 = range.end; |
|
|
|
Mat src = src_.rowRange(row0, row1); |
|
Mat dst = dst_.rowRange(row0, row1); |
|
|
|
if (lutcn == 3) |
|
{ |
|
if (ippiLUTPalette_8u_C3R( |
|
src.data, (int)src.step[0], dst.data, (int)dst.step[0], |
|
ippiSize(dst.size()), lutTable, 8) >= 0) |
|
return; |
|
} |
|
else if (lutcn == 4) |
|
{ |
|
if (ippiLUTPalette_8u_C4R( |
|
src.data, (int)src.step[0], dst.data, (int)dst.step[0], |
|
ippiSize(dst.size()), lutTable, 8) >= 0) |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
*ok = false; |
|
} |
|
private: |
|
IppLUTParallelBody_LUTCN(const IppLUTParallelBody_LUTCN&); |
|
IppLUTParallelBody_LUTCN& operator=(const IppLUTParallelBody_LUTCN&); |
|
}; |
|
} // namespace ipp |
|
#endif // IPP |
|
|
|
class LUTParallelBody : public ParallelLoopBody |
|
{ |
|
public: |
|
bool* ok; |
|
const Mat& src_; |
|
const Mat& lut_; |
|
Mat& dst_; |
|
|
|
LUTFunc func; |
|
|
|
LUTParallelBody(const Mat& src, const Mat& lut, Mat& dst, bool* _ok) |
|
: ok(_ok), src_(src), lut_(lut), dst_(dst) |
|
{ |
|
func = lutTab[lut.depth()]; |
|
*ok = (func != NULL); |
|
} |
|
|
|
void operator()( const cv::Range& range ) const |
|
{ |
|
CV_DbgAssert(*ok); |
|
|
|
const int row0 = range.start; |
|
const int row1 = range.end; |
|
|
|
Mat src = src_.rowRange(row0, row1); |
|
Mat dst = dst_.rowRange(row0, row1); |
|
|
|
int cn = src.channels(); |
|
int lutcn = lut_.channels(); |
|
|
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int len = (int)it.size; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func(ptrs[0], lut_.data, ptrs[1], len, cn, lutcn); |
|
} |
|
private: |
|
LUTParallelBody(const LUTParallelBody&); |
|
LUTParallelBody& operator=(const LUTParallelBody&); |
|
}; |
|
|
|
} |
|
|
|
void cv::LUT( InputArray _src, InputArray _lut, OutputArray _dst ) |
|
{ |
|
int cn = _src.channels(), depth = _src.depth(); |
|
int lutcn = _lut.channels(); |
|
|
|
CV_Assert( (lutcn == cn || lutcn == 1) && |
|
_lut.total() == 256 && _lut.isContinuous() && |
|
(depth == CV_8U || depth == CV_8S) ); |
|
|
|
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2, |
|
ocl_LUT(_src, _lut, _dst)) |
|
|
|
Mat src = _src.getMat(), lut = _lut.getMat(); |
|
_dst.create(src.dims, src.size, CV_MAKETYPE(_lut.depth(), cn)); |
|
Mat dst = _dst.getMat(); |
|
|
|
if (_src.dims() <= 2) |
|
{ |
|
bool ok = false; |
|
Ptr<ParallelLoopBody> body; |
|
#if defined(HAVE_IPP) |
|
size_t elemSize1 = CV_ELEM_SIZE1(dst.depth()); |
|
#if 0 // there are no performance benefits (PR #2653) |
|
if (lutcn == 1) |
|
{ |
|
ParallelLoopBody* p = new ipp::IppLUTParallelBody_LUTC1(src, lut, dst, &ok); |
|
body.reset(p); |
|
} |
|
else |
|
#endif |
|
if ((lutcn == 3 || lutcn == 4) && elemSize1 == 1) |
|
{ |
|
ParallelLoopBody* p = new ipp::IppLUTParallelBody_LUTCN(src, lut, dst, &ok); |
|
body.reset(p); |
|
} |
|
#endif |
|
if (body == NULL || ok == false) |
|
{ |
|
ok = false; |
|
ParallelLoopBody* p = new LUTParallelBody(src, lut, dst, &ok); |
|
body.reset(p); |
|
} |
|
if (body != NULL && ok) |
|
{ |
|
Range all(0, dst.rows); |
|
if (dst.total()>>18) |
|
parallel_for_(all, *body, (double)std::max((size_t)1, dst.total()>>16)); |
|
else |
|
(*body)(all); |
|
if (ok) |
|
return; |
|
} |
|
} |
|
|
|
LUTFunc func = lutTab[lut.depth()]; |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &dst, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int len = (int)it.size; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
func(ptrs[0], lut.data, ptrs[1], len, cn, lutcn); |
|
} |
|
|
|
namespace cv { |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_normalize( InputArray _src, InputOutputArray _dst, InputArray _mask, int dtype, |
