mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
792 lines
21 KiB
792 lines
21 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <ctype.h> |
|
|
|
#define MISS_VAL FLT_MAX |
|
#define CV_VAR_MISS 0 |
|
|
|
CvTrainTestSplit::CvTrainTestSplit() |
|
{ |
|
train_sample_part_mode = CV_COUNT; |
|
train_sample_part.count = -1; |
|
mix = false; |
|
} |
|
|
|
CvTrainTestSplit::CvTrainTestSplit( int _train_sample_count, bool _mix ) |
|
{ |
|
train_sample_part_mode = CV_COUNT; |
|
train_sample_part.count = _train_sample_count; |
|
mix = _mix; |
|
} |
|
|
|
CvTrainTestSplit::CvTrainTestSplit( float _train_sample_portion, bool _mix ) |
|
{ |
|
train_sample_part_mode = CV_PORTION; |
|
train_sample_part.portion = _train_sample_portion; |
|
mix = _mix; |
|
} |
|
|
|
//////////////// |
|
|
|
CvMLData::CvMLData() |
|
{ |
|
values = missing = var_types = var_idx_mask = response_out = var_idx_out = var_types_out = 0; |
|
train_sample_idx = test_sample_idx = 0; |
|
header_lines_number = 0; |
|
sample_idx = 0; |
|
response_idx = -1; |
|
|
|
train_sample_count = -1; |
|
|
|
delimiter = ','; |
|
miss_ch = '?'; |
|
//flt_separator = '.'; |
|
|
|
rng = &cv::theRNG(); |
|
} |
|
|
|
CvMLData::~CvMLData() |
|
{ |
|
clear(); |
|
} |
|
|
|
void CvMLData::free_train_test_idx() |
|
{ |
|
cvReleaseMat( &train_sample_idx ); |
|
cvReleaseMat( &test_sample_idx ); |
|
sample_idx = 0; |
|
} |
|
|
|
void CvMLData::clear() |
|
{ |
|
class_map.clear(); |
|
|
|
cvReleaseMat( &values ); |
|
cvReleaseMat( &missing ); |
|
cvReleaseMat( &var_types ); |
|
cvReleaseMat( &var_idx_mask ); |
|
|
|
cvReleaseMat( &response_out ); |
|
cvReleaseMat( &var_idx_out ); |
|
cvReleaseMat( &var_types_out ); |
|
|
|
free_train_test_idx(); |
|
|
|
total_class_count = 0; |
|
|
|
response_idx = -1; |
|
|
|
train_sample_count = -1; |
|
} |
|
|
|
|
|
void CvMLData::set_header_lines_number( int idx ) |
|
{ |
|
header_lines_number = std::max(0, idx); |
|
} |
|
|
|
int CvMLData::get_header_lines_number() const |
|
{ |
|
return header_lines_number; |
|
} |
|
|
|
static char *fgets_chomp(char *str, int n, FILE *stream) |
|
{ |
|
char *head = fgets(str, n, stream); |
|
if( head ) |
|
{ |
|
for(char *tail = head + strlen(head) - 1; tail >= head; --tail) |
|
{ |
|
if( *tail != '\r' && *tail != '\n' ) |
|
break; |
|
*tail = '\0'; |
|
} |
|
} |
|
return head; |
|
} |
|
|
|
|
|
int CvMLData::read_csv(const char* filename) |
|
{ |
|
const int M = 1000000; |
|
const char str_delimiter[3] = { ' ', delimiter, '\0' }; |
|
FILE* file = 0; |
|
CvMemStorage* storage; |
|
CvSeq* seq; |
|
char *ptr; |
|
float* el_ptr; |
|
CvSeqReader reader; |
|
int cols_count = 0; |
|
uchar *var_types_ptr = 0; |
|
|
|
clear(); |
|
|
|
file = fopen( filename, "rt" ); |
|
|
|
if( !file ) |
|
return -1; |
|
|
|
std::vector<char> _buf(M); |
|
char* buf = &_buf[0]; |
|
|
|
// skip header lines |
|
for( int i = 0; i < header_lines_number; i++ ) |
|
{ |
|
if( fgets( buf, M, file ) == 0 ) |
|
{ |
|
fclose(file); |
|
return -1; |
|
} |
|
} |
|
|
|
