mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3668 lines
114 KiB
3668 lines
114 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
////////////////// Helper functions ////////////////////// |
|
|
|
static const size_t OUT_OF_RANGE = (size_t)1 << (sizeof(size_t)*8 - 2); |
|
|
|
static void |
|
calcHistLookupTables_8u( const Mat& hist, const SparseMat& shist, |
|
int dims, const float** ranges, const double* uniranges, |
|
bool uniform, bool issparse, std::vector<size_t>& _tab ) |
|
{ |
|
const int low = 0, high = 256; |
|
int i, j; |
|
_tab.resize((high-low)*dims); |
|
size_t* tab = &_tab[0]; |
|
|
|
if( uniform ) |
|
{ |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
double a = uniranges[i*2]; |
|
double b = uniranges[i*2+1]; |
|
int sz = !issparse ? hist.size[i] : shist.size(i); |
|
size_t step = !issparse ? hist.step[i] : 1; |
|
|
|
for( j = low; j < high; j++ ) |
|
{ |
|
int idx = cvFloor(j*a + b); |
|
size_t written_idx; |
|
if( (unsigned)idx < (unsigned)sz ) |
|
written_idx = idx*step; |
|
else |
|
written_idx = OUT_OF_RANGE; |
|
|
|
tab[i*(high - low) + j - low] = written_idx; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
int limit = std::min(cvCeil(ranges[i][0]), high); |
|
int idx = -1, sz = !issparse ? hist.size[i] : shist.size(i); |
|
size_t written_idx = OUT_OF_RANGE; |
|
size_t step = !issparse ? hist.step[i] : 1; |
|
|
|
for(j = low;;) |
|
{ |
|
for( ; j < limit; j++ ) |
|
tab[i*(high - low) + j - low] = written_idx; |
|
|
|
if( (unsigned)(++idx) < (unsigned)sz ) |
|
{ |
|
limit = std::min(cvCeil(ranges[i][idx+1]), high); |
|
written_idx = idx*step; |
|
} |
|
else |
|
{ |
|
for( ; j < high; j++ ) |
|
tab[i*(high - low) + j - low] = OUT_OF_RANGE; |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
static void histPrepareImages( const Mat* images, int nimages, const int* channels, |
|
const Mat& mask, int dims, const int* histSize, |
|
const float** ranges, bool uniform, |
|
std::vector<uchar*>& ptrs, std::vector<int>& deltas, |
|
Size& imsize, std::vector<double>& uniranges ) |
|
{ |
|
int i, j, c; |
|
CV_Assert( channels != 0 || nimages == dims ); |
|
|
|
imsize = images[0].size(); |
|
int depth = images[0].depth(), esz1 = (int)images[0].elemSize1(); |
|
bool isContinuous = true; |
|
|
|
ptrs.resize(dims + 1); |
|
deltas.resize((dims + 1)*2); |
|
|
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
if(!channels) |
|
{ |
|
j = i; |
|
c = 0; |
|
CV_Assert( images[j].channels() == 1 ); |
|
} |
|
else |
|
{ |
|
c = channels[i]; |
|
CV_Assert( c >= 0 ); |
|
for( j = 0; j < nimages; c -= images[j].channels(), j++ ) |
|
if( c < images[j].channels() ) |
|
break; |
|
CV_Assert( j < nimages ); |
|
} |
|
|
|
CV_Assert( images[j].size() == imsize && images[j].depth() == depth ); |
|
if( !images[j].isContinuous() ) |
|
isContinuous = false; |
|
ptrs[i] = images[j].data + c*esz1; |
|
deltas[i*2] = images[j].channels(); |
|
deltas[i*2+1] = (int)(images[j].step/esz1 - imsize.width*deltas[i*2]); |
|
} |
|
|
|
if( mask.data ) |
|
{ |
|
CV_Assert( mask.size() == imsize && mask.channels() == 1 ); |
|
isContinuous = isContinuous && mask.isContinuous(); |
|
ptrs[dims] = mask.data; |
|
deltas[dims*2] = 1; |
|
deltas[dims*2 + 1] = (int)(mask.step/mask.elemSize1()); |
|
} |
|
|
|
#ifndef HAVE_TBB |
|
if( isContinuous ) |
|
{ |
|
imsize.width *= imsize.height; |
|
imsize.height = 1; |
|
} |
|
#endif |
|
|
|
if( !ranges ) |
|
{ |
|
CV_Assert( depth == CV_8U ); |
|
|
|
uniranges.resize( dims*2 ); |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
uniranges[i*2] = histSize[i]/256.; |
|
uniranges[i*2+1] = 0; |
|
} |
|
} |
|
else if( uniform ) |
|
{ |
|
uniranges.resize( dims*2 ); |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
CV_Assert( ranges[i] && ranges[i][0] < ranges[i][1] ); |
|
double low = ranges[i][0], high = ranges[i][1]; |
|
double t = histSize[i]/(high - low); |
|
uniranges[i*2] = t; |
|
uniranges[i*2+1] = -t*low; |
|
} |
|
} |
|
else |
|
{ |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
size_t n = histSize[i]; |
|
for(size_t k = 0; k < n; k++ ) |
|
CV_Assert( ranges[i][k] < ranges[i][k+1] ); |
|
} |
|
} |
|
} |
|
|
|
|
|
////////////////////////////////// C A L C U L A T E H I S T O G R A M //////////////////////////////////// |
|
#ifdef HAVE_TBB |
|
enum {one = 1, two, three}; // array elements number |
|
|
|
template<typename T> |
|
class calcHist1D_Invoker |
|
{ |
|
public: |
|
calcHist1D_Invoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Mat& hist, const double* _uniranges, int sz, int dims, |
|
Size& imageSize ) |
|
: mask_(_ptrs[dims]), |
|
mstep_(_deltas[dims*2 + 1]), |
|
imageWidth_(imageSize.width), |
|
histogramSize_(hist.size()), histogramType_(hist.type()), |
|
globalHistogram_((tbb::atomic<int>*)hist.data) |
|
{ |
|
p_[0] = ((T**)&_ptrs[0])[0]; |
|
step_[0] = (&_deltas[0])[1]; |
|
d_[0] = (&_deltas[0])[0]; |
|
a_[0] = (&_uniranges[0])[0]; |
|
b_[0] = (&_uniranges[0])[1]; |
|
size_[0] = sz; |
|
} |
|
|
|
void operator()( const BlockedRange& range ) const |
|
{ |
|
T* p0 = p_[0] + range.begin() * (step_[0] + imageWidth_*d_[0]); |
|
uchar* mask = mask_ + range.begin()*mstep_; |
|
|
|
for( int row = range.begin(); row < range.end(); row++, p0 += step_[0] ) |
|
{ |
|
if( !mask_ ) |
|
{ |
|
for( int x = 0; x < imageWidth_; x++, p0 += d_[0] ) |
|
{ |
|
int idx = cvFloor(*p0*a_[0] + b_[0]); |
|
if( (unsigned)idx < (unsigned)size_[0] ) |
|
{ |
|
globalHistogram_[idx].fetch_and_add(1); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( int x = 0; x < imageWidth_; x++, p0 += d_[0] ) |
|
{ |
|
if( mask[x] ) |
|
{ |
|
int idx = cvFloor(*p0*a_[0] + b_[0]); |
|
if( (unsigned)idx < (unsigned)size_[0] ) |
|
{ |
|
globalHistogram_[idx].fetch_and_add(1); |
|
} |
|
} |
|
} |
|
mask += mstep_; |
|
} |
|
} |
|
} |
|
|
|
private: |
|
calcHist1D_Invoker operator=(const calcHist1D_Invoker&); |
|
|
|
T* p_[one]; |
|
uchar* mask_; |
|
int step_[one]; |
|
int d_[one]; |
|
int mstep_; |
|
double a_[one]; |
|
double b_[one]; |
|
int size_[one]; |
|
int imageWidth_; |
|
Size histogramSize_; |
|
int histogramType_; |
|
tbb::atomic<int>* globalHistogram_; |
|
}; |
|
|
|
template<typename T> |
|
class calcHist2D_Invoker |
|
{ |
|
public: |
|
calcHist2D_Invoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Mat& hist, const double* _uniranges, const int* size, |
|
int dims, Size& imageSize, size_t* hstep ) |
|
: mask_(_ptrs[dims]), |
|
mstep_(_deltas[dims*2 + 1]), |
|
imageWidth_(imageSize.width), |
|
histogramSize_(hist.size()), histogramType_(hist.type()), |
|
globalHistogram_(hist.data) |
|
{ |
|
p_[0] = ((T**)&_ptrs[0])[0]; p_[1] = ((T**)&_ptrs[0])[1]; |
|
step_[0] = (&_deltas[0])[1]; step_[1] = (&_deltas[0])[3]; |
|
d_[0] = (&_deltas[0])[0]; d_[1] = (&_deltas[0])[2]; |
|
a_[0] = (&_uniranges[0])[0]; a_[1] = (&_uniranges[0])[2]; |
|
b_[0] = (&_uniranges[0])[1]; b_[1] = (&_uniranges[0])[3]; |
|
size_[0] = size[0]; size_[1] = size[1]; |
|
hstep_[0] = hstep[0]; |
|
} |
|
|
|
void operator()(const BlockedRange& range) const |
|
{ |
|
T* p0 = p_[0] + range.begin()*(step_[0] + imageWidth_*d_[0]); |
|
T* p1 = p_[1] + range.begin()*(step_[1] + imageWidth_*d_[1]); |
|
uchar* mask = mask_ + range.begin()*mstep_; |
|
|
|
for( int row = range.begin(); row < range.end(); row++, p0 += step_[0], p1 += step_[1] ) |
|
{ |
|
if( !mask_ ) |
|
{ |
|
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] ) |
|
{ |
|
int idx0 = cvFloor(*p0*a_[0] + b_[0]); |
|
int idx1 = cvFloor(*p1*a_[1] + b_[1]); |
|
if( (unsigned)idx0 < (unsigned)size_[0] && (unsigned)idx1 < (unsigned)size_[1] ) |
|
( (tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0) )[idx1].fetch_and_add(1); |
|
} |
|
} |
|
else |
|
{ |
|
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] ) |
|
{ |
|
if( mask[x] ) |
|
{ |
|
int idx0 = cvFloor(*p0*a_[0] + b_[0]); |
|
int idx1 = cvFloor(*p1*a_[1] + b_[1]); |
|
if( (unsigned)idx0 < (unsigned)size_[0] && (unsigned)idx1 < (unsigned)size_[1] ) |
|
((tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0))[idx1].fetch_and_add(1); |
|
} |
|
} |
|
mask += mstep_; |
|
} |
|
} |
|
} |
|
|
|
private: |
|
calcHist2D_Invoker operator=(const calcHist2D_Invoker&); |
|
|
|
T* p_[two]; |
|
uchar* mask_; |
|
int step_[two]; |
|
int d_[two]; |
|
int mstep_; |
|
double a_[two]; |
|
double b_[two]; |
|
int size_[two]; |
|
const int imageWidth_; |
|
size_t hstep_[one]; |
|
Size histogramSize_; |
|
int histogramType_; |
|
uchar* globalHistogram_; |
|
}; |
|
|
|
|
|
template<typename T> |
|
class calcHist3D_Invoker |
|
{ |
|
public: |
|
calcHist3D_Invoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, Mat& hist, const double* uniranges, int _dims, |
|
size_t* hstep, int* size ) |
|
: mask_(_ptrs[_dims]), |
|
mstep_(_deltas[_dims*2 + 1]), |
|
imageWidth_(imsize.width), |
|
globalHistogram_(hist.data) |
|
{ |
|
p_[0] = ((T**)&_ptrs[0])[0]; p_[1] = ((T**)&_ptrs[0])[1]; p_[2] = ((T**)&_ptrs[0])[2]; |
|
step_[0] = (&_deltas[0])[1]; step_[1] = (&_deltas[0])[3]; step_[2] = (&_deltas[0])[5]; |
|
d_[0] = (&_deltas[0])[0]; d_[1] = (&_deltas[0])[2]; d_[2] = (&_deltas[0])[4]; |
|
a_[0] = uniranges[0]; a_[1] = uniranges[2]; a_[2] = uniranges[4]; |
|
b_[0] = uniranges[1]; b_[1] = uniranges[3]; b_[2] = uniranges[5]; |
|
size_[0] = size[0]; size_[1] = size[1]; size_[2] = size[2]; |
|
hstep_[0] = hstep[0]; hstep_[1] = hstep[1]; |
|
} |
|
|
|
void operator()( const BlockedRange& range ) const |
|
{ |
|
T* p0 = p_[0] + range.begin()*(imageWidth_*d_[0] + step_[0]); |
|
T* p1 = p_[1] + range.begin()*(imageWidth_*d_[1] + step_[1]); |
|
T* p2 = p_[2] + range.begin()*(imageWidth_*d_[2] + step_[2]); |
|
uchar* mask = mask_ + range.begin()*mstep_; |
|
|
|
for( int i = range.begin(); i < range.end(); i++, p0 += step_[0], p1 += step_[1], p2 += step_[2] ) |
|
{ |
|
if( !mask_ ) |
|
{ |
|
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] ) |
|
{ |
|
int idx0 = cvFloor(*p0*a_[0] + b_[0]); |
|
int idx1 = cvFloor(*p1*a_[1] + b_[1]); |
|
int idx2 = cvFloor(*p2*a_[2] + b_[2]); |
|
if( (unsigned)idx0 < (unsigned)size_[0] && |
|
(unsigned)idx1 < (unsigned)size_[1] && |
|
(unsigned)idx2 < (unsigned)size_[2] ) |
|
{ |
|
( (tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0 + hstep_[1]*idx1) )[idx2].fetch_and_add(1); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] ) |
|
{ |
|
if( mask[x] ) |
|
{ |
|
int idx0 = cvFloor(*p0*a_[0] + b_[0]); |
|
int idx1 = cvFloor(*p1*a_[1] + b_[1]); |
|
int idx2 = cvFloor(*p2*a_[2] + b_[2]); |
|
if( (unsigned)idx0 < (unsigned)size_[0] && |
|
(unsigned)idx1 < (unsigned)size_[1] && |
|
(unsigned)idx2 < (unsigned)size_[2] ) |
|
{ |
|
( (tbb::atomic<int>*)(globalHistogram_ + hstep_[0]*idx0 + hstep_[1]*idx1) )[idx2].fetch_and_add(1); |
|
} |
|
} |
|
} |
|
mask += mstep_; |
|
} |
|
} |
|
} |
|
|
|
static bool isFit( const Mat& histogram, const Size imageSize ) |
|
{ |
|
return ( imageSize.width * imageSize.height >= 320*240 |