|
double scale, double delta ) |
|
{ |
|
UMat src = _src.getUMat(); |
|
|
|
if( _mask.empty() ) |
|
src.convertTo( _dst, dtype, scale, delta ); |
|
else if (src.channels() <= 4) |
|
{ |
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), |
|
ddepth = CV_MAT_DEPTH(dtype), wdepth = std::max(CV_32F, std::max(sdepth, ddepth)), |
|
rowsPerWI = dev.isIntel() ? 4 : 1; |
|
|
|
float fscale = static_cast<float>(scale), fdelta = static_cast<float>(delta); |
|
bool haveScale = std::fabs(scale - 1) > DBL_EPSILON, |
|
haveZeroScale = !(std::fabs(scale) > DBL_EPSILON), |
|
haveDelta = std::fabs(delta) > DBL_EPSILON, |
|
doubleSupport = dev.doubleFPConfig() > 0; |
|
|
|
if (!haveScale && !haveDelta && stype == dtype) |
|
{ |
|
_src.copyTo(_dst, _mask); |
|
return true; |
|
} |
|
if (haveZeroScale) |
|
{ |
|
_dst.setTo(Scalar(delta), _mask); |
|
return true; |
|
} |
|
|
|
if ((sdepth == CV_64F || ddepth == CV_64F) && !doubleSupport) |
|
return false; |
|
|
|
char cvt[2][40]; |
|
String opts = format("-D srcT=%s -D dstT=%s -D convertToWT=%s -D cn=%d -D rowsPerWI=%d" |
|
" -D convertToDT=%s -D workT=%s%s%s%s -D srcT1=%s -D dstT1=%s", |
|
ocl::typeToStr(stype), ocl::typeToStr(dtype), |
|
ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]), cn, |
|
rowsPerWI, ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]), |
|
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "", |
|
haveScale ? " -D HAVE_SCALE" : "", |
|
haveDelta ? " -D HAVE_DELTA" : "", |
|
ocl::typeToStr(sdepth), ocl::typeToStr(ddepth)); |
|
|
|
ocl::Kernel k("normalizek", ocl::core::normalize_oclsrc, opts); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat mask = _mask.getUMat(), dst = _dst.getUMat(); |
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), |
|
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask), |
|
dstarg = ocl::KernelArg::ReadWrite(dst); |
|
|
|
if (haveScale) |
|
{ |
|
if (haveDelta) |
|
k.args(srcarg, maskarg, dstarg, fscale, fdelta); |
|
else |
|
k.args(srcarg, maskarg, dstarg, fscale); |
|
} |
|
else |
|
{ |
|
if (haveDelta) |
|
k.args(srcarg, maskarg, dstarg, fdelta); |
|
else |
|
k.args(srcarg, maskarg, dstarg); |
|
} |
|
|
|
size_t globalsize[2] = { src.cols, (src.rows + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
else |
|
{ |
|
UMat temp; |
|
src.convertTo( temp, dtype, scale, delta ); |
|
temp.copyTo( _dst, _mask ); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
void cv::normalize( InputArray _src, InputOutputArray _dst, double a, double b, |
|
int norm_type, int rtype, InputArray _mask ) |
|
{ |
|
double scale = 1, shift = 0; |
|
if( norm_type == CV_MINMAX ) |
|
{ |
|
double smin = 0, smax = 0; |
|
double dmin = MIN( a, b ), dmax = MAX( a, b ); |
|
minMaxLoc( _src, &smin, &smax, 0, 0, _mask ); |
|
scale = (dmax - dmin)*(smax - smin > DBL_EPSILON ? 1./(smax - smin) : 0); |
|
shift = dmin - smin*scale; |
|
} |
|
else if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C ) |
|
{ |
|
scale = norm( _src, norm_type, _mask ); |
|
scale = scale > DBL_EPSILON ? a/scale : 0.; |
|
shift = 0; |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" ); |
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
if( rtype < 0 ) |
|
rtype = _dst.fixedType() ? _dst.depth() : depth; |
|
_dst.createSameSize(_src, CV_MAKETYPE(rtype, cn)); |
|
|
|
CV_OCL_RUN(_dst.isUMat(), |
|
ocl_normalize(_src, _dst, _mask, rtype, scale, shift)) |
|
|
|
Mat src = _src.getMat(), dst = _dst.getMat(); |
|
if( _mask.empty() ) |
|
src.convertTo( dst, rtype, scale, shift ); |
|
else |
|
{ |
|
Mat temp; |
|
src.convertTo( temp, rtype, scale, shift ); |
|