// read the first data line and determine the number of variables |
|
if( !fgets_chomp( buf, M, file )) |
|
{ |
|
fclose(file); |
|
return -1; |
|
} |
|
|
|
ptr = buf; |
|
while( *ptr == ' ' ) |
|
ptr++; |
|
for( ; *ptr != '\0'; ) |
|
{ |
|
if(*ptr == delimiter || *ptr == ' ') |
|
{ |
|
cols_count++; |
|
ptr++; |
|
while( *ptr == ' ' ) ptr++; |
|
} |
|
else |
|
ptr++; |
|
} |
|
|
|
cols_count++; |
|
|
|
if ( cols_count == 0) |
|
{ |
|
fclose(file); |
|
return -1; |
|
} |
|
|
|
// create temporary memory storage to store the whole database |
|
el_ptr = new float[cols_count]; |
|
storage = cvCreateMemStorage(); |
|
seq = cvCreateSeq( 0, sizeof(*seq), cols_count*sizeof(float), storage ); |
|
|
|
var_types = cvCreateMat( 1, cols_count, CV_8U ); |
|
cvZero( var_types ); |
|
var_types_ptr = var_types->data.ptr; |
|
|
|
for(;;) |
|
{ |
|
char *token = NULL; |
|
int type; |
|
token = strtok(buf, str_delimiter); |
|
if (!token) |
|
break; |
|
for (int i = 0; i < cols_count-1; i++) |
|
{ |
|
str_to_flt_elem( token, el_ptr[i], type); |
|
var_types_ptr[i] |= type; |
|
token = strtok(NULL, str_delimiter); |
|
if (!token) |
|
{ |
|
fclose(file); |
|
delete [] el_ptr; |
|
return -1; |
|
} |
|
} |
|
str_to_flt_elem( token, el_ptr[cols_count-1], type); |
|
var_types_ptr[cols_count-1] |= type; |
|
cvSeqPush( seq, el_ptr ); |
|
if( !fgets_chomp( buf, M, file ) ) |
|
break; |
|
} |
|
fclose(file); |
|
|
|
values = cvCreateMat( seq->total, cols_count, CV_32FC1 ); |
|
missing = cvCreateMat( seq->total, cols_count, CV_8U ); |
|
var_idx_mask = cvCreateMat( 1, values->cols, CV_8UC1 ); |
|
cvSet( var_idx_mask, cvRealScalar(1) ); |
|
train_sample_count = seq->total; |
|
|
|
cvStartReadSeq( seq, &reader ); |
|
for(int i = 0; i < seq->total; i++ ) |
|
{ |
|
const float* sdata = (float*)reader.ptr; |
|
float* ddata = values->data.fl + cols_count*i; |
|
uchar* dm = missing->data.ptr + cols_count*i; |
|
|
|
for( int j = 0; j < cols_count; j++ ) |
|
{ |
|
ddata[j] = sdata[j]; |
|
dm[j] = ( fabs( MISS_VAL - sdata[j] ) <= FLT_EPSILON ); |
|
} |
|
CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); |
|
} |
|
|
|
if ( cvNorm( missing, 0, CV_L1 ) <= FLT_EPSILON ) |
|
cvReleaseMat( &missing ); |
|
|
|
cvReleaseMemStorage( &storage ); |
|
delete []el_ptr; |
|
return 0; |
|
} |
|
|
|
const CvMat* CvMLData::get_values() const |
|
{ |
|
return values; |
|
} |
|
|
|
const CvMat* CvMLData::get_missing() const |
|
{ |
|
CV_FUNCNAME( "CvMLData::get_missing" ); |
|
__BEGIN__; |
|
|
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
|
|
__END__; |
|
|
|
return missing; |
|
} |
|
|
|
const std::map<cv::String, int>& CvMLData::get_class_labels_map() const |
|
{ |
|
return class_map; |
|
} |
|
|
|
void CvMLData::str_to_flt_elem( const char* token, float& flt_elem, int& type) |
|
{ |
|
|
|
char* stopstring = NULL; |
|
flt_elem = (float)strtod( token, &stopstring ); |
|
assert( stopstring ); |
|
type = CV_VAR_ORDERED; |
|
if ( *stopstring == miss_ch && strlen(stopstring) == 1 ) // missed value |
|
