mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
5.6 KiB
175 lines
5.6 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
class CV_RigidTransform_Test : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_RigidTransform_Test(); |
|
~CV_RigidTransform_Test(); |
|
protected: |
|
void run(int); |
|
|
|
bool testNPoints(int); |
|
bool testImage(); |
|
}; |
|
|
|
CV_RigidTransform_Test::CV_RigidTransform_Test() |
|
{ |
|
} |
|
CV_RigidTransform_Test::~CV_RigidTransform_Test() {} |
|
|
|
struct WrapAff2D |
|
{ |
|
const double *F; |
|
WrapAff2D(const Mat& aff) : F(aff.ptr<double>()) {} |
|
Point2f operator()(const Point2f& p) |
|
{ |
|
return Point2f( (float)(p.x * F[0] + p.y * F[1] + F[2]), |
|
(float)(p.x * F[3] + p.y * F[4] + F[5]) ); |
|
} |
|
}; |
|
|
|
bool CV_RigidTransform_Test::testNPoints(int from) |
|
{ |
|
cv::RNG rng = cv::theRNG(); |
|
|
|
int progress = 0; |
|
int k, ntests = 10000; |
|
|
|
for( k = from; k < ntests; k++ ) |
|
{ |
|
ts->update_context( this, k, true ); |
|
progress = update_progress(progress, k, ntests, 0); |
|
|
|
Mat aff(2, 3, CV_64F); |
|
rng.fill(aff, RNG::UNIFORM, Scalar(-2), Scalar(2)); |
|
|
|
int n = (unsigned)rng % 100 + 10; |
|
|
|
Mat fpts(1, n, CV_32FC2); |
|
Mat tpts(1, n, CV_32FC2); |
|
|
|
rng.fill(fpts, RNG::UNIFORM, Scalar(0,0), Scalar(10,10)); |
|
std::transform(fpts.ptr<Point2f>(), fpts.ptr<Point2f>() + n, tpts.ptr<Point2f>(), WrapAff2D(aff)); |
|
|
|
Mat noise(1, n, CV_32FC2); |
|
rng.fill(noise, RNG::NORMAL, Scalar::all(0), Scalar::all(0.001*(n<=7 ? 0 : n <= 30 ? 1 : 10))); |
|
tpts += noise; |
|
|
|
Mat aff_est = estimateRigidTransform(fpts, tpts, true); |
|
|
|
double thres = 0.1*cvtest::norm(aff, NORM_L2); |
|
double d = cvtest::norm(aff_est, aff, NORM_L2); |
|
if (d > thres) |
|
{ |
|
double dB=0, nB=0; |
|
if (n <= 4) |
|
{ |
|
Mat A = fpts.reshape(1, 3); |
|
Mat B = A - repeat(A.row(0), 3, 1), Bt = B.t(); |
|
B = Bt*B; |
|
dB = cv::determinant(B); |
|
nB = cvtest::norm(B, NORM_L2); |
|
if( fabs(dB) < 0.01*nB ) |
|
continue; |
|
} |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->printf( cvtest::TS::LOG, "Threshold = %f, norm of difference = %f", thres, d ); |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
bool CV_RigidTransform_Test::testImage() |
|
{ |
|
Mat img; |
|
Mat testImg = imread( string(ts->get_data_path()) + "shared/graffiti.png", 1); |
|
if (testImg.empty()) |
|
{ |
|
ts->printf( ts->LOG, "test image can not be read"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return false; |
|
} |
|
pyrDown(testImg, img); |
|
|
|
Mat aff = cv::getRotationMatrix2D(Point(img.cols/2, img.rows/2), 1, 0.99); |
|
aff.ptr<double>()[2]+=3; |
|
aff.ptr<double>()[5]+=3; |
|
|
|
Mat rotated; |
|
warpAffine(img, rotated, aff, img.size()); |
|
|
|
Mat aff_est = estimateRigidTransform(img, rotated, true); |
|
|
|
const double thres = 0.033; |
|
if (cvtest::norm(aff_est, aff, NORM_INF) > thres) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->printf( cvtest::TS::LOG, "Threshold = %f, norm of difference = %f", thres, |
|
cvtest::norm(aff_est, aff, NORM_INF) ); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
void CV_RigidTransform_Test::run( int start_from ) |
|
{ |
|
cvtest::DefaultRngAuto dra; |
|
|
|
if (!testNPoints(start_from)) |
|
return; |
|
|
|
if (!testImage()) |
|
return; |
|
|
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
TEST(Video_RigidFlow, accuracy) { CV_RigidTransform_Test test; test.safe_run(); } |
|
|
|
}} // namespace
|
|
|