|
&& histogram.total() >= 8*8*8 ); |
|
} |
|
|
|
private: |
|
calcHist3D_Invoker operator=(const calcHist3D_Invoker&); |
|
|
|
T* p_[three]; |
|
uchar* mask_; |
|
int step_[three]; |
|
int d_[three]; |
|
const int mstep_; |
|
double a_[three]; |
|
double b_[three]; |
|
int size_[three]; |
|
int imageWidth_; |
|
size_t hstep_[two]; |
|
uchar* globalHistogram_; |
|
}; |
|
|
|
class CalcHist1D_8uInvoker |
|
{ |
|
public: |
|
CalcHist1D_8uInvoker( const std::vector<uchar*>& ptrs, const std::vector<int>& deltas, |
|
Size imsize, Mat& hist, int dims, const std::vector<size_t>& tab, |
|
tbb::mutex* lock ) |
|
: mask_(ptrs[dims]), |
|
mstep_(deltas[dims*2 + 1]), |
|
imageWidth_(imsize.width), |
|
imageSize_(imsize), |
|
histSize_(hist.size()), histType_(hist.type()), |
|
tab_((size_t*)&tab[0]), |
|
histogramWriteLock_(lock), |
|
globalHistogram_(hist.data) |
|
{ |
|
p_[0] = (&ptrs[0])[0]; |
|
step_[0] = (&deltas[0])[1]; |
|
d_[0] = (&deltas[0])[0]; |
|
} |
|
|
|
void operator()( const BlockedRange& range ) const |
|
{ |
|
int localHistogram[256] = { 0, }; |
|
uchar* mask = mask_; |
|
uchar* p0 = p_[0]; |
|
int x; |
|
tbb::mutex::scoped_lock lock; |
|
|
|
if( !mask_ ) |
|
{ |
|
int n = (imageWidth_ - 4) / 4 + 1; |
|
int tail = imageWidth_ - n*4; |
|
|
|
int xN = 4*n; |
|
p0 += (xN*d_[0] + tail*d_[0] + step_[0]) * range.begin(); |
|
} |
|
else |
|
{ |
|
p0 += (imageWidth_*d_[0] + step_[0]) * range.begin(); |
|
mask += mstep_*range.begin(); |
|
} |
|
|
|
for( int i = range.begin(); i < range.end(); i++, p0 += step_[0] ) |
|
{ |
|
if( !mask_ ) |
|
{ |
|
if( d_[0] == 1 ) |
|
{ |
|
for( x = 0; x <= imageWidth_ - 4; x += 4 ) |
|
{ |
|
int t0 = p0[x], t1 = p0[x+1]; |
|
localHistogram[t0]++; localHistogram[t1]++; |
|
t0 = p0[x+2]; t1 = p0[x+3]; |
|
localHistogram[t0]++; localHistogram[t1]++; |
|
} |
|
p0 += x; |
|
} |
|
else |
|
{ |
|
for( x = 0; x <= imageWidth_ - 4; x += 4 ) |
|
{ |
|
int t0 = p0[0], t1 = p0[d_[0]]; |
|
localHistogram[t0]++; localHistogram[t1]++; |
|
p0 += d_[0]*2; |
|
t0 = p0[0]; t1 = p0[d_[0]]; |
|
localHistogram[t0]++; localHistogram[t1]++; |
|
p0 += d_[0]*2; |
|
} |
|
} |
|
|
|
for( ; x < imageWidth_; x++, p0 += d_[0] ) |
|
{ |
|
localHistogram[*p0]++; |
|
} |
|
} |
|
else |
|
{ |
|
for( x = 0; x < imageWidth_; x++, p0 += d_[0] ) |
|
{ |
|
if( mask[x] ) |
|
{ |
|
localHistogram[*p0]++; |
|
} |
|
} |
|
mask += mstep_; |
|
} |
|
} |
|
|
|
lock.acquire(*histogramWriteLock_); |
|
for(int i = 0; i < 256; i++ ) |
|
{ |
|
size_t hidx = tab_[i]; |
|
if( hidx < OUT_OF_RANGE ) |
|
{ |
|
*(int*)((globalHistogram_ + hidx)) += localHistogram[i]; |
|
} |
|
} |
|
lock.release(); |
|
} |
|
|
|
static bool isFit( const Mat& histogram, const Size imageSize ) |
|
{ |
|
return ( histogram.total() >= 8 |
|
&& imageSize.width * imageSize.height >= 160*120 ); |
|
} |
|
|
|
private: |
|
uchar* p_[one]; |
|
uchar* mask_; |
|
int mstep_; |
|
int step_[one]; |
|
int d_[one]; |
|
int imageWidth_; |
|
Size imageSize_; |
|
Size histSize_; |
|
int histType_; |
|
size_t* tab_; |
|
tbb::mutex* histogramWriteLock_; |
|
uchar* globalHistogram_; |
|
}; |
|
|
|
class CalcHist2D_8uInvoker |
|
{ |
|
public: |
|
CalcHist2D_8uInvoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, Mat& hist, int dims, const std::vector<size_t>& _tab, |
|
tbb::mutex* lock ) |
|
: mask_(_ptrs[dims]), |
|
mstep_(_deltas[dims*2 + 1]), |
|
imageWidth_(imsize.width), |
|
histSize_(hist.size()), histType_(hist.type()), |
|
tab_((size_t*)&_tab[0]), |
|
histogramWriteLock_(lock), |
|
globalHistogram_(hist.data) |
|
{ |
|
p_[0] = (uchar*)(&_ptrs[0])[0]; p_[1] = (uchar*)(&_ptrs[0])[1]; |
|
step_[0] = (&_deltas[0])[1]; step_[1] = (&_deltas[0])[3]; |
|
d_[0] = (&_deltas[0])[0]; d_[1] = (&_deltas[0])[2]; |
|
} |
|
|
|
void operator()( const BlockedRange& range ) const |
|
{ |
|
uchar* p0 = p_[0] + range.begin()*(step_[0] + imageWidth_*d_[0]); |
|
uchar* p1 = p_[1] + range.begin()*(step_[1] + imageWidth_*d_[1]); |
|
uchar* mask = mask_ + range.begin()*mstep_; |
|
|
|
Mat localHist = Mat::zeros(histSize_, histType_); |
|
uchar* localHistData = localHist.data; |
|
tbb::mutex::scoped_lock lock; |
|
|
|
for(int i = range.begin(); i < range.end(); i++, p0 += step_[0], p1 += step_[1]) |
|
{ |
|
if( !mask_ ) |
|
{ |
|
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] ) |
|
{ |
|
size_t idx = tab_[*p0] + tab_[*p1 + 256]; |
|
if( idx < OUT_OF_RANGE ) |
|
{ |
|
++*(int*)(localHistData + idx); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1] ) |
|
{ |
|
size_t idx; |
|
if( mask[x] && (idx = tab_[*p0] + tab_[*p1 + 256]) < OUT_OF_RANGE ) |
|
{ |
|
++*(int*)(localHistData + idx); |
|
} |
|
} |
|
mask += mstep_; |
|
} |
|
} |
|
|
|
lock.acquire(*histogramWriteLock_); |
|
for(int i = 0; i < histSize_.width*histSize_.height; i++) |
|
{ |
|
((int*)globalHistogram_)[i] += ((int*)localHistData)[i]; |
|
} |
|
lock.release(); |
|
} |
|
|
|
static bool isFit( const Mat& histogram, const Size imageSize ) |
|
{ |
|
return ( (histogram.total() > 4*4 && histogram.total() <= 116*116 |
|
&& imageSize.width * imageSize.height >= 320*240) |
|
|| (histogram.total() > 116*116 && imageSize.width * imageSize.height >= 1280*720) ); |
|
} |
|
|
|
private: |
|
uchar* p_[two]; |
|
uchar* mask_; |
|
int step_[two]; |
|
int d_[two]; |
|
int mstep_; |
|
int imageWidth_; |
|
Size histSize_; |
|
int histType_; |
|
size_t* tab_; |
|
tbb::mutex* histogramWriteLock_; |
|
uchar* globalHistogram_; |
|
}; |
|
|
|
class CalcHist3D_8uInvoker |
|
{ |
|
public: |
|
CalcHist3D_8uInvoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, Mat& hist, int dims, const std::vector<size_t>& tab ) |
|
: mask_(_ptrs[dims]), |
|
mstep_(_deltas[dims*2 + 1]), |
|
histogramSize_(hist.size.p), histogramType_(hist.type()), |
|
imageWidth_(imsize.width), |
|
tab_((size_t*)&tab[0]), |
|
globalHistogram_(hist.data) |
|
{ |
|
p_[0] = (uchar*)(&_ptrs[0])[0]; p_[1] = (uchar*)(&_ptrs[0])[1]; p_[2] = (uchar*)(&_ptrs[0])[2]; |
|
step_[0] = (&_deltas[0])[1]; step_[1] = (&_deltas[0])[3]; step_[2] = (&_deltas[0])[5]; |
|
d_[0] = (&_deltas[0])[0]; d_[1] = (&_deltas[0])[2]; d_[2] = (&_deltas[0])[4]; |
|
} |
|
|
|
void operator()( const BlockedRange& range ) const |
|
{ |
|
uchar* p0 = p_[0] + range.begin()*(step_[0] + imageWidth_*d_[0]); |
|
uchar* p1 = p_[1] + range.begin()*(step_[1] + imageWidth_*d_[1]); |
|
uchar* p2 = p_[2] + range.begin()*(step_[2] + imageWidth_*d_[2]); |
|
uchar* mask = mask_ + range.begin()*mstep_; |
|
|
|
for(int i = range.begin(); i < range.end(); i++, p0 += step_[0], p1 += step_[1], p2 += step_[2] ) |
|
{ |
|
if( !mask_ ) |
|
{ |
|
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] ) |
|
{ |
|
size_t idx = tab_[*p0] + tab_[*p1 + 256] + tab_[*p2 + 512]; |
|
if( idx < OUT_OF_RANGE ) |
|
{ |
|
( *(tbb::atomic<int>*)(globalHistogram_ + idx) ).fetch_and_add(1); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( int x = 0; x < imageWidth_; x++, p0 += d_[0], p1 += d_[1], p2 += d_[2] ) |
|
{ |
|
size_t idx; |
|
if( mask[x] && (idx = tab_[*p0] + tab_[*p1 + 256] + tab_[*p2 + 512]) < OUT_OF_RANGE ) |
|
{ |
|
(*(tbb::atomic<int>*)(globalHistogram_ + idx)).fetch_and_add(1); |
|
} |
|
} |
|
mask += mstep_; |
|
} |
|
} |
|
} |
|
|
|
static bool isFit( const Mat& histogram, const Size imageSize ) |
|
{ |
|
return ( histogram.total() >= 128*128*128 |
|
&& imageSize.width * imageSize.width >= 320*240 ); |
|
} |
|
|
|
private: |
|
uchar* p_[three]; |
|
uchar* mask_; |
|
int mstep_; |
|
int step_[three]; |
|
int d_[three]; |
|
int* histogramSize_; |
|
int histogramType_; |
|
int imageWidth_; |
|
size_t* tab_; |
|
uchar* globalHistogram_; |
|
}; |
|
|
|
static void |
|
callCalcHist2D_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, Mat& hist, int dims, std::vector<size_t>& _tab ) |
|
{ |
|
int grainSize = imsize.height / tbb::task_scheduler_init::default_num_threads(); |
|
tbb::mutex histogramWriteLock; |
|
|
|
CalcHist2D_8uInvoker body(_ptrs, _deltas, imsize, hist, dims, _tab, &histogramWriteLock); |
|
parallel_for(BlockedRange(0, imsize.height, grainSize), body); |
|
} |
|
|
|
static void |
|
callCalcHist3D_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, Mat& hist, int dims, std::vector<size_t>& _tab ) |
|
{ |
|
CalcHist3D_8uInvoker body(_ptrs, _deltas, imsize, hist, dims, _tab); |
|
parallel_for(BlockedRange(0, imsize.height), body); |
|
} |
|
#endif |
|
|
|
template<typename T> static void |
|
calcHist_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, Mat& hist, int dims, const float** _ranges, |
|
const double* _uniranges, bool uniform ) |
|
{ |
|
T** ptrs = (T**)&_ptrs[0]; |
|
const int* deltas = &_deltas[0]; |
|
uchar* H = hist.data; |
|
int i, x; |
|
const uchar* mask = _ptrs[dims]; |
|
int mstep = _deltas[dims*2 + 1]; |
|
int size[CV_MAX_DIM]; |
|
size_t hstep[CV_MAX_DIM]; |
|
|
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
size[i] = hist.size[i]; |
|
hstep[i] = hist.step[i]; |
|
} |
|
|
|
if( uniform ) |
|
{ |
|
const double* uniranges = &_uniranges[0]; |
|
|
|
if( dims == 1 ) |
|
{ |
|
#ifdef HAVE_TBB |
|
calcHist1D_Invoker<T> body(_ptrs, _deltas, hist, _uniranges, size[0], dims, imsize); |
|
parallel_for(BlockedRange(0, imsize.height), body); |
|
#else |
|
double a = uniranges[0], b = uniranges[1]; |
|
int sz = size[0], d0 = deltas[0], step0 = deltas[1]; |
|
const T* p0 = (const T*)ptrs[0]; |
|
|
|
for( ; imsize.height--; p0 += step0, mask += mstep ) |
|
{ |
|
if( !mask ) |
|
for( x = 0; x < imsize.width; x++, p0 += d0 ) |
|
{ |
|
int idx = cvFloor(*p0*a + b); |
|
if( (unsigned)idx < (unsigned)sz ) |
|
((int*)H)[idx]++; |
|
} |
|
else |
|
for( x = 0; x < imsize.width; x++, p0 += d0 ) |
|
if( mask[x] ) |
|
{ |
|
int idx = cvFloor(*p0*a + b); |
|
if( (unsigned)idx < (unsigned)sz ) |
|
((int*)H)[idx]++; |
|
} |
|
} |
|
#endif //HAVE_TBB |
|
return; |
|
} |
|
else if( dims == 2 ) |
|
{ |
|
#ifdef HAVE_TBB |
|
calcHist2D_Invoker<T> body(_ptrs, _deltas, hist, _uniranges, size, dims, imsize, hstep); |
|
parallel_for(BlockedRange(0, imsize.height), body); |
|
#else |
|
double a0 = uniranges[0], b0 = uniranges[1], a1 = uniranges[2], b1 = uniranges[3]; |
|
int sz0 = size[0], sz1 = size[1]; |
|
int d0 = deltas[0], step0 = deltas[1], |
|
d1 = deltas[2], step1 = deltas[3]; |
|
size_t hstep0 = hstep[0]; |
|
const T* p0 = (const T*)ptrs[0]; |
|
const T* p1 = (const T*)ptrs[1]; |
|
|
|
for( ; imsize.height--; p0 += step0, p1 += step1, mask += mstep ) |
|
{ |
|
if( !mask ) |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) |
|
{ |
|
int idx0 = cvFloor(*p0*a0 + b0); |
|
int idx1 = cvFloor(*p1*a1 + b1); |
|
if( (unsigned)idx0 < (unsigned)sz0 && (unsigned)idx1 < (unsigned)sz1 ) |
|
((int*)(H + hstep0*idx0))[idx1]++; |
|
} |
|
else |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) |
|
if( mask[x] ) |
|
{ |
|
int idx0 = cvFloor(*p0*a0 + b0); |
|
int idx1 = cvFloor(*p1*a1 + b1); |
|