{ |
|
flt_elem = MISS_VAL; |
|
type = CV_VAR_MISS; |
|
} |
|
else |
|
{ |
|
if ( (*stopstring != 0) && (*stopstring != '\n') && (strcmp(stopstring, "\r\n") != 0) ) // class label |
|
{ |
|
int idx = class_map[token]; |
|
if ( idx == 0) |
|
{ |
|
total_class_count++; |
|
idx = total_class_count; |
|
class_map[token] = idx; |
|
} |
|
flt_elem = (float)idx; |
|
type = CV_VAR_CATEGORICAL; |
|
} |
|
} |
|
} |
|
|
|
void CvMLData::set_delimiter(char ch) |
|
{ |
|
CV_FUNCNAME( "CvMLData::set_delimited" ); |
|
__BEGIN__; |
|
|
|
if (ch == miss_ch /*|| ch == flt_separator*/) |
|
CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different"); |
|
|
|
delimiter = ch; |
|
|
|
__END__; |
|
} |
|
|
|
char CvMLData::get_delimiter() const |
|
{ |
|
return delimiter; |
|
} |
|
|
|
void CvMLData::set_miss_ch(char ch) |
|
{ |
|
CV_FUNCNAME( "CvMLData::set_miss_ch" ); |
|
__BEGIN__; |
|
|
|
if (ch == delimiter/* || ch == flt_separator*/) |
|
CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different"); |
|
|
|
miss_ch = ch; |
|
|
|
__END__; |
|
} |
|
|
|
char CvMLData::get_miss_ch() const |
|
{ |
|
return miss_ch; |
|
} |
|
|
|
void CvMLData::set_response_idx( int idx ) |
|
{ |
|
CV_FUNCNAME( "CvMLData::set_response_idx" ); |
|
__BEGIN__; |
|
|
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
|
|
if ( idx >= values->cols) |
|
CV_ERROR( CV_StsBadArg, "idx value is not correct" ); |
|
|
|
if ( response_idx >= 0 ) |
|
chahge_var_idx( response_idx, true ); |
|
if ( idx >= 0 ) |
|
chahge_var_idx( idx, false ); |
|
response_idx = idx; |
|
|
|
__END__; |
|
} |
|
|
|
int CvMLData::get_response_idx() const |
|
{ |
|
CV_FUNCNAME( "CvMLData::get_response_idx" ); |
|
__BEGIN__; |
|
|
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
__END__; |
|
return response_idx; |
|
} |
|
|
|
void CvMLData::change_var_type( int var_idx, int type ) |
|
{ |
|
CV_FUNCNAME( "CvMLData::change_var_type" ); |
|
__BEGIN__; |
|
|
|
int var_count = 0; |
|
|
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
|
|
var_count = values->cols; |
|
|
|
if ( var_idx < 0 || var_idx >= var_count) |
|
CV_ERROR( CV_StsBadArg, "var_idx is not correct" ); |
|
|
|
if ( type != CV_VAR_ORDERED && type != CV_VAR_CATEGORICAL) |
|
CV_ERROR( CV_StsBadArg, "type is not correct" ); |
|
|
|
assert( var_types ); |
|
if ( var_types->data.ptr[var_idx] == CV_VAR_CATEGORICAL && type == CV_VAR_ORDERED) |
|
CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" ); |
|
var_types->data.ptr[var_idx] = (uchar)type; |
|
|
|
__END__; |
|
|
|
return; |
|
} |
|
|
|
void CvMLData::set_var_types( const char* str ) |
|
{ |
|
CV_FUNCNAME( "CvMLData::set_var_types" ); |
|
__BEGIN__; |
|
|
|
const char* ord = 0, *cat = 0; |
|
int var_count = 0, set_var_type_count = 0; |
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
|
|
var_count = values->cols; |
|
|
|
assert( var_types ); |
|
|
|
ord = strstr( str, "ord" ); |
|
cat = strstr( str, "cat" ); |
|
if ( !ord && !cat ) |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
|