temp.copyTo( dst, _mask ); |
|
} |
|
} |
|
|
|
CV_IMPL void |
|
cvSplit( const void* srcarr, void* dstarr0, void* dstarr1, void* dstarr2, void* dstarr3 ) |
|
{ |
|
void* dptrs[] = { dstarr0, dstarr1, dstarr2, dstarr3 }; |
|
cv::Mat src = cv::cvarrToMat(srcarr); |
|
int i, j, nz = 0; |
|
for( i = 0; i < 4; i++ ) |
|
nz += dptrs[i] != 0; |
|
CV_Assert( nz > 0 ); |
|
std::vector<cv::Mat> dvec(nz); |
|
std::vector<int> pairs(nz*2); |
|
|
|
for( i = j = 0; i < 4; i++ ) |
|
{ |
|
if( dptrs[i] != 0 ) |
|
{ |
|
dvec[j] = cv::cvarrToMat(dptrs[i]); |
|
CV_Assert( dvec[j].size() == src.size() ); |
|
CV_Assert( dvec[j].depth() == src.depth() ); |
|
CV_Assert( dvec[j].channels() == 1 ); |
|
CV_Assert( i < src.channels() ); |
|
pairs[j*2] = i; |
|
pairs[j*2+1] = j; |
|
j++; |
|
} |
|
} |
|
if( nz == src.channels() ) |
|
cv::split( src, dvec ); |
|
else |
|
{ |
|
cv::mixChannels( &src, 1, &dvec[0], nz, &pairs[0], nz ); |
|
} |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvMerge( const void* srcarr0, const void* srcarr1, const void* srcarr2, |
|
const void* srcarr3, void* dstarr ) |
|
{ |
|
const void* sptrs[] = { srcarr0, srcarr1, srcarr2, srcarr3 }; |
|
cv::Mat dst = cv::cvarrToMat(dstarr); |
|
int i, j, nz = 0; |
|
for( i = 0; i < 4; i++ ) |
|
nz += sptrs[i] != 0; |
|
CV_Assert( nz > 0 ); |
|
std::vector<cv::Mat> svec(nz); |
|
std::vector<int> pairs(nz*2); |
|
|
|
for( i = j = 0; i < 4; i++ ) |
|
{ |
|
if( sptrs[i] != 0 ) |
|
{ |
|
svec[j] = cv::cvarrToMat(sptrs[i]); |
|
CV_Assert( svec[j].size == dst.size && |
|
svec[j].depth() == dst.depth() && |
|
svec[j].channels() == 1 && i < dst.channels() ); |
|
pairs[j*2] = j; |
|
pairs[j*2+1] = i; |
|
j++; |
|
} |
|
} |
|
|
|
if( nz == dst.channels() ) |
|
cv::merge( svec, dst ); |
|
else |
|
{ |
|
cv::mixChannels( &svec[0], nz, &dst, 1, &pairs[0], nz ); |
|
} |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvMixChannels( const CvArr** src, int src_count, |
|
CvArr** dst, int dst_count, |
|
const int* from_to, int pair_count ) |
|
{ |
|
cv::AutoBuffer<cv::Mat> buf(src_count + dst_count); |
|
|
|
int i; |
|
for( i = 0; i < src_count; i++ ) |
|
buf[i] = cv::cvarrToMat(src[i]); |
|
for( i = 0; i < dst_count; i++ ) |
|
buf[i+src_count] = cv::cvarrToMat(dst[i]); |
|
cv::mixChannels(&buf[0], src_count, &buf[src_count], dst_count, from_to, pair_count); |
|
} |
|
|
|
CV_IMPL void |
|
cvConvertScaleAbs( const void* srcarr, void* dstarr, |
|
double scale, double shift ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
CV_Assert( src.size == dst.size && dst.type() == CV_8UC(src.channels())); |
|
cv::convertScaleAbs( src, dst, scale, shift ); |
|
} |
|
|
|
CV_IMPL void |
|
cvConvertScale( const void* srcarr, void* dstarr, |
|
double scale, double shift ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( src.size == dst.size && src.channels() == dst.channels() ); |
|
src.convertTo(dst, dst.type(), scale, shift); |
|
} |
|
|
|
CV_IMPL void cvLUT( const void* srcarr, void* dstarr, const void* lutarr ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), lut = cv::cvarrToMat(lutarr); |
|
|
|
CV_Assert( dst.size() == src.size() && dst.type() == CV_MAKETYPE(lut.depth(), src.channels()) ); |
|
cv::LUT( src, lut, dst ); |
|
} |
|
|
|
CV_IMPL void cvNormalize( const CvArr* srcarr, CvArr* dstarr, |
|
double a, double b, int norm_type, const CvArr* maskarr ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask; |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
CV_Assert( dst.size() == src.size() && src.channels() == dst.channels() ); |
|
cv::normalize( src, dst, a, b, norm_type, dst.type(), mask ); |
|
} |
|
|
|
/* End of file. */
|
|
|