if( (unsigned)idx0 < (unsigned)sz0 && (unsigned)idx1 < (unsigned)sz1 ) |
|
((int*)(H + hstep0*idx0))[idx1]++; |
|
} |
|
} |
|
#endif //HAVE_TBB |
|
return; |
|
} |
|
else if( dims == 3 ) |
|
{ |
|
#ifdef HAVE_TBB |
|
if( calcHist3D_Invoker<T>::isFit(hist, imsize) ) |
|
{ |
|
calcHist3D_Invoker<T> body(_ptrs, _deltas, imsize, hist, uniranges, dims, hstep, size); |
|
parallel_for(BlockedRange(0, imsize.height), body); |
|
return; |
|
} |
|
#endif |
|
double a0 = uniranges[0], b0 = uniranges[1], |
|
a1 = uniranges[2], b1 = uniranges[3], |
|
a2 = uniranges[4], b2 = uniranges[5]; |
|
int sz0 = size[0], sz1 = size[1], sz2 = size[2]; |
|
int d0 = deltas[0], step0 = deltas[1], |
|
d1 = deltas[2], step1 = deltas[3], |
|
d2 = deltas[4], step2 = deltas[5]; |
|
size_t hstep0 = hstep[0], hstep1 = hstep[1]; |
|
const T* p0 = (const T*)ptrs[0]; |
|
const T* p1 = (const T*)ptrs[1]; |
|
const T* p2 = (const T*)ptrs[2]; |
|
|
|
for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, mask += mstep ) |
|
{ |
|
if( !mask ) |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) |
|
{ |
|
int idx0 = cvFloor(*p0*a0 + b0); |
|
int idx1 = cvFloor(*p1*a1 + b1); |
|
int idx2 = cvFloor(*p2*a2 + b2); |
|
if( (unsigned)idx0 < (unsigned)sz0 && |
|
(unsigned)idx1 < (unsigned)sz1 && |
|
(unsigned)idx2 < (unsigned)sz2 ) |
|
((int*)(H + hstep0*idx0 + hstep1*idx1))[idx2]++; |
|
} |
|
else |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) |
|
if( mask[x] ) |
|
{ |
|
int idx0 = cvFloor(*p0*a0 + b0); |
|
int idx1 = cvFloor(*p1*a1 + b1); |
|
int idx2 = cvFloor(*p2*a2 + b2); |
|
if( (unsigned)idx0 < (unsigned)sz0 && |
|
(unsigned)idx1 < (unsigned)sz1 && |
|
(unsigned)idx2 < (unsigned)sz2 ) |
|
((int*)(H + hstep0*idx0 + hstep1*idx1))[idx2]++; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( ; imsize.height--; mask += mstep ) |
|
{ |
|
if( !mask ) |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
uchar* Hptr = H; |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
int idx = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]); |
|
if( (unsigned)idx >= (unsigned)size[i] ) |
|
break; |
|
ptrs[i] += deltas[i*2]; |
|
Hptr += idx*hstep[i]; |
|
} |
|
|
|
if( i == dims ) |
|
++*((int*)Hptr); |
|
else |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
else |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
uchar* Hptr = H; |
|
i = 0; |
|
if( mask[x] ) |
|
for( ; i < dims; i++ ) |
|
{ |
|
int idx = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]); |
|
if( (unsigned)idx >= (unsigned)size[i] ) |
|
break; |
|
ptrs[i] += deltas[i*2]; |
|
Hptr += idx*hstep[i]; |
|
} |
|
|
|
if( i == dims ) |
|
++*((int*)Hptr); |
|
else |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
for( i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// non-uniform histogram |
|
const float* ranges[CV_MAX_DIM]; |
|
for( i = 0; i < dims; i++ ) |
|
ranges[i] = &_ranges[i][0]; |
|
|
|
for( ; imsize.height--; mask += mstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
uchar* Hptr = H; |
|
i = 0; |
|
|
|
if( !mask || mask[x] ) |
|
for( ; i < dims; i++ ) |
|
{ |
|
float v = (float)*ptrs[i]; |
|
const float* R = ranges[i]; |
|
int idx = -1, sz = size[i]; |
|
|
|
while( v >= R[idx+1] && ++idx < sz ) |
|
; // nop |
|
|
|
if( (unsigned)idx >= (unsigned)sz ) |
|
break; |
|
|
|
ptrs[i] += deltas[i*2]; |
|
Hptr += idx*hstep[i]; |
|
} |
|
|
|
if( i == dims ) |
|
++*((int*)Hptr); |
|
else |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
|
|
for( i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
} |
|
|
|
|
|
static void |
|
calcHist_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, Mat& hist, int dims, const float** _ranges, |
|
const double* _uniranges, bool uniform ) |
|
{ |
|
uchar** ptrs = &_ptrs[0]; |
|
const int* deltas = &_deltas[0]; |
|
uchar* H = hist.data; |
|
int x; |
|
const uchar* mask = _ptrs[dims]; |
|
int mstep = _deltas[dims*2 + 1]; |
|
std::vector<size_t> _tab; |
|
|
|
calcHistLookupTables_8u( hist, SparseMat(), dims, _ranges, _uniranges, uniform, false, _tab ); |
|
const size_t* tab = &_tab[0]; |
|
|
|
if( dims == 1 ) |
|
{ |
|
#ifdef HAVE_TBB |
|
if( CalcHist1D_8uInvoker::isFit(hist, imsize) ) |
|
{ |
|
int treadsNumber = tbb::task_scheduler_init::default_num_threads(); |
|
int grainSize = imsize.height/treadsNumber; |
|
tbb::mutex histogramWriteLock; |
|
|
|
CalcHist1D_8uInvoker body(_ptrs, _deltas, imsize, hist, dims, _tab, &histogramWriteLock); |
|
parallel_for(BlockedRange(0, imsize.height, grainSize), body); |
|
return; |
|
} |
|
#endif |
|
int d0 = deltas[0], step0 = deltas[1]; |
|
int matH[256] = { 0, }; |
|
const uchar* p0 = (const uchar*)ptrs[0]; |
|
|
|
for( ; imsize.height--; p0 += step0, mask += mstep ) |
|
{ |
|
if( !mask ) |
|
{ |
|
if( d0 == 1 ) |
|
{ |
|
for( x = 0; x <= imsize.width - 4; x += 4 ) |
|
{ |
|
int t0 = p0[x], t1 = p0[x+1]; |
|
matH[t0]++; matH[t1]++; |
|
t0 = p0[x+2]; t1 = p0[x+3]; |
|
matH[t0]++; matH[t1]++; |
|
} |
|
p0 += x; |
|
} |
|
else |
|
for( x = 0; x <= imsize.width - 4; x += 4 ) |
|
{ |
|
int t0 = p0[0], t1 = p0[d0]; |
|
matH[t0]++; matH[t1]++; |
|
p0 += d0*2; |
|
t0 = p0[0]; t1 = p0[d0]; |
|
matH[t0]++; matH[t1]++; |
|
p0 += d0*2; |
|
} |
|
|
|
for( ; x < imsize.width; x++, p0 += d0 ) |
|
matH[*p0]++; |
|
} |
|
else |
|
for( x = 0; x < imsize.width; x++, p0 += d0 ) |
|
if( mask[x] ) |
|
matH[*p0]++; |
|
} |
|
|
|
for(int i = 0; i < 256; i++ ) |
|
{ |
|
size_t hidx = tab[i]; |
|
if( hidx < OUT_OF_RANGE ) |
|
*(int*)(H + hidx) += matH[i]; |
|
} |
|
} |
|
else if( dims == 2 ) |
|
{ |
|
#ifdef HAVE_TBB |
|
if( CalcHist2D_8uInvoker::isFit(hist, imsize) ) |
|
{ |
|
callCalcHist2D_8u(_ptrs, _deltas, imsize, hist, dims, _tab); |
|
return; |
|
} |
|
#endif |
|
int d0 = deltas[0], step0 = deltas[1], |
|
d1 = deltas[2], step1 = deltas[3]; |
|
const uchar* p0 = (const uchar*)ptrs[0]; |
|
const uchar* p1 = (const uchar*)ptrs[1]; |
|
|
|
for( ; imsize.height--; p0 += step0, p1 += step1, mask += mstep ) |
|
{ |
|
if( !mask ) |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) |
|
{ |
|
size_t idx = tab[*p0] + tab[*p1 + 256]; |
|
if( idx < OUT_OF_RANGE ) |
|
++*(int*)(H + idx); |
|
} |
|
else |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) |
|
{ |
|
size_t idx; |
|
if( mask[x] && (idx = tab[*p0] + tab[*p1 + 256]) < OUT_OF_RANGE ) |
|
++*(int*)(H + idx); |
|
} |
|
} |
|
} |
|
else if( dims == 3 ) |
|
{ |
|
#ifdef HAVE_TBB |
|
if( CalcHist3D_8uInvoker::isFit(hist, imsize) ) |
|
{ |
|
callCalcHist3D_8u(_ptrs, _deltas, imsize, hist, dims, _tab); |
|
return; |
|
} |
|
#endif |
|
int d0 = deltas[0], step0 = deltas[1], |
|
d1 = deltas[2], step1 = deltas[3], |
|
d2 = deltas[4], step2 = deltas[5]; |
|
|
|
const uchar* p0 = (const uchar*)ptrs[0]; |
|
const uchar* p1 = (const uchar*)ptrs[1]; |
|
const uchar* p2 = (const uchar*)ptrs[2]; |
|
|
|
for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, mask += mstep ) |
|
{ |
|
if( !mask ) |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) |
|
{ |
|
size_t idx = tab[*p0] + tab[*p1 + 256] + tab[*p2 + 512]; |
|
if( idx < OUT_OF_RANGE ) |
|
++*(int*)(H + idx); |
|
} |
|
else |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) |
|
{ |
|
size_t idx; |
|
if( mask[x] && (idx = tab[*p0] + tab[*p1 + 256] + tab[*p2 + 512]) < OUT_OF_RANGE ) |
|
++*(int*)(H + idx); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( ; imsize.height--; mask += mstep ) |
|
{ |
|
if( !mask ) |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
uchar* Hptr = H; |
|
int i = 0; |
|
for( ; i < dims; i++ ) |
|
{ |
|
size_t idx = tab[*ptrs[i] + i*256]; |
|
if( idx >= OUT_OF_RANGE ) |
|
break; |
|
Hptr += idx; |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
|
|
if( i == dims ) |
|
++*((int*)Hptr); |
|
else |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
else |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
uchar* Hptr = H; |
|
int i = 0; |
|
if( mask[x] ) |
|
for( ; i < dims; i++ ) |
|
{ |
|
size_t idx = tab[*ptrs[i] + i*256]; |
|
if( idx >= OUT_OF_RANGE ) |
|
break; |
|
Hptr += idx; |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
|
|
if( i == dims ) |
|
++*((int*)Hptr); |
|
else |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
for(int i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_IPP |
|
|
|
class IPPCalcHistInvoker : |
|
public ParallelLoopBody |
|
{ |
|
public: |
|
IPPCalcHistInvoker(const Mat & _src, Mat & _hist, AutoBuffer<Ipp32s> & _levels, Ipp32s _histSize, Ipp32s _low, Ipp32s _high, bool * _ok) : |
|
ParallelLoopBody(), src(&_src), hist(&_hist), levels(&_levels), histSize(_histSize), low(_low), high(_high), ok(_ok) |
|
{ |
|
*ok = true; |
|
} |
|
|
|
virtual void operator() (const Range & range) const |
|
{ |
|
Mat phist(hist->size(), hist->type(), Scalar::all(0)); |
|
|
|
IppStatus status = ippiHistogramEven_8u_C1R( |
|
src->data + src->step * range.start, (int)src->step, ippiSize(src->cols, range.end - range.start), |
|
(Ipp32s *)phist.data, (Ipp32s *)*levels, histSize, low, high); |
|
|
|
if (status < 0) |
|
{ |
|
*ok = false; |
|
return; |
|
} |
|
|
|
for (int i = 0; i < histSize; ++i) |
|
CV_XADD((int *)(hist->data + i * hist->step), *(int *)(phist.data + i * phist.step)); |
|
} |
|
|
|
private: |
|
const Mat * src; |
|
Mat * hist; |
|
AutoBuffer<Ipp32s> * levels; |
|
Ipp32s histSize, low, high; |
|
bool * ok; |
|
|
|
const IPPCalcHistInvoker & operator = (const IPPCalcHistInvoker & ); |
|
}; |
|
|
|
#endif |
|
|
|
} |
|
|
|
void cv::calcHist( const Mat* images, int nimages, const int* channels, |
|
InputArray _mask, OutputArray _hist, int dims, const int* histSize, |
|
const float** ranges, bool uniform, bool accumulate ) |
|
{ |
|
Mat mask = _mask.getMat(); |
|
|
|
CV_Assert(dims > 0 && histSize); |
|
|
|
uchar* histdata = _hist.getMat().data; |
|
_hist.create(dims, histSize, CV_32F); |
|
Mat hist = _hist.getMat(), ihist = hist; |
|
ihist.flags = (ihist.flags & ~CV_MAT_TYPE_MASK)|CV_32S; |
|
|
|
#ifdef HAVE_IPP |
|
if (nimages == 1 && images[0].type() == CV_8UC1 && dims == 1 && channels && |
|
channels[0] == 0 && mask.empty() && images[0].dims <= 2 && |
|
!accumulate && uniform) |
|
{ |
|
ihist.setTo(Scalar::all(0)); |
|
AutoBuffer<Ipp32s> levels(histSize[0] + 1); |
|
|
|
bool ok = true; |
|
const Mat & src = images[0]; |
|
int nstripes = std::min<int>(8, static_cast<int>(src.total() / (1 << 16))); |
|
#ifdef HAVE_CONCURRENCY |
|
nstripes = 1; |
|
#endif |
|
IPPCalcHistInvoker invoker(src, ihist, levels, histSize[0] + 1, (Ipp32s)ranges[0][0], (Ipp32s)ranges[0][1], &ok); |
|
Range range(0, src.rows); |
|
parallel_for_(range, invoker, nstripes); |
|
|
|
if (ok) |
|
{ |
|
ihist.convertTo(hist, CV_32F); |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
} |
|
#endif |
|
|
|
if( !accumulate || histdata != hist.data ) |
|
hist = Scalar(0.); |
|
else |
|
hist.convertTo(ihist, CV_32S); |
|
|
|
std::vector<uchar*> ptrs; |
|
std::vector<int> deltas; |
|
std::vector<double> uniranges; |