|
if ( !ord && strlen(cat) == 3 ) // str == "cat" |
|
{ |
|
cvSet( var_types, cvScalarAll(CV_VAR_CATEGORICAL) ); |
|
return; |
|
} |
|
|
|
if ( !cat && strlen(ord) == 3 ) // str == "ord" |
|
{ |
|
cvSet( var_types, cvScalarAll(CV_VAR_ORDERED) ); |
|
return; |
|
} |
|
|
|
if ( ord ) // parse ord str |
|
{ |
|
char* stopstring = NULL; |
|
if ( ord[3] != '[') |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
|
|
ord += 4; // pass "ord[" |
|
do |
|
{ |
|
int b1 = (int)strtod( ord, &stopstring ); |
|
if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') ) |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
ord = stopstring + 1; |
|
if ( (stopstring[0] == ',') || (stopstring[0] == ']')) |
|
{ |
|
if ( var_types->data.ptr[b1] == CV_VAR_CATEGORICAL) |
|
CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" ); |
|
var_types->data.ptr[b1] = CV_VAR_ORDERED; |
|
set_var_type_count++; |
|
} |
|
else |
|
{ |
|
if ( stopstring[0] == '-') |
|
{ |
|
int b2 = (int)strtod( ord, &stopstring); |
|
if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') ) |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
ord = stopstring + 1; |
|
for (int i = b1; i <= b2; i++) |
|
{ |
|
if ( var_types->data.ptr[i] == CV_VAR_CATEGORICAL) |
|
CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" ); |
|
var_types->data.ptr[i] = CV_VAR_ORDERED; |
|
} |
|
set_var_type_count += b2 - b1 + 1; |
|
} |
|
else |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
|
|
} |
|
} |
|
while (*stopstring != ']'); |
|
|
|
if ( stopstring[1] != '\0' && stopstring[1] != ',') |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
} |
|
|
|
if ( cat ) // parse cat str |
|
{ |
|
char* stopstring = NULL; |
|
if ( cat[3] != '[') |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
|
|
cat += 4; // pass "cat[" |
|
do |
|
{ |
|
int b1 = (int)strtod( cat, &stopstring ); |
|
if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') ) |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
cat = stopstring + 1; |
|
if ( (stopstring[0] == ',') || (stopstring[0] == ']')) |
|
{ |
|
var_types->data.ptr[b1] = CV_VAR_CATEGORICAL; |
|
set_var_type_count++; |
|
} |
|
else |
|
{ |
|
if ( stopstring[0] == '-') |
|
{ |
|
int b2 = (int)strtod( cat, &stopstring); |
|
if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') ) |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
cat = stopstring + 1; |
|
for (int i = b1; i <= b2; i++) |
|
var_types->data.ptr[i] = CV_VAR_CATEGORICAL; |
|
set_var_type_count += b2 - b1 + 1; |
|
} |
|
else |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
|
|
} |
|
} |
|
while (*stopstring != ']'); |
|
|
|
if ( stopstring[1] != '\0' && stopstring[1] != ',') |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
} |
|
|
|
if (set_var_type_count != var_count) |
|
CV_ERROR( CV_StsBadArg, "types string is not correct" ); |
|
|
|
__END__; |
|
} |
|
|
|
const CvMat* CvMLData::get_var_types() |
|
{ |
|
CV_FUNCNAME( "CvMLData::get_var_types" ); |
|
__BEGIN__; |
|
|
|