|
Size imsize; |
|
|
|
CV_Assert( !mask.data || mask.type() == CV_8UC1 ); |
|
histPrepareImages( images, nimages, channels, mask, dims, hist.size, ranges, |
|
uniform, ptrs, deltas, imsize, uniranges ); |
|
const double* _uniranges = uniform ? &uniranges[0] : 0; |
|
|
|
int depth = images[0].depth(); |
|
|
|
if( depth == CV_8U ) |
|
calcHist_8u(ptrs, deltas, imsize, ihist, dims, ranges, _uniranges, uniform ); |
|
else if( depth == CV_16U ) |
|
calcHist_<ushort>(ptrs, deltas, imsize, ihist, dims, ranges, _uniranges, uniform ); |
|
else if( depth == CV_32F ) |
|
calcHist_<float>(ptrs, deltas, imsize, ihist, dims, ranges, _uniranges, uniform ); |
|
else |
|
CV_Error(CV_StsUnsupportedFormat, ""); |
|
|
|
ihist.convertTo(hist, CV_32F); |
|
} |
|
|
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static void |
|
calcSparseHist_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, SparseMat& hist, int dims, const float** _ranges, |
|
const double* _uniranges, bool uniform ) |
|
{ |
|
T** ptrs = (T**)&_ptrs[0]; |
|
const int* deltas = &_deltas[0]; |
|
int i, x; |
|
const uchar* mask = _ptrs[dims]; |
|
int mstep = _deltas[dims*2 + 1]; |
|
const int* size = hist.hdr->size; |
|
int idx[CV_MAX_DIM]; |
|
|
|
if( uniform ) |
|
{ |
|
const double* uniranges = &_uniranges[0]; |
|
|
|
for( ; imsize.height--; mask += mstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
i = 0; |
|
if( !mask || mask[x] ) |
|
for( ; i < dims; i++ ) |
|
{ |
|
idx[i] = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]); |
|
if( (unsigned)idx[i] >= (unsigned)size[i] ) |
|
break; |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
|
|
if( i == dims ) |
|
++*(int*)hist.ptr(idx, true); |
|
else |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
for( i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
else |
|
{ |
|
// non-uniform histogram |
|
const float* ranges[CV_MAX_DIM]; |
|
for( i = 0; i < dims; i++ ) |
|
ranges[i] = &_ranges[i][0]; |
|
|
|
for( ; imsize.height--; mask += mstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
i = 0; |
|
|
|
if( !mask || mask[x] ) |
|
for( ; i < dims; i++ ) |
|
{ |
|
float v = (float)*ptrs[i]; |
|
const float* R = ranges[i]; |
|
int j = -1, sz = size[i]; |
|
|
|
while( v >= R[j+1] && ++j < sz ) |
|
; // nop |
|
|
|
if( (unsigned)j >= (unsigned)sz ) |
|
break; |
|
ptrs[i] += deltas[i*2]; |
|
idx[i] = j; |
|
} |
|
|
|
if( i == dims ) |
|
++*(int*)hist.ptr(idx, true); |
|
else |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
|
|
for( i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
} |
|
|
|
|
|
static void |
|
calcSparseHist_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, SparseMat& hist, int dims, const float** _ranges, |
|
const double* _uniranges, bool uniform ) |
|
{ |
|
uchar** ptrs = (uchar**)&_ptrs[0]; |
|
const int* deltas = &_deltas[0]; |
|
int x; |
|
const uchar* mask = _ptrs[dims]; |
|
int mstep = _deltas[dims*2 + 1]; |
|
int idx[CV_MAX_DIM]; |
|
std::vector<size_t> _tab; |
|
|
|
calcHistLookupTables_8u( Mat(), hist, dims, _ranges, _uniranges, uniform, true, _tab ); |
|
const size_t* tab = &_tab[0]; |
|
|
|
for( ; imsize.height--; mask += mstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
int i = 0; |
|
if( !mask || mask[x] ) |
|
for( ; i < dims; i++ ) |
|
{ |
|
size_t hidx = tab[*ptrs[i] + i*256]; |
|
if( hidx >= OUT_OF_RANGE ) |
|
break; |
|
ptrs[i] += deltas[i*2]; |
|
idx[i] = (int)hidx; |
|
} |
|
|
|
if( i == dims ) |
|
++*(int*)hist.ptr(idx,true); |
|
else |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
for(int i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
|
|
|
|
static void calcHist( const Mat* images, int nimages, const int* channels, |
|
const Mat& mask, SparseMat& hist, int dims, const int* histSize, |
|
const float** ranges, bool uniform, bool accumulate, bool keepInt ) |
|
{ |
|
size_t i, N; |
|
|
|
if( !accumulate ) |
|
hist.create(dims, histSize, CV_32F); |
|
else |
|
{ |
|
SparseMatIterator it = hist.begin(); |
|
for( i = 0, N = hist.nzcount(); i < N; i++, ++it ) |
|
{ |
|
Cv32suf* val = (Cv32suf*)it.ptr; |
|
val->i = cvRound(val->f); |
|
} |
|
} |
|
|
|
std::vector<uchar*> ptrs; |
|
std::vector<int> deltas; |
|
std::vector<double> uniranges; |
|
Size imsize; |
|
|
|
CV_Assert( !mask.data || mask.type() == CV_8UC1 ); |
|
histPrepareImages( images, nimages, channels, mask, dims, hist.hdr->size, ranges, |
|
uniform, ptrs, deltas, imsize, uniranges ); |
|
const double* _uniranges = uniform ? &uniranges[0] : 0; |
|
|
|
int depth = images[0].depth(); |
|
if( depth == CV_8U ) |
|
calcSparseHist_8u(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, uniform ); |
|
else if( depth == CV_16U ) |
|
calcSparseHist_<ushort>(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, uniform ); |
|
else if( depth == CV_32F ) |
|
calcSparseHist_<float>(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, uniform ); |
|
else |
|
CV_Error(CV_StsUnsupportedFormat, ""); |
|
|
|
if( !keepInt ) |
|
{ |
|
SparseMatIterator it = hist.begin(); |
|
for( i = 0, N = hist.nzcount(); i < N; i++, ++it ) |
|
{ |
|
Cv32suf* val = (Cv32suf*)it.ptr; |
|
val->f = (float)val->i; |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
enum |
|
{ |
|
BINS = 256 |
|
}; |
|
|
|
static bool ocl_calcHist1(InputArray _src, OutputArray _hist, int ddepth = CV_32S) |
|
{ |
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
int compunits = dev.maxComputeUnits(); |
|
size_t wgs = dev.maxWorkGroupSize(); |
|
Size size = _src.size(); |
|
bool use16 = size.width % 16 == 0 && _src.offset() % 16 == 0 && _src.step() % 16 == 0; |
|
int kercn = dev.isAMD() && use16 ? 16 : std::min(4, ocl::predictOptimalVectorWidth(_src)); |
|
|
|
ocl::Kernel k1("calculate_histogram", ocl::imgproc::histogram_oclsrc, |
|
format("-D BINS=%d -D HISTS_COUNT=%d -D WGS=%d -D kercn=%d -D T=%s%s", |
|
BINS, compunits, wgs, kercn, |
|
kercn == 4 ? "int" : ocl::typeToStr(CV_8UC(kercn)), |
|
_src.isContinuous() ? " -D HAVE_SRC_CONT" : "")); |
|
if (k1.empty()) |
|
return false; |
|
|
|
_hist.create(BINS, 1, ddepth); |
|
UMat src = _src.getUMat(), ghist(1, BINS * compunits, CV_32SC1), |
|
hist = _hist.getUMat(); |
|
|
|
k1.args(ocl::KernelArg::ReadOnly(src), |
|
ocl::KernelArg::PtrWriteOnly(ghist), (int)src.total()); |
|
|
|
size_t globalsize = compunits * wgs; |
|
if (!k1.run(1, &globalsize, &wgs, false)) |
|
return false; |
|
|
|
char cvt[40]; |
|
ocl::Kernel k2("merge_histogram", ocl::imgproc::histogram_oclsrc, |
|
format("-D BINS=%d -D HISTS_COUNT=%d -D WGS=%d -D convertToHT=%s -D HT=%s", |
|
BINS, compunits, (int)wgs, ocl::convertTypeStr(CV_32S, ddepth, 1, cvt), |
|
ocl::typeToStr(ddepth))); |
|
if (k2.empty()) |
|
return false; |
|
|
|
k2.args(ocl::KernelArg::PtrReadOnly(ghist), |
|
ocl::KernelArg::WriteOnlyNoSize(hist)); |
|
|
|
return k2.run(1, &wgs, &wgs, false); |
|
} |
|
|
|
static bool ocl_calcHist(InputArrayOfArrays images, OutputArray hist) |
|
{ |
|
std::vector<UMat> v; |
|
images.getUMatVector(v); |
|
|
|
return ocl_calcHist1(v[0], hist, CV_32F); |
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
void cv::calcHist( const Mat* images, int nimages, const int* channels, |
|
InputArray _mask, SparseMat& hist, int dims, const int* histSize, |
|
const float** ranges, bool uniform, bool accumulate ) |
|
{ |
|
Mat mask = _mask.getMat(); |
|
calcHist( images, nimages, channels, mask, hist, dims, histSize, |
|
ranges, uniform, accumulate, false ); |
|
} |
|
|
|
|
|
void cv::calcHist( InputArrayOfArrays images, const std::vector<int>& channels, |
|
InputArray mask, OutputArray hist, |
|
const std::vector<int>& histSize, |
|
const std::vector<float>& ranges, |
|
bool accumulate ) |
|
{ |
|
CV_OCL_RUN(images.total() == 1 && channels.size() == 1 && images.channels(0) == 1 && |
|
channels[0] == 0 && images.isUMatVector() && mask.empty() && !accumulate && |
|
histSize.size() == 1 && histSize[0] == BINS && ranges.size() == 2 && |
|
ranges[0] == 0 && ranges[1] == BINS, |
|
ocl_calcHist(images, hist)) |
|
|
|
int i, dims = (int)histSize.size(), rsz = (int)ranges.size(), csz = (int)channels.size(); |
|
int nimages = (int)images.total(); |
|
|
|
CV_Assert(nimages > 0 && dims > 0); |
|
CV_Assert(rsz == dims*2 || (rsz == 0 && images.depth(0) == CV_8U)); |
|
CV_Assert(csz == 0 || csz == dims); |
|
float* _ranges[CV_MAX_DIM]; |
|
if( rsz > 0 ) |
|
{ |
|
for( i = 0; i < rsz/2; i++ ) |
|
_ranges[i] = (float*)&ranges[i*2]; |
|
} |
|
|
|
AutoBuffer<Mat> buf(nimages); |
|
for( i = 0; i < nimages; i++ ) |
|
buf[i] = images.getMat(i); |
|
|
|
calcHist(&buf[0], nimages, csz ? &channels[0] : 0, |
|
mask, hist, dims, &histSize[0], rsz ? (const float**)_ranges : 0, |
|
true, accumulate); |
|
} |
|
|
|
|
|
/////////////////////////////////////// B A C K P R O J E C T //////////////////////////////////// |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename BT> static void |
|
calcBackProj_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, const Mat& hist, int dims, const float** _ranges, |
|
const double* _uniranges, float scale, bool uniform ) |
|
{ |
|
T** ptrs = (T**)&_ptrs[0]; |
|
const int* deltas = &_deltas[0]; |
|
uchar* H = hist.data; |
|
int i, x; |
|
BT* bproj = (BT*)_ptrs[dims]; |
|
int bpstep = _deltas[dims*2 + 1]; |
|
int size[CV_MAX_DIM]; |
|
size_t hstep[CV_MAX_DIM]; |
|
|
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
size[i] = hist.size[i]; |
|
hstep[i] = hist.step[i]; |
|
} |
|
|
|
if( uniform ) |
|
{ |
|
const double* uniranges = &_uniranges[0]; |
|
|
|
if( dims == 1 ) |
|
{ |
|
double a = uniranges[0], b = uniranges[1]; |
|
int sz = size[0], d0 = deltas[0], step0 = deltas[1]; |
|
const T* p0 = (const T*)ptrs[0]; |
|
|
|
for( ; imsize.height--; p0 += step0, bproj += bpstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++, p0 += d0 ) |
|
{ |
|
int idx = cvFloor(*p0*a + b); |
|
bproj[x] = (unsigned)idx < (unsigned)sz ? saturate_cast<BT>(((float*)H)[idx]*scale) : 0; |
|
} |
|
} |
|
} |
|
else if( dims == 2 ) |
|
{ |
|
double a0 = uniranges[0], b0 = uniranges[1], |
|
a1 = uniranges[2], b1 = uniranges[3]; |
|
int sz0 = size[0], sz1 = size[1]; |
|
int d0 = deltas[0], step0 = deltas[1], |
|
d1 = deltas[2], step1 = deltas[3]; |
|
size_t hstep0 = hstep[0]; |
|
const T* p0 = (const T*)ptrs[0]; |
|
const T* p1 = (const T*)ptrs[1]; |
|
|
|
for( ; imsize.height--; p0 += step0, p1 += step1, bproj += bpstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) |
|
{ |
|
int idx0 = cvFloor(*p0*a0 + b0); |
|
int idx1 = cvFloor(*p1*a1 + b1); |
|
bproj[x] = (unsigned)idx0 < (unsigned)sz0 && |
|
(unsigned)idx1 < (unsigned)sz1 ? |
|
saturate_cast<BT>(((float*)(H + hstep0*idx0))[idx1]*scale) : 0; |
|
} |
|
} |
|
} |
|
else if( dims == 3 ) |
|
{ |
|
double a0 = uniranges[0], b0 = uniranges[1], |
|
a1 = uniranges[2], b1 = uniranges[3], |
|
a2 = uniranges[4], b2 = uniranges[5]; |
|
int sz0 = size[0], sz1 = size[1], sz2 = size[2]; |
|
int d0 = deltas[0], step0 = deltas[1], |
|
d1 = deltas[2], step1 = deltas[3], |
|
d2 = deltas[4], step2 = deltas[5]; |
|
size_t hstep0 = hstep[0], hstep1 = hstep[1]; |
|
const T* p0 = (const T*)ptrs[0]; |
|
const T* p1 = (const T*)ptrs[1]; |
|
const T* p2 = (const T*)ptrs[2]; |
|
|
|
for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, bproj += bpstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) |
|
{ |
|
int idx0 = cvFloor(*p0*a0 + b0); |
|
int idx1 = cvFloor(*p1*a1 + b1); |
|
int idx2 = cvFloor(*p2*a2 + b2); |
|
bproj[x] = (unsigned)idx0 < (unsigned)sz0 && |
|
(unsigned)idx1 < (unsigned)sz1 && |
|
(unsigned)idx2 < (unsigned)sz2 ? |
|
saturate_cast<BT>(((float*)(H + hstep0*idx0 + hstep1*idx1))[idx2]*scale) : 0; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( ; imsize.height--; bproj += bpstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
uchar* Hptr = H; |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
int idx = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]); |
|
if( (unsigned)idx >= (unsigned)size[i] || (_ranges && *ptrs[i] >= _ranges[i][1])) |
|
break; |
|
ptrs[i] += deltas[i*2]; |
|
Hptr += idx*hstep[i]; |
|
} |
|
|
|
if( i == dims ) |
|
bproj[x] = saturate_cast<BT>(*(float*)Hptr*scale); |
|
else |
|
{ |
|
bproj[x] = 0; |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
} |
|
for( i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// non-uniform histogram |
|
const float* ranges[CV_MAX_DIM]; |
|
for( i = 0; i < dims; i++ ) |
|
ranges[i] = &_ranges[i][0]; |
|
|
|
for( ; imsize.height--; bproj += bpstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
uchar* Hptr = H; |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
float v = (float)*ptrs[i]; |
|
const float* R = ranges[i]; |
|
int idx = -1, sz = size[i]; |
|
|
|
while( v >= R[idx+1] && ++idx < sz ) |
|
; // nop |
|
|
|
if( (unsigned)idx >= (unsigned)sz ) |
|
break; |
|
|
|
ptrs[i] += deltas[i*2]; |
|
Hptr += idx*hstep[i]; |
|
} |
|
|
|
if( i == dims ) |
|
bproj[x] = saturate_cast<BT>(*(float*)Hptr*scale); |
|
else |
|
{ |
|
bproj[x] = 0; |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
} |
|
|
|
for( i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
} |
|
|
|
|
|
static void |
|
calcBackProj_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, const Mat& hist, int dims, const float** _ranges, |
|
const double* _uniranges, float scale, bool uniform ) |
|
{ |
|
uchar** ptrs = &_ptrs[0]; |
|
const int* deltas = &_deltas[0]; |
|
uchar* H = hist.data; |
|
int i, x; |
|
uchar* bproj = _ptrs[dims]; |
|
int bpstep = _deltas[dims*2 + 1]; |
|
std::vector<size_t> _tab; |
|
|
|
calcHistLookupTables_8u( hist, SparseMat(), dims, _ranges, _uniranges, uniform, false, _tab ); |
|
const size_t* tab = &_tab[0]; |
|
|
|
if( dims == 1 ) |
|
{ |
|
int d0 = deltas[0], step0 = deltas[1]; |
|
uchar matH[256] = {0}; |
|
const uchar* p0 = (const uchar*)ptrs[0]; |
|
|
|
for( i = 0; i < 256; i++ ) |
|
{ |
|
size_t hidx = tab[i]; |
|
if( hidx < OUT_OF_RANGE ) |
|
matH[i] = saturate_cast<uchar>(*(float*)(H + hidx)*scale); |
|
} |
|
|
|
for( ; imsize.height--; p0 += step0, bproj += bpstep ) |
|
{ |
|
if( d0 == 1 ) |
|
{ |
|
for( x = 0; x <= imsize.width - 4; x += 4 ) |
|
{ |
|
uchar t0 = matH[p0[x]], t1 = matH[p0[x+1]]; |
|
bproj[x] = t0; bproj[x+1] = t1; |
|
t0 = matH[p0[x+2]]; t1 = matH[p0[x+3]]; |
|
bproj[x+2] = t0; bproj[x+3] = t1; |
|
} |
|
p0 += x; |
|
} |
|
else |
|
for( x = 0; x <= imsize.width - 4; x += 4 ) |
|
{ |
|
uchar t0 = matH[p0[0]], t1 = matH[p0[d0]]; |
|
bproj[x] = t0; bproj[x+1] = t1; |
|
p0 += d0*2; |
|
t0 = matH[p0[0]]; t1 = matH[p0[d0]]; |
|
bproj[x+2] = t0; bproj[x+3] = t1; |
|
p0 += d0*2; |
|
} |
|
|
|
for( ; x < imsize.width; x++, p0 += d0 ) |
|
bproj[x] = matH[*p0]; |
|
} |
|
} |
|
else if( dims == 2 ) |
|
{ |
|
int d0 = deltas[0], step0 = deltas[1], |
|
d1 = deltas[2], step1 = deltas[3]; |
|
const uchar* p0 = (const uchar*)ptrs[0]; |
|
const uchar* p1 = (const uchar*)ptrs[1]; |
|
|
|
for( ; imsize.height--; p0 += step0, p1 += step1, bproj += bpstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1 ) |
|
{ |
|
size_t idx = tab[*p0] + tab[*p1 + 256]; |
|
bproj[x] = idx < OUT_OF_RANGE ? saturate_cast<uchar>(*(float*)(H + idx)*scale) : 0; |
|
} |
|
} |
|
} |
|
else if( dims == 3 ) |
|
{ |
|
int d0 = deltas[0], step0 = deltas[1], |
|
d1 = deltas[2], step1 = deltas[3], |
|
d2 = deltas[4], step2 = deltas[5]; |
|
const uchar* p0 = (const uchar*)ptrs[0]; |
|
const uchar* p1 = (const uchar*)ptrs[1]; |
|
const uchar* p2 = (const uchar*)ptrs[2]; |
|
|
|
for( ; imsize.height--; p0 += step0, p1 += step1, p2 += step2, bproj += bpstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++, p0 += d0, p1 += d1, p2 += d2 ) |
|
{ |
|
size_t idx = tab[*p0] + tab[*p1 + 256] + tab[*p2 + 512]; |
|
bproj[x] = idx < OUT_OF_RANGE ? saturate_cast<uchar>(*(float*)(H + idx)*scale) : 0; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( ; imsize.height--; bproj += bpstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
uchar* Hptr = H; |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
size_t idx = tab[*ptrs[i] + i*256]; |
|
if( idx >= OUT_OF_RANGE ) |
|
break; |
|
ptrs[i] += deltas[i*2]; |
|
Hptr += idx; |
|
} |
|
|
|
if( i == dims ) |
|
bproj[x] = saturate_cast<uchar>(*(float*)Hptr*scale); |
|
else |
|
{ |
|
bproj[x] = 0; |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
} |
|
for( i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
} |
|
|
|
} |
|
|
|
void cv::calcBackProject( const Mat* images, int nimages, const int* channels, |
|
InputArray _hist, OutputArray _backProject, |
|
const float** ranges, double scale, bool uniform ) |
|
{ |
|
Mat hist = _hist.getMat(); |
|
std::vector<uchar*> ptrs; |
|
std::vector<int> deltas; |
|
std::vector<double> uniranges; |
|
Size imsize; |
|
int dims = hist.dims == 2 && hist.size[1] == 1 ? 1 : hist.dims; |
|
|
|
CV_Assert( dims > 0 && hist.data ); |
|
_backProject.create( images[0].size(), images[0].depth() ); |
|
Mat backProject = _backProject.getMat(); |
|
histPrepareImages( images, nimages, channels, backProject, dims, hist.size, ranges, |
|
uniform, ptrs, deltas, imsize, uniranges ); |
|
const double* _uniranges = uniform ? &uniranges[0] : 0; |
|
|
|
int depth = images[0].depth(); |
|
if( depth == CV_8U ) |
|
calcBackProj_8u(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform); |
|
else if( depth == CV_16U ) |
|
calcBackProj_<ushort, ushort>(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform ); |
|
else if( depth == CV_32F ) |
|
calcBackProj_<float, float>(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform ); |
|
else |
|
CV_Error(CV_StsUnsupportedFormat, ""); |
|
} |
|
|
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename BT> static void |
|
calcSparseBackProj_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, const SparseMat& hist, int dims, const float** _ranges, |
|
const double* _uniranges, float scale, bool uniform ) |
|
{ |
|
T** ptrs = (T**)&_ptrs[0]; |
|
const int* deltas = &_deltas[0]; |
|
int i, x; |
|
BT* bproj = (BT*)_ptrs[dims]; |
|
int bpstep = _deltas[dims*2 + 1]; |
|
const int* size = hist.hdr->size; |
|
int idx[CV_MAX_DIM]; |
|
const SparseMat_<float>& hist_ = (const SparseMat_<float>&)hist; |
|
|
|
if( uniform ) |
|
{ |
|
const double* uniranges = &_uniranges[0]; |
|
for( ; imsize.height--; bproj += bpstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
idx[i] = cvFloor(*ptrs[i]*uniranges[i*2] + uniranges[i*2+1]); |
|
if( (unsigned)idx[i] >= (unsigned)size[i] ) |
|
break; |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
|
|
if( i == dims ) |
|
bproj[x] = saturate_cast<BT>(hist_(idx)*scale); |
|
else |
|
{ |
|
bproj[x] = 0; |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
} |
|
for( i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
else |
|
{ |
|
// non-uniform histogram |
|
const float* ranges[CV_MAX_DIM]; |
|
for( i = 0; i < dims; i++ ) |
|
ranges[i] = &_ranges[i][0]; |
|
|
|
for( ; imsize.height--; bproj += bpstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
float v = (float)*ptrs[i]; |
|
const float* R = ranges[i]; |
|
int j = -1, sz = size[i]; |
|
|
|
while( v >= R[j+1] && ++j < sz ) |
|
; // nop |
|
|
|
if( (unsigned)j >= (unsigned)sz ) |
|
break; |
|
idx[i] = j; |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
|
|
if( i == dims ) |
|
bproj[x] = saturate_cast<BT>(hist_(idx)*scale); |
|
else |
|
{ |
|
bproj[x] = 0; |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
} |
|
|
|
for( i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
} |
|
|
|
|
|
static void |
|
calcSparseBackProj_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas, |
|
Size imsize, const SparseMat& hist, int dims, const float** _ranges, |
|
const double* _uniranges, float scale, bool uniform ) |
|
{ |
|
uchar** ptrs = &_ptrs[0]; |
|
const int* deltas = &_deltas[0]; |
|
int i, x; |
|
uchar* bproj = _ptrs[dims]; |
|
int bpstep = _deltas[dims*2 + 1]; |
|
std::vector<size_t> _tab; |
|
int idx[CV_MAX_DIM]; |
|
|
|
calcHistLookupTables_8u( Mat(), hist, dims, _ranges, _uniranges, uniform, true, _tab ); |
|
const size_t* tab = &_tab[0]; |
|
|
|
for( ; imsize.height--; bproj += bpstep ) |
|
{ |
|
for( x = 0; x < imsize.width; x++ ) |
|
{ |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
size_t hidx = tab[*ptrs[i] + i*256]; |
|
if( hidx >= OUT_OF_RANGE ) |
|
break; |
|
idx[i] = (int)hidx; |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
|
|
if( i == dims ) |
|
bproj[x] = saturate_cast<uchar>(hist.value<float>(idx)*scale); |
|
else |
|
{ |
|
bproj[x] = 0; |
|
for( ; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2]; |
|
} |
|
} |
|
for( i = 0; i < dims; i++ ) |
|
ptrs[i] += deltas[i*2 + 1]; |
|
} |
|
} |
|
|
|
} |
|
|
|
void cv::calcBackProject( const Mat* images, int nimages, const int* channels, |
|
const SparseMat& hist, OutputArray _backProject, |
|
const float** ranges, double scale, bool uniform ) |
|
{ |
|
std::vector<uchar*> ptrs; |
|
std::vector<int> deltas; |
|
std::vector<double> uniranges; |
|
Size imsize; |
|
int dims = hist.dims(); |
|
|
|
CV_Assert( dims > 0 ); |
|
_backProject.create( images[0].size(), images[0].depth() ); |
|
Mat backProject = _backProject.getMat(); |
|
histPrepareImages( images, nimages, channels, backProject, |
|
dims, hist.hdr->size, ranges, |
|
uniform, ptrs, deltas, imsize, uniranges ); |
|
const double* _uniranges = uniform ? &uniranges[0] : 0; |
|
|
|
int depth = images[0].depth(); |
|
if( depth == CV_8U ) |
|
calcSparseBackProj_8u(ptrs, deltas, imsize, hist, dims, ranges, |
|
_uniranges, (float)scale, uniform); |
|
else if( depth == CV_16U ) |
|
calcSparseBackProj_<ushort, ushort>(ptrs, deltas, imsize, hist, dims, ranges, |
|
_uniranges, (float)scale, uniform ); |
|
else if( depth == CV_32F ) |
|
calcSparseBackProj_<float, float>(ptrs, deltas, imsize, hist, dims, ranges, |