uchar *var_types_out_ptr = 0; |
|
int avcount, vt_size; |
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
|
|
assert( var_idx_mask ); |
|
|
|
avcount = cvFloor( cvNorm( var_idx_mask, 0, CV_L1 ) ); |
|
vt_size = avcount + (response_idx >= 0); |
|
|
|
if ( avcount == values->cols || (avcount == values->cols-1 && response_idx == values->cols-1) ) |
|
return var_types; |
|
|
|
if ( !var_types_out || ( var_types_out && var_types_out->cols != vt_size ) ) |
|
{ |
|
cvReleaseMat( &var_types_out ); |
|
var_types_out = cvCreateMat( 1, vt_size, CV_8UC1 ); |
|
} |
|
|
|
var_types_out_ptr = var_types_out->data.ptr; |
|
for( int i = 0; i < var_types->cols; i++) |
|
{ |
|
if (i == response_idx || !var_idx_mask->data.ptr[i]) continue; |
|
*var_types_out_ptr = var_types->data.ptr[i]; |
|
var_types_out_ptr++; |
|
} |
|
if ( response_idx >= 0 ) |
|
*var_types_out_ptr = var_types->data.ptr[response_idx]; |
|
|
|
__END__; |
|
|
|
return var_types_out; |
|
} |
|
|
|
int CvMLData::get_var_type( int var_idx ) const |
|
{ |
|
return var_types->data.ptr[var_idx]; |
|
} |
|
|
|
const CvMat* CvMLData::get_responses() |
|
{ |
|
CV_FUNCNAME( "CvMLData::get_responses_ptr" ); |
|
__BEGIN__; |
|
|
|
int var_count = 0; |
|
|
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
var_count = values->cols; |
|
|
|
if ( response_idx < 0 || response_idx >= var_count ) |
|
return 0; |
|
if ( !response_out ) |
|
response_out = cvCreateMatHeader( values->rows, 1, CV_32FC1 ); |
|
else |
|
cvInitMatHeader( response_out, values->rows, 1, CV_32FC1); |
|
cvGetCol( values, response_out, response_idx ); |
|
|
|
__END__; |
|
|
|
return response_out; |
|
} |
|
|
|
void CvMLData::set_train_test_split( const CvTrainTestSplit * spl) |
|
{ |
|
CV_FUNCNAME( "CvMLData::set_division" ); |
|
__BEGIN__; |
|
|
|
int sample_count = 0; |
|
|
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
|
|
sample_count = values->rows; |
|
|
|
float train_sample_portion; |
|
|
|
if (spl->train_sample_part_mode == CV_COUNT) |
|
{ |
|
train_sample_count = spl->train_sample_part.count; |
|
if (train_sample_count > sample_count) |
|
CV_ERROR( CV_StsBadArg, "train samples count is not correct" ); |
|
train_sample_count = train_sample_count<=0 ? sample_count : train_sample_count; |
|
} |
|
else // dtype.train_sample_part_mode == CV_PORTION |
|
{ |
|
train_sample_portion = spl->train_sample_part.portion; |
|
if ( train_sample_portion > 1) |
|
CV_ERROR( CV_StsBadArg, "train samples count is not correct" ); |
|
train_sample_portion = train_sample_portion <= FLT_EPSILON || |
|
1 - train_sample_portion <= FLT_EPSILON ? 1 : train_sample_portion; |
|
train_sample_count = std::max(1, cvFloor( train_sample_portion * sample_count )); |
|
} |
|
|
|
if ( train_sample_count == sample_count ) |
|
{ |
|
free_train_test_idx(); |
|
return; |
|
} |
|
|
|
if ( train_sample_idx && train_sample_idx->cols != train_sample_count ) |
|
free_train_test_idx(); |
|
|
|
if ( !sample_idx) |
|
{ |
|
int test_sample_count = sample_count- train_sample_count; |
|