|
_uniranges, (float)scale, uniform ); |
|
else |
|
CV_Error(CV_StsUnsupportedFormat, ""); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static void getUMatIndex(const std::vector<UMat> & um, int cn, int & idx, int & cnidx) |
|
{ |
|
int totalChannels = 0; |
|
for (size_t i = 0, size = um.size(); i < size; ++i) |
|
{ |
|
int ccn = um[i].channels(); |
|
totalChannels += ccn; |
|
|
|
if (totalChannels == cn) |
|
{ |
|
idx = (int)(i + 1); |
|
cnidx = 0; |
|
return; |
|
} |
|
else if (totalChannels > cn) |
|
{ |
|
idx = (int)i; |
|
cnidx = i == 0 ? cn : (cn - totalChannels + ccn); |
|
return; |
|
} |
|
} |
|
|
|
idx = cnidx = -1; |
|
} |
|
|
|
static bool ocl_calcBackProject( InputArrayOfArrays _images, std::vector<int> channels, |
|
InputArray _hist, OutputArray _dst, |
|
const std::vector<float>& ranges, |
|
float scale, size_t histdims ) |
|
{ |
|
std::vector<UMat> images; |
|
_images.getUMatVector(images); |
|
|
|
size_t nimages = images.size(), totalcn = images[0].channels(); |
|
|
|
CV_Assert(nimages > 0); |
|
Size size = images[0].size(); |
|
int depth = images[0].depth(); |
|
|
|
//kernels are valid for this type only |
|
if (depth != CV_8U) |
|
return false; |
|
|
|
for (size_t i = 1; i < nimages; ++i) |
|
{ |
|
const UMat & m = images[i]; |
|
totalcn += m.channels(); |
|
CV_Assert(size == m.size() && depth == m.depth()); |
|
} |
|
|
|
std::sort(channels.begin(), channels.end()); |
|
for (size_t i = 0; i < histdims; ++i) |
|
CV_Assert(channels[i] < (int)totalcn); |
|
|
|
if (histdims == 1) |
|
{ |
|
int idx, cnidx; |
|
getUMatIndex(images, channels[0], idx, cnidx); |
|
CV_Assert(idx >= 0); |
|
UMat im = images[idx]; |
|
|
|
String opts = format("-D histdims=1 -D scn=%d", im.channels()); |
|
ocl::Kernel lutk("calcLUT", ocl::imgproc::calc_back_project_oclsrc, opts); |
|
if (lutk.empty()) |
|
return false; |
|
|
|
size_t lsize = 256; |
|
UMat lut(1, (int)lsize, CV_32SC1), hist = _hist.getUMat(), uranges(ranges, true); |
|
|
|
lutk.args(ocl::KernelArg::ReadOnlyNoSize(hist), hist.rows, |
|
ocl::KernelArg::PtrWriteOnly(lut), scale, ocl::KernelArg::PtrReadOnly(uranges)); |
|
if (!lutk.run(1, &lsize, NULL, false)) |
|
return false; |
|
|
|
ocl::Kernel mapk("LUT", ocl::imgproc::calc_back_project_oclsrc, opts); |
|
if (mapk.empty()) |
|
return false; |
|
|
|
_dst.create(size, depth); |
|
UMat dst = _dst.getUMat(); |
|
|
|
im.offset += cnidx; |
|
mapk.args(ocl::KernelArg::ReadOnlyNoSize(im), ocl::KernelArg::PtrReadOnly(lut), |
|
ocl::KernelArg::WriteOnly(dst)); |
|
|
|
size_t globalsize[2] = { size.width, size.height }; |
|
return mapk.run(2, globalsize, NULL, false); |
|
} |
|
else if (histdims == 2) |
|
{ |
|
int idx0, idx1, cnidx0, cnidx1; |
|
getUMatIndex(images, channels[0], idx0, cnidx0); |
|
getUMatIndex(images, channels[1], idx1, cnidx1); |
|
CV_Assert(idx0 >= 0 && idx1 >= 0); |
|
UMat im0 = images[idx0], im1 = images[idx1]; |
|
|
|
// Lut for the first dimension |
|
String opts = format("-D histdims=2 -D scn1=%d -D scn2=%d", im0.channels(), im1.channels()); |
|
ocl::Kernel lutk1("calcLUT", ocl::imgproc::calc_back_project_oclsrc, opts); |
|
if (lutk1.empty()) |
|
return false; |
|
|
|
size_t lsize = 256; |
|
UMat lut(1, (int)lsize<<1, CV_32SC1), uranges(ranges, true), hist = _hist.getUMat(); |
|
|
|
lutk1.args(hist.rows, ocl::KernelArg::PtrWriteOnly(lut), (int)0, ocl::KernelArg::PtrReadOnly(uranges), (int)0); |
|
if (!lutk1.run(1, &lsize, NULL, false)) |
|
return false; |
|
|
|
// lut for the second dimension |
|
ocl::Kernel lutk2("calcLUT", ocl::imgproc::calc_back_project_oclsrc, opts); |
|
if (lutk2.empty()) |
|
return false; |
|
|
|
lut.offset += lsize * sizeof(int); |
|
lutk2.args(hist.cols, ocl::KernelArg::PtrWriteOnly(lut), (int)256, ocl::KernelArg::PtrReadOnly(uranges), (int)2); |
|
if (!lutk2.run(1, &lsize, NULL, false)) |
|
return false; |
|
|
|
// perform lut |
|
ocl::Kernel mapk("LUT", ocl::imgproc::calc_back_project_oclsrc, opts); |
|
if (mapk.empty()) |
|
return false; |
|
|
|
_dst.create(size, depth); |
|
UMat dst = _dst.getUMat(); |
|
|
|
im0.offset += cnidx0; |
|
im1.offset += cnidx1; |
|
mapk.args(ocl::KernelArg::ReadOnlyNoSize(im0), ocl::KernelArg::ReadOnlyNoSize(im1), |
|
ocl::KernelArg::ReadOnlyNoSize(hist), ocl::KernelArg::PtrReadOnly(lut), scale, ocl::KernelArg::WriteOnly(dst)); |
|
|
|
size_t globalsize[2] = { size.width, size.height }; |
|
return mapk.run(2, globalsize, NULL, false); |
|
} |
|
return false; |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
void cv::calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels, |
|
InputArray hist, OutputArray dst, |
|
const std::vector<float>& ranges, |
|
double scale ) |
|
{ |
|
#ifdef HAVE_OPENCL |
|
Size histSize = hist.size(); |
|
bool _1D = histSize.height == 1 || histSize.width == 1; |
|
size_t histdims = _1D ? 1 : hist.dims(); |
|
#endif |
|
|
|
CV_OCL_RUN(dst.isUMat() && hist.type() == CV_32FC1 && |
|
histdims <= 2 && ranges.size() == histdims * 2 && histdims == channels.size(), |
|
ocl_calcBackProject(images, channels, hist, dst, ranges, (float)scale, histdims)) |
|
|
|
Mat H0 = hist.getMat(), H; |
|
int hcn = H0.channels(); |
|
|
|
if( hcn > 1 ) |
|
{ |
|
CV_Assert( H0.isContinuous() ); |
|
int hsz[CV_CN_MAX+1]; |
|
memcpy(hsz, &H0.size[0], H0.dims*sizeof(hsz[0])); |
|
hsz[H0.dims] = hcn; |
|
H = Mat(H0.dims+1, hsz, H0.depth(), H0.data); |
|
} |
|
else |
|
H = H0; |
|
|
|
bool _1d = H.rows == 1 || H.cols == 1; |
|
int i, dims = H.dims, rsz = (int)ranges.size(), csz = (int)channels.size(); |
|
int nimages = (int)images.total(); |
|
|
|
CV_Assert(nimages > 0); |
|
CV_Assert(rsz == dims*2 || (rsz == 2 && _1d) || (rsz == 0 && images.depth(0) == CV_8U)); |
|
CV_Assert(csz == 0 || csz == dims || (csz == 1 && _1d)); |
|
|
|
float* _ranges[CV_MAX_DIM]; |
|
if( rsz > 0 ) |
|
{ |
|
for( i = 0; i < rsz/2; i++ ) |
|
_ranges[i] = (float*)&ranges[i*2]; |
|
} |
|
|
|
AutoBuffer<Mat> buf(nimages); |
|
for( i = 0; i < nimages; i++ ) |
|
buf[i] = images.getMat(i); |
|
|
|
calcBackProject(&buf[0], nimages, csz ? &channels[0] : 0, |
|
hist, dst, rsz ? (const float**)_ranges : 0, scale, true); |
|
} |
|
|
|
|
|
////////////////// C O M P A R E H I S T O G R A M S //////////////////////// |
|
|
|
double cv::compareHist( InputArray _H1, InputArray _H2, int method ) |
|
{ |
|
Mat H1 = _H1.getMat(), H2 = _H2.getMat(); |
|
const Mat* arrays[] = {&H1, &H2, 0}; |
|
Mat planes[2]; |
|
NAryMatIterator it(arrays, planes); |
|
double result = 0; |
|
int j, len = (int)it.size; |
|
|
|
CV_Assert( H1.type() == H2.type() && H1.depth() == CV_32F ); |
|
|
|
double s1 = 0, s2 = 0, s11 = 0, s12 = 0, s22 = 0; |
|
|
|
CV_Assert( it.planes[0].isContinuous() && it.planes[1].isContinuous() ); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
const float* h1 = (const float*)it.planes[0].data; |
|
const float* h2 = (const float*)it.planes[1].data; |
|
len = it.planes[0].rows*it.planes[0].cols*H1.channels(); |
|
|
|
if( (method == CV_COMP_CHISQR) || (method == CV_COMP_CHISQR_ALT)) |
|
{ |
|
for( j = 0; j < len; j++ ) |
|
{ |
|
double a = h1[j] - h2[j]; |
|
double b = (method == CV_COMP_CHISQR) ? h1[j] : h1[j] + h2[j]; |
|
if( fabs(b) > DBL_EPSILON ) |
|
result += a*a/b; |
|
} |
|
} |
|
else if( method == CV_COMP_CORREL ) |
|
{ |
|
for( j = 0; j < len; j++ ) |
|
{ |
|
double a = h1[j]; |
|
double b = h2[j]; |
|
|
|
s12 += a*b; |
|
s1 += a; |
|
s11 += a*a; |
|
s2 += b; |
|
s22 += b*b; |
|
} |
|
} |
|
else if( method == CV_COMP_INTERSECT ) |
|
{ |
|
for( j = 0; j < len; j++ ) |
|
result += std::min(h1[j], h2[j]); |
|
} |
|
else if( method == CV_COMP_BHATTACHARYYA ) |
|
{ |
|
for( j = 0; j < len; j++ ) |
|
{ |
|
double a = h1[j]; |
|
double b = h2[j]; |
|
result += std::sqrt(a*b); |
|
s1 += a; |
|
s2 += b; |
|
} |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Unknown comparison method" ); |
|
} |
|
|
|
if( method == CV_COMP_CHISQR_ALT ) |
|
result *= 2; |
|
else if( method == CV_COMP_CORREL ) |
|
{ |
|
size_t total = H1.total(); |
|
double scale = 1./total; |
|
double num = s12 - s1*s2*scale; |
|
double denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale); |
|
result = std::abs(denom2) > DBL_EPSILON ? num/std::sqrt(denom2) : 1.; |
|
} |
|
else if( method == CV_COMP_BHATTACHARYYA ) |
|
{ |
|
s1 *= s2; |
|
s1 = fabs(s1) > FLT_EPSILON ? 1./std::sqrt(s1) : 1.; |
|
result = std::sqrt(std::max(1. - result*s1, 0.)); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
|
|
double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method ) |
|
{ |
|
double result = 0; |
|
int i, dims = H1.dims(); |
|
|
|
CV_Assert( dims > 0 && dims == H2.dims() && H1.type() == H2.type() && H1.type() == CV_32F ); |
|
for( i = 0; i < dims; i++ ) |
|
CV_Assert( H1.size(i) == H2.size(i) ); |
|
|
|
const SparseMat *PH1 = &H1, *PH2 = &H2; |
|
if( PH1->nzcount() > PH2->nzcount() && method != CV_COMP_CHISQR && method != CV_COMP_CHISQR_ALT) |
|
std::swap(PH1, PH2); |
|
|
|
SparseMatConstIterator it = PH1->begin(); |
|
int N1 = (int)PH1->nzcount(), N2 = (int)PH2->nzcount(); |
|
|
|
if( (method == CV_COMP_CHISQR) || (method == CV_COMP_CHISQR_ALT) ) |
|
{ |
|
for( i = 0; i < N1; i++, ++it ) |
|
{ |
|
float v1 = it.value<float>(); |
|
const SparseMat::Node* node = it.node(); |
|
float v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval); |
|
double a = v1 - v2; |
|
double b = (method == CV_COMP_CHISQR) ? v1 : v1 + v2; |
|
if( fabs(b) > DBL_EPSILON ) |
|
result += a*a/b; |
|
} |
|
} |
|
else if( method == CV_COMP_CORREL ) |
|
{ |
|
double s1 = 0, s2 = 0, s11 = 0, s12 = 0, s22 = 0; |
|
|
|
for( i = 0; i < N1; i++, ++it ) |
|
{ |
|
double v1 = it.value<float>(); |
|
const SparseMat::Node* node = it.node(); |
|
s12 += v1*PH2->value<float>(node->idx, (size_t*)&node->hashval); |
|
s1 += v1; |
|
s11 += v1*v1; |
|
} |
|
|
|
it = PH2->begin(); |
|
for( i = 0; i < N2; i++, ++it ) |
|
{ |
|
double v2 = it.value<float>(); |
|
s2 += v2; |
|
s22 += v2*v2; |
|
} |
|
|
|
size_t total = 1; |
|
for( i = 0; i < H1.dims(); i++ ) |
|
total *= H1.size(i); |
|
double scale = 1./total; |
|
double num = s12 - s1*s2*scale; |
|
double denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale); |
|
result = std::abs(denom2) > DBL_EPSILON ? num/std::sqrt(denom2) : 1.; |
|
} |
|
else if( method == CV_COMP_INTERSECT ) |
|
{ |
|
for( i = 0; i < N1; i++, ++it ) |
|
{ |
|
float v1 = it.value<float>(); |
|
const SparseMat::Node* node = it.node(); |
|
float v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval); |
|
if( v2 ) |
|
result += std::min(v1, v2); |
|
} |
|
} |
|
else if( method == CV_COMP_BHATTACHARYYA ) |
|
{ |
|
double s1 = 0, s2 = 0; |
|
|
|
for( i = 0; i < N1; i++, ++it ) |
|
{ |
|
double v1 = it.value<float>(); |
|
const SparseMat::Node* node = it.node(); |
|
double v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval); |
|
result += std::sqrt(v1*v2); |
|
s1 += v1; |
|
} |
|
|
|
it = PH2->begin(); |
|
for( i = 0; i < N2; i++, ++it ) |
|
s2 += it.value<float>(); |
|
|
|
s1 *= s2; |
|
s1 = fabs(s1) > FLT_EPSILON ? 1./std::sqrt(s1) : 1.; |
|
result = std::sqrt(std::max(1. - result*s1, 0.)); |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Unknown comparison method" ); |
|
|
|
if( method == CV_COMP_CHISQR_ALT ) |
|
result *= 2; |
|
|
|
return result; |
|
} |
|
|
|
|
|
const int CV_HIST_DEFAULT_TYPE = CV_32F; |
|
|
|
/* Creates new histogram */ |
|
CvHistogram * |
|
cvCreateHist( int dims, int *sizes, CvHistType type, float** ranges, int uniform ) |
|
{ |
|
CvHistogram *hist = 0; |
|
|
|
if( (unsigned)dims > CV_MAX_DIM ) |
|
CV_Error( CV_BadOrder, "Number of dimensions is out of range" ); |
|
|
|
if( !sizes ) |
|
CV_Error( CV_HeaderIsNull, "Null <sizes> pointer" ); |
|
|
|
hist = (CvHistogram *)cvAlloc( sizeof( CvHistogram )); |
|
hist->type = CV_HIST_MAGIC_VAL + ((int)type & 1); |
|
if (uniform) hist->type|= CV_HIST_UNIFORM_FLAG; |
|
hist->thresh2 = 0; |
|
hist->bins = 0; |
|
if( type == CV_HIST_ARRAY ) |
|
{ |
|
hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes, |
|
CV_HIST_DEFAULT_TYPE ); |
|
cvCreateData( hist->bins ); |
|
} |
|
else if( type == CV_HIST_SPARSE ) |
|
hist->bins = cvCreateSparseMat( dims, sizes, CV_HIST_DEFAULT_TYPE ); |
|
else |
|
CV_Error( CV_StsBadArg, "Invalid histogram type" ); |
|
|
|
if( ranges ) |
|
cvSetHistBinRanges( hist, ranges, uniform ); |
|
|
|
return hist; |
|
} |
|
|
|
|
|
/* Creates histogram wrapping header for given array */ |
|
CV_IMPL CvHistogram* |
|
cvMakeHistHeaderForArray( int dims, int *sizes, CvHistogram *hist, |
|
float *data, float **ranges, int uniform ) |
|
{ |
|
if( !hist ) |
|
CV_Error( CV_StsNullPtr, "Null histogram header pointer" ); |
|
|
|
if( !data ) |
|
CV_Error( CV_StsNullPtr, "Null data pointer" ); |
|
|
|
hist->thresh2 = 0; |
|
hist->type = CV_HIST_MAGIC_VAL; |
|
hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes, CV_HIST_DEFAULT_TYPE, data ); |
|
|
|
if( ranges ) |
|
{ |
|
if( !uniform ) |
|
CV_Error( CV_StsBadArg, "Only uniform bin ranges can be used here " |
|
"(to avoid memory allocation)" ); |
|
cvSetHistBinRanges( hist, ranges, uniform ); |
|
} |
|
|
|
return hist; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvReleaseHist( CvHistogram **hist ) |
|
{ |
|
if( !hist ) |
|
CV_Error( CV_StsNullPtr, "" ); |
|
|
|
if( *hist ) |
|
{ |
|
CvHistogram* temp = *hist; |
|
|
|
if( !CV_IS_HIST(temp)) |
|
CV_Error( CV_StsBadArg, "Invalid histogram header" ); |
|
*hist = 0; |
|
|
|
if( CV_IS_SPARSE_HIST( temp )) |
|
cvReleaseSparseMat( (CvSparseMat**)&temp->bins ); |
|
else |
|
{ |
|
cvReleaseData( temp->bins ); |
|
temp->bins = 0; |
|
} |
|
|
|
if( temp->thresh2 ) |
|
cvFree( &temp->thresh2 ); |
|
cvFree( &temp ); |
|
} |
|
} |
|
|
|
CV_IMPL void |
|
cvClearHist( CvHistogram *hist ) |
|
{ |
|
if( !CV_IS_HIST(hist) ) |
|
CV_Error( CV_StsBadArg, "Invalid histogram header" ); |
|
cvZero( hist->bins ); |
|
} |
|
|
|
|
|
// Clears histogram bins that are below than threshold |
|
CV_IMPL void |
|
cvThreshHist( CvHistogram* hist, double thresh ) |
|
{ |
|
if( !CV_IS_HIST(hist) ) |
|
CV_Error( CV_StsBadArg, "Invalid histogram header" ); |
|
|
|
if( !CV_IS_SPARSE_MAT(hist->bins) ) |
|
{ |
|
CvMat mat; |
|
cvGetMat( hist->bins, &mat, 0, 1 ); |
|
cvThreshold( &mat, &mat, thresh, 0, CV_THRESH_TOZERO ); |
|
} |
|
else |
|
{ |
|
CvSparseMat* mat = (CvSparseMat*)hist->bins; |
|
CvSparseMatIterator iterator; |
|
CvSparseNode *node; |
|
|
|
for( node = cvInitSparseMatIterator( mat, &iterator ); |
|
node != 0; node = cvGetNextSparseNode( &iterator )) |
|
{ |
|
float* val = (float*)CV_NODE_VAL( mat, node ); |
|
if( *val <= thresh ) |
|
*val = 0; |
|
} |
|
} |
|
} |
|
|
|
|
|
// Normalizes histogram (make sum of the histogram bins == factor) |
|
CV_IMPL void |
|
cvNormalizeHist( CvHistogram* hist, double factor ) |
|
{ |
|
double sum = 0; |
|
|
|
if( !CV_IS_HIST(hist) ) |
|
CV_Error( CV_StsBadArg, "Invalid histogram header" ); |
|
|
|
if( !CV_IS_SPARSE_HIST(hist) ) |
|
{ |
|
CvMat mat; |
|
cvGetMat( hist->bins, &mat, 0, 1 ); |
|
sum = cvSum( &mat ).val[0]; |
|
if( fabs(sum) < DBL_EPSILON ) |
|
sum = 1; |
|
cvScale( &mat, &mat, factor/sum, 0 ); |
|
} |
|
else |
|
{ |
|
CvSparseMat* mat = (CvSparseMat*)hist->bins; |
|
CvSparseMatIterator iterator; |
|
CvSparseNode *node; |
|
float scale; |
|
|
|
for( node = cvInitSparseMatIterator( mat, &iterator ); |
|
node != 0; node = cvGetNextSparseNode( &iterator )) |
|
{ |
|
sum += *(float*)CV_NODE_VAL(mat,node); |
|
} |
|
|
|
if( fabs(sum) < DBL_EPSILON ) |
|
sum = 1; |
|
scale = (float)(factor/sum); |
|
|
|
for( node = cvInitSparseMatIterator( mat, &iterator ); |
|
node != 0; node = cvGetNextSparseNode( &iterator )) |
|
{ |
|
*(float*)CV_NODE_VAL(mat,node) *= scale; |
|
} |
|
} |
|
} |
|
|
|
|
|
// Retrieves histogram global min, max and their positions |
|
CV_IMPL void |
|
cvGetMinMaxHistValue( const CvHistogram* hist, |
|
float *value_min, float* value_max, |
|
int* idx_min, int* idx_max ) |
|
{ |
|
double minVal, maxVal; |
|
int dims, size[CV_MAX_DIM]; |
|
|
|
if( !CV_IS_HIST(hist) ) |
|
CV_Error( CV_StsBadArg, "Invalid histogram header" ); |
|
|
|
dims = cvGetDims( hist->bins, size ); |
|
|
|
if( !CV_IS_SPARSE_HIST(hist) ) |
|
{ |
|
CvMat mat; |
|
CvPoint minPt, maxPt; |
|
|
|
cvGetMat( hist->bins, &mat, 0, 1 ); |
|
cvMinMaxLoc( &mat, &minVal, &maxVal, &minPt, &maxPt ); |
|
|
|
if( dims == 1 ) |
|
{ |
|
if( idx_min ) |
|
*idx_min = minPt.y + minPt.x; |
|
if( idx_max ) |
|
*idx_max = maxPt.y + maxPt.x; |
|
} |
|
else if( dims == 2 ) |
|
{ |
|
if( idx_min ) |
|
idx_min[0] = minPt.y, idx_min[1] = minPt.x; |
|
if( idx_max ) |
|
idx_max[0] = maxPt.y, idx_max[1] = maxPt.x; |
|
} |
|
else if( idx_min || idx_max ) |
|
{ |
|
int imin = minPt.y*mat.cols + minPt.x; |
|
int imax = maxPt.y*mat.cols + maxPt.x; |
|
|
|
for(int i = dims - 1; i >= 0; i-- ) |
|
{ |
|
if( idx_min ) |
|
{ |
|
int t = imin / size[i]; |
|
idx_min[i] = imin - t*size[i]; |
|
imin = t; |
|
} |
|
|
|
if( idx_max ) |
|
{ |
|
int t = imax / size[i]; |
|
idx_max[i] = imax - t*size[i]; |
|
imax = t; |
|
} |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
CvSparseMat* mat = (CvSparseMat*)hist->bins; |
|
CvSparseMatIterator iterator; |
|
CvSparseNode *node; |
|
int minv = INT_MAX; |
|
int maxv = INT_MIN; |
|
CvSparseNode* minNode = 0; |
|
CvSparseNode* maxNode = 0; |
|
const int *_idx_min = 0, *_idx_max = 0; |
|
Cv32suf m; |
|
|
|
for( node = cvInitSparseMatIterator( mat, &iterator ); |
|
node != 0; node = cvGetNextSparseNode( &iterator )) |
|
{ |
|
int value = *(int*)CV_NODE_VAL(mat,node); |
|
value = CV_TOGGLE_FLT(value); |
|
if( value < minv ) |
|
{ |
|
minv = value; |
|
minNode = node; |
|
} |
|
|
|
if( value > maxv ) |
|
{ |
|
maxv = value; |
|
maxNode = node; |
|
} |
|
} |
|
|
|
if( minNode ) |
|
{ |
|
_idx_min = CV_NODE_IDX(mat,minNode); |
|
_idx_max = CV_NODE_IDX(mat,maxNode); |
|
m.i = CV_TOGGLE_FLT(minv); minVal = m.f; |
|
m.i = CV_TOGGLE_FLT(maxv); maxVal = m.f; |
|
} |
|
else |
|
{ |
|
minVal = maxVal = 0; |
|
} |
|
|
|
for(int i = 0; i < dims; i++ ) |
|
{ |
|
if( idx_min ) |
|
idx_min[i] = _idx_min ? _idx_min[i] : -1; |
|
if( idx_max ) |
|
idx_max[i] = _idx_max ? _idx_max[i] : -1; |
|
} |
|
} |
|
|
|
if( value_min ) |
|
*value_min = (float)minVal; |
|
|
|
if( value_max ) |
|
*value_max = (float)maxVal; |
|
} |
|
|
|
|
|
// Compares two histograms using one of a few methods |
|
CV_IMPL double |
|
cvCompareHist( const CvHistogram* hist1, |
|
const CvHistogram* hist2, |
|
int method ) |
|
{ |
|
int i; |
|
int size1[CV_MAX_DIM], size2[CV_MAX_DIM], total = 1; |
|
|
|
if( !CV_IS_HIST(hist1) || !CV_IS_HIST(hist2) ) |
|
CV_Error( CV_StsBadArg, "Invalid histogram header[s]" ); |
|
|
|
if( CV_IS_SPARSE_MAT(hist1->bins) != CV_IS_SPARSE_MAT(hist2->bins)) |
|
CV_Error(CV_StsUnmatchedFormats, "One of histograms is sparse and other is not"); |
|
|
|
if( !CV_IS_SPARSE_MAT(hist1->bins) ) |
|
{ |
|
cv::Mat H1 = cv::cvarrToMat(hist1->bins); |
|
cv::Mat H2 = cv::cvarrToMat(hist2->bins); |
|
return cv::compareHist(H1, H2, method); |
|
} |
|
|
|
int dims1 = cvGetDims( hist1->bins, size1 ); |
|
int dims2 = cvGetDims( hist2->bins, size2 ); |
|
|
|
if( dims1 != dims2 ) |
|
CV_Error( CV_StsUnmatchedSizes, |
|
"The histograms have different numbers of dimensions" ); |
|
|
|
for( i = 0; i < dims1; i++ ) |
|
{ |
|
if( size1[i] != size2[i] ) |
|
CV_Error( CV_StsUnmatchedSizes, "The histograms have different sizes" ); |
|
total *= size1[i]; |
|
} |
|
|
|
double result = 0; |
|
CvSparseMat* mat1 = (CvSparseMat*)(hist1->bins); |
|
CvSparseMat* mat2 = (CvSparseMat*)(hist2->bins); |
|
CvSparseMatIterator iterator; |
|
CvSparseNode *node1, *node2; |
|
|
|
if( mat1->heap->active_count > mat2->heap->active_count && method != CV_COMP_CHISQR && method != CV_COMP_CHISQR_ALT) |
|
{ |
|
CvSparseMat* t; |
|
CV_SWAP( mat1, mat2, t ); |
|
} |
|
|
|
if( (method == CV_COMP_CHISQR) || (method == CV_COMP_CHISQR_ALT) ) |
|
{ |
|
for( node1 = cvInitSparseMatIterator( mat1, &iterator ); |
|
node1 != 0; node1 = cvGetNextSparseNode( &iterator )) |
|
{ |
|
double v1 = *(float*)CV_NODE_VAL(mat1,node1); |
|
uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval ); |
|
double v2 = node2_data ? *(float*)node2_data : 0.f; |
|
double a = v1 - v2; |
|
double b = (method == CV_COMP_CHISQR) ? v1 : v1 + v2; |
|
if( fabs(b) > DBL_EPSILON ) |
|
result += a*a/b; |
|
} |
|
} |
|
else if( method == CV_COMP_CORREL ) |
|
{ |
|
double s1 = 0, s11 = 0; |
|
double s2 = 0, s22 = 0; |
|
double s12 = 0; |
|
double num, denom2, scale = 1./total; |
|
|
|
for( node1 = cvInitSparseMatIterator( mat1, &iterator ); |
|
node1 != 0; node1 = cvGetNextSparseNode( &iterator )) |
|
{ |
|
double v1 = *(float*)CV_NODE_VAL(mat1,node1); |
|
uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), |
|
0, 0, &node1->hashval ); |
|
if( node2_data ) |
|
{ |
|
double v2 = *(float*)node2_data; |
|
s12 += v1*v2; |
|
} |
|
s1 += v1; |
|
s11 += v1*v1; |
|
} |
|
|
|
for( node2 = cvInitSparseMatIterator( mat2, &iterator ); |
|
node2 != 0; node2 = cvGetNextSparseNode( &iterator )) |
|
{ |
|
double v2 = *(float*)CV_NODE_VAL(mat2,node2); |
|
s2 += v2; |
|
s22 += v2*v2; |
|
} |
|
|
|
num = s12 - s1*s2*scale; |
|
denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale); |
|
result = fabs(denom2) > DBL_EPSILON ? num/sqrt(denom2) : 1; |
|
} |
|
else if( method == CV_COMP_INTERSECT ) |
|
{ |
|
for( node1 = cvInitSparseMatIterator( mat1, &iterator ); |
|
node1 != 0; node1 = cvGetNextSparseNode( &iterator )) |
|
{ |
|
float v1 = *(float*)CV_NODE_VAL(mat1,node1); |
|
uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), |
|
0, 0, &node1->hashval ); |
|
if( node2_data ) |
|
{ |
|
float v2 = *(float*)node2_data; |
|
if( v1 <= v2 ) |
|
result += v1; |
|
else |
|
result += v2; |
|
} |
|
} |
|
} |
|
else if( method == CV_COMP_BHATTACHARYYA ) |
|
{ |
|
double s1 = 0, s2 = 0; |