sample_idx = (int*)cvAlloc( sample_count * sizeof(sample_idx[0]) ); |
|
for (int i = 0; i < sample_count; i++ ) |
|
sample_idx[i] = i; |
|
train_sample_idx = cvCreateMatHeader( 1, train_sample_count, CV_32SC1 ); |
|
*train_sample_idx = cvMat( 1, train_sample_count, CV_32SC1, &sample_idx[0] ); |
|
|
|
CV_Assert(test_sample_count > 0); |
|
test_sample_idx = cvCreateMatHeader( 1, test_sample_count, CV_32SC1 ); |
|
*test_sample_idx = cvMat( 1, test_sample_count, CV_32SC1, &sample_idx[train_sample_count] ); |
|
} |
|
|
|
mix = spl->mix; |
|
if ( mix ) |
|
mix_train_and_test_idx(); |
|
|
|
__END__; |
|
} |
|
|
|
const CvMat* CvMLData::get_train_sample_idx() const |
|
{ |
|
CV_FUNCNAME( "CvMLData::get_train_sample_idx" ); |
|
__BEGIN__; |
|
|
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
__END__; |
|
|
|
return train_sample_idx; |
|
} |
|
|
|
const CvMat* CvMLData::get_test_sample_idx() const |
|
{ |
|
CV_FUNCNAME( "CvMLData::get_test_sample_idx" ); |
|
__BEGIN__; |
|
|
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
__END__; |
|
|
|
return test_sample_idx; |
|
} |
|
|
|
void CvMLData::mix_train_and_test_idx() |
|
{ |
|
CV_FUNCNAME( "CvMLData::mix_train_and_test_idx" ); |
|
__BEGIN__; |
|
|
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
__END__; |
|
|
|
if ( !sample_idx) |
|
return; |
|
|
|
if ( train_sample_count > 0 && train_sample_count < values->rows ) |
|
{ |
|
int n = values->rows; |
|
for (int i = 0; i < n; i++) |
|
{ |
|
int a = (*rng)(n); |
|
int b = (*rng)(n); |
|
int t; |
|
CV_SWAP( sample_idx[a], sample_idx[b], t ); |
|
} |
|
} |
|
} |
|
|
|
const CvMat* CvMLData::get_var_idx() |
|
{ |
|
CV_FUNCNAME( "CvMLData::get_var_idx" ); |
|
__BEGIN__; |
|
|
|
int avcount = 0; |
|
|
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
|
|
assert( var_idx_mask ); |
|
|
|
avcount = cvFloor( cvNorm( var_idx_mask, 0, CV_L1 ) ); |
|
int* vidx; |
|
|
|
if ( avcount == values->cols ) |
|
return 0; |
|
|
|
if ( !var_idx_out || ( var_idx_out && var_idx_out->cols != avcount ) ) |
|
{ |
|
cvReleaseMat( &var_idx_out ); |
|
var_idx_out = cvCreateMat( 1, avcount, CV_32SC1); |
|
if ( response_idx >=0 ) |
|
var_idx_mask->data.ptr[response_idx] = 0; |
|
} |
|
|
|
vidx = var_idx_out->data.i; |
|
|
|
for(int i = 0; i < var_idx_mask->cols; i++) |
|
if ( var_idx_mask->data.ptr[i] ) |
|
{ |
|
*vidx = i; |
|
vidx++; |
|
} |
|
|
|
__END__; |
|
|
|
return var_idx_out; |
|
} |
|
|
|
void CvMLData::chahge_var_idx( int vi, bool state ) |
|
{ |
|
change_var_idx( vi, state ); |
|
} |
|
|
|
void CvMLData::change_var_idx( int vi, bool state ) |
|
{ |
|
CV_FUNCNAME( "CvMLData::change_var_idx" ); |
|
__BEGIN__; |
|
|
|
int var_count = 0; |
|
|
|
if ( !values ) |
|
CV_ERROR( CV_StsInternal, "data is empty" ); |
|
|
|
var_count = values->cols; |
|
|
|
if ( vi < 0 || vi >= var_count) |
|
CV_ERROR( CV_StsBadArg, "variable index is not correct" ); |
|
|
|
assert( var_idx_mask ); |
|
var_idx_mask->data.ptr[vi] = state; |
|
|
|
__END__; |
|
} |
|
|
|
/* End of file. */
|
|
|