|
|
|
for( node1 = cvInitSparseMatIterator( mat1, &iterator ); |
|
node1 != 0; node1 = cvGetNextSparseNode( &iterator )) |
|
{ |
|
double v1 = *(float*)CV_NODE_VAL(mat1,node1); |
|
uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), |
|
0, 0, &node1->hashval ); |
|
s1 += v1; |
|
if( node2_data ) |
|
{ |
|
double v2 = *(float*)node2_data; |
|
result += sqrt(v1 * v2); |
|
} |
|
} |
|
|
|
for( node1 = cvInitSparseMatIterator( mat2, &iterator ); |
|
node1 != 0; node1 = cvGetNextSparseNode( &iterator )) |
|
{ |
|
double v2 = *(float*)CV_NODE_VAL(mat2,node1); |
|
s2 += v2; |
|
} |
|
|
|
s1 *= s2; |
|
s1 = fabs(s1) > FLT_EPSILON ? 1./sqrt(s1) : 1.; |
|
result = 1. - result*s1; |
|
result = sqrt(MAX(result,0.)); |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Unknown comparison method" ); |
|
|
|
if( method == CV_COMP_CHISQR_ALT ) |
|
result *= 2; |
|
|
|
return result; |
|
} |
|
|
|
// copies one histogram to another |
|
CV_IMPL void |
|
cvCopyHist( const CvHistogram* src, CvHistogram** _dst ) |
|
{ |
|
if( !_dst ) |
|
CV_Error( CV_StsNullPtr, "Destination double pointer is NULL" ); |
|
|
|
CvHistogram* dst = *_dst; |
|
|
|
if( !CV_IS_HIST(src) || (dst && !CV_IS_HIST(dst)) ) |
|
CV_Error( CV_StsBadArg, "Invalid histogram header[s]" ); |
|
|
|
bool eq = false; |
|
int size1[CV_MAX_DIM]; |
|
bool is_sparse = CV_IS_SPARSE_MAT(src->bins); |
|
int dims1 = cvGetDims( src->bins, size1 ); |
|
|
|
if( dst && (is_sparse == CV_IS_SPARSE_MAT(dst->bins))) |
|
{ |
|
int size2[CV_MAX_DIM]; |
|
int dims2 = cvGetDims( dst->bins, size2 ); |
|
|
|
if( dims1 == dims2 ) |
|
{ |
|
int i; |
|
|
|
for( i = 0; i < dims1; i++ ) |
|
{ |
|
if( size1[i] != size2[i] ) |
|
break; |
|
} |
|
|
|
eq = (i == dims1); |
|
} |
|
} |
|
|
|
if( !eq ) |
|
{ |
|
cvReleaseHist( _dst ); |
|
dst = cvCreateHist( dims1, size1, !is_sparse ? CV_HIST_ARRAY : CV_HIST_SPARSE, 0, 0 ); |
|
*_dst = dst; |
|
} |
|
|
|
if( CV_HIST_HAS_RANGES( src )) |
|
{ |
|
float* ranges[CV_MAX_DIM]; |
|
float** thresh = 0; |
|
|
|
if( CV_IS_UNIFORM_HIST( src )) |
|
{ |
|
for( int i = 0; i < dims1; i++ ) |
|
ranges[i] = (float*)src->thresh[i]; |
|
|
|
thresh = ranges; |
|
} |
|
else |
|
{ |
|
thresh = src->thresh2; |
|
} |
|
|
|
cvSetHistBinRanges( dst, thresh, CV_IS_UNIFORM_HIST(src)); |
|
} |
|
|
|
cvCopy( src->bins, dst->bins ); |
|
} |
|
|
|
|
|
// Sets a value range for every histogram bin |
|
CV_IMPL void |
|
cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform ) |
|
{ |
|
int dims, size[CV_MAX_DIM], total = 0; |
|
int i, j; |
|
|
|
if( !ranges ) |
|
CV_Error( CV_StsNullPtr, "NULL ranges pointer" ); |
|
|
|
if( !CV_IS_HIST(hist) ) |
|
CV_Error( CV_StsBadArg, "Invalid histogram header" ); |
|
|
|
dims = cvGetDims( hist->bins, size ); |
|
for( i = 0; i < dims; i++ ) |
|
total += size[i]+1; |
|
|
|
if( uniform ) |
|
{ |
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
if( !ranges[i] ) |
|
CV_Error( CV_StsNullPtr, "One of <ranges> elements is NULL" ); |
|
hist->thresh[i][0] = ranges[i][0]; |
|
hist->thresh[i][1] = ranges[i][1]; |
|
} |
|
|
|
hist->type |= CV_HIST_UNIFORM_FLAG + CV_HIST_RANGES_FLAG; |
|
} |
|
else |
|
{ |
|
float* dim_ranges; |
|
|
|
if( !hist->thresh2 ) |
|
{ |
|
hist->thresh2 = (float**)cvAlloc( |
|
dims*sizeof(hist->thresh2[0])+ |
|
total*sizeof(hist->thresh2[0][0])); |
|
} |
|
dim_ranges = (float*)(hist->thresh2 + dims); |
|
|
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
float val0 = -FLT_MAX; |
|
|
|
if( !ranges[i] ) |
|
CV_Error( CV_StsNullPtr, "One of <ranges> elements is NULL" ); |
|
|
|
for( j = 0; j <= size[i]; j++ ) |
|
{ |
|
float val = ranges[i][j]; |
|
if( val <= val0 ) |
|
CV_Error(CV_StsOutOfRange, "Bin ranges should go in ascenting order"); |
|
val0 = dim_ranges[j] = val; |
|
} |
|
|
|
hist->thresh2[i] = dim_ranges; |
|
dim_ranges += size[i] + 1; |
|
} |
|
|
|
hist->type |= CV_HIST_RANGES_FLAG; |
|
hist->type &= ~CV_HIST_UNIFORM_FLAG; |
|
} |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvCalcArrHist( CvArr** img, CvHistogram* hist, int accumulate, const CvArr* mask ) |
|
{ |
|
if( !CV_IS_HIST(hist)) |
|
CV_Error( CV_StsBadArg, "Bad histogram pointer" ); |
|
|
|
if( !img ) |
|
CV_Error( CV_StsNullPtr, "Null double array pointer" ); |
|
|
|
int size[CV_MAX_DIM]; |
|
int i, dims = cvGetDims( hist->bins, size); |
|
bool uniform = CV_IS_UNIFORM_HIST(hist); |
|
|
|
std::vector<cv::Mat> images(dims); |
|
for( i = 0; i < dims; i++ ) |
|
images[i] = cv::cvarrToMat(img[i]); |
|
|
|
cv::Mat _mask; |
|
if( mask ) |
|
_mask = cv::cvarrToMat(mask); |
|
|
|
const float* uranges[CV_MAX_DIM] = {0}; |
|
const float** ranges = 0; |
|
|
|
if( hist->type & CV_HIST_RANGES_FLAG ) |
|
{ |
|
ranges = (const float**)hist->thresh2; |
|
if( uniform ) |
|
{ |
|
for( i = 0; i < dims; i++ ) |
|
uranges[i] = &hist->thresh[i][0]; |
|
ranges = uranges; |
|
} |
|
} |
|
|
|
if( !CV_IS_SPARSE_HIST(hist) ) |
|
{ |
|
cv::Mat H = cv::cvarrToMat(hist->bins); |
|
cv::calcHist( &images[0], (int)images.size(), 0, _mask, |
|
H, cvGetDims(hist->bins), H.size, ranges, uniform, accumulate != 0 ); |
|
} |
|
else |
|
{ |
|
CvSparseMat* sparsemat = (CvSparseMat*)hist->bins; |
|
|
|
if( !accumulate ) |
|
cvZero( hist->bins ); |
|
cv::SparseMat sH; |
|
sparsemat->copyToSparseMat(sH); |
|
cv::calcHist( &images[0], (int)images.size(), 0, _mask, sH, sH.dims(), |
|
sH.dims() > 0 ? sH.hdr->size : 0, ranges, uniform, accumulate != 0, true ); |
|
|
|
if( accumulate ) |
|
cvZero( sparsemat ); |
|
|
|
cv::SparseMatConstIterator it = sH.begin(); |
|
int nz = (int)sH.nzcount(); |
|
for( i = 0; i < nz; i++, ++it ) |
|
*(float*)cvPtrND(sparsemat, it.node()->idx, 0, -2) = (float)*(const int*)it.ptr; |
|
} |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvCalcArrBackProject( CvArr** img, CvArr* dst, const CvHistogram* hist ) |
|
{ |
|
if( !CV_IS_HIST(hist)) |
|
CV_Error( CV_StsBadArg, "Bad histogram pointer" ); |
|
|
|
if( !img ) |
|
CV_Error( CV_StsNullPtr, "Null double array pointer" ); |
|
|
|
int size[CV_MAX_DIM]; |
|
int i, dims = cvGetDims( hist->bins, size ); |
|
|
|
bool uniform = CV_IS_UNIFORM_HIST(hist); |
|
const float* uranges[CV_MAX_DIM] = {0}; |
|
const float** ranges = 0; |
|
|
|
if( hist->type & CV_HIST_RANGES_FLAG ) |
|
{ |
|
ranges = (const float**)hist->thresh2; |
|
if( uniform ) |
|
{ |
|
for( i = 0; i < dims; i++ ) |
|
uranges[i] = &hist->thresh[i][0]; |
|
ranges = uranges; |
|
} |
|
} |
|
|
|
std::vector<cv::Mat> images(dims); |
|
for( i = 0; i < dims; i++ ) |
|
images[i] = cv::cvarrToMat(img[i]); |
|
|
|
cv::Mat _dst = cv::cvarrToMat(dst); |
|
|
|
CV_Assert( _dst.size() == images[0].size() && _dst.depth() == images[0].depth() ); |
|
|
|
if( !CV_IS_SPARSE_HIST(hist) ) |
|
{ |
|
cv::Mat H = cv::cvarrToMat(hist->bins); |
|
cv::calcBackProject( &images[0], (int)images.size(), |
|
0, H, _dst, ranges, 1, uniform ); |
|
} |
|
else |
|
{ |
|
cv::SparseMat sH; |
|
((const CvSparseMat*)hist->bins)->copyToSparseMat(sH); |
|
cv::calcBackProject( &images[0], (int)images.size(), |
|
0, sH, _dst, ranges, 1, uniform ); |
|
} |
|
} |
|
|
|
|
|
////////////////////// B A C K P R O J E C T P A T C H ///////////////////////// |
|
|
|
CV_IMPL void |
|
cvCalcArrBackProjectPatch( CvArr** arr, CvArr* dst, CvSize patch_size, CvHistogram* hist, |
|
int method, double norm_factor ) |
|
{ |
|
CvHistogram* model = 0; |
|
|
|
IplImage imgstub[CV_MAX_DIM], *img[CV_MAX_DIM]; |
|
IplROI roi; |
|
CvMat dststub, *dstmat; |
|
int i, dims; |
|
int x, y; |
|
CvSize size; |
|
|
|
if( !CV_IS_HIST(hist)) |
|
CV_Error( CV_StsBadArg, "Bad histogram pointer" ); |
|
|
|
if( !arr ) |
|
CV_Error( CV_StsNullPtr, "Null double array pointer" ); |
|
|
|
if( norm_factor <= 0 ) |
|
CV_Error( CV_StsOutOfRange, |
|
"Bad normalization factor (set it to 1.0 if unsure)" ); |
|
|
|
if( patch_size.width <= 0 || patch_size.height <= 0 ) |
|
CV_Error( CV_StsBadSize, "The patch width and height must be positive" ); |
|
|
|
dims = cvGetDims( hist->bins ); |
|
cvNormalizeHist( hist, norm_factor ); |
|
|
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
CvMat stub, *mat; |
|
mat = cvGetMat( arr[i], &stub, 0, 0 ); |
|
img[i] = cvGetImage( mat, &imgstub[i] ); |
|
img[i]->roi = &roi; |
|
} |
|
|
|
dstmat = cvGetMat( dst, &dststub, 0, 0 ); |
|
if( CV_MAT_TYPE( dstmat->type ) != CV_32FC1 ) |
|
CV_Error( CV_StsUnsupportedFormat, "Resultant image must have 32fC1 type" ); |
|
|
|
if( dstmat->cols != img[0]->width - patch_size.width + 1 || |
|
dstmat->rows != img[0]->height - patch_size.height + 1 ) |
|
CV_Error( CV_StsUnmatchedSizes, |
|
"The output map must be (W-w+1 x H-h+1), " |
|
"where the input images are (W x H) each and the patch is (w x h)" ); |
|
|
|
cvCopyHist( hist, &model ); |
|
|
|
size = cvGetMatSize(dstmat); |
|
roi.coi = 0; |
|
roi.width = patch_size.width; |
|
roi.height = patch_size.height; |
|
|
|
for( y = 0; y < size.height; y++ ) |
|
{ |
|
for( x = 0; x < size.width; x++ ) |
|
{ |
|
double result; |
|
roi.xOffset = x; |
|
roi.yOffset = y; |
|
|
|
cvCalcHist( img, model ); |
|
cvNormalizeHist( model, norm_factor ); |
|
result = cvCompareHist( model, hist, method ); |
|
CV_MAT_ELEM( *dstmat, float, y, x ) = (float)result; |
|
} |
|
} |
|
|
|
cvReleaseHist( &model ); |
|
} |
|
|
|
|
|
// Calculates Bayes probabilistic histograms |
|
CV_IMPL void |
|
cvCalcBayesianProb( CvHistogram** src, int count, CvHistogram** dst ) |
|
{ |
|
int i; |
|
|
|
if( !src || !dst ) |
|
CV_Error( CV_StsNullPtr, "NULL histogram array pointer" ); |
|
|
|
if( count < 2 ) |
|
CV_Error( CV_StsOutOfRange, "Too small number of histograms" ); |
|
|
|
for( i = 0; i < count; i++ ) |
|
{ |
|
if( !CV_IS_HIST(src[i]) || !CV_IS_HIST(dst[i]) ) |
|
CV_Error( CV_StsBadArg, "Invalid histogram header" ); |
|
|
|
if( !CV_IS_MATND(src[i]->bins) || !CV_IS_MATND(dst[i]->bins) ) |
|
CV_Error( CV_StsBadArg, "The function supports dense histograms only" ); |
|
} |
|
|
|
cvZero( dst[0]->bins ); |
|
// dst[0] = src[0] + ... + src[count-1] |
|
for( i = 0; i < count; i++ ) |
|
cvAdd( src[i]->bins, dst[0]->bins, dst[0]->bins ); |
|
|
|
cvDiv( 0, dst[0]->bins, dst[0]->bins ); |
|
|
|
// dst[i] = src[i]*(1/dst[0]) |
|
for( i = count - 1; i >= 0; i-- ) |
|
cvMul( src[i]->bins, dst[0]->bins, dst[i]->bins ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvCalcProbDensity( const CvHistogram* hist, const CvHistogram* hist_mask, |
|
CvHistogram* hist_dens, double scale ) |
|
{ |
|
if( scale <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "scale must be positive" ); |
|
|
|
if( !CV_IS_HIST(hist) || !CV_IS_HIST(hist_mask) || !CV_IS_HIST(hist_dens) ) |
|
CV_Error( CV_StsBadArg, "Invalid histogram pointer[s]" ); |
|
|
|
{ |
|
CvArr* arrs[] = { hist->bins, hist_mask->bins, hist_dens->bins }; |
|
CvMatND stubs[3]; |
|
CvNArrayIterator iterator; |
|
|
|
cvInitNArrayIterator( 3, arrs, 0, stubs, &iterator ); |
|
|
|
if( CV_MAT_TYPE(iterator.hdr[0]->type) != CV_32FC1 ) |
|
CV_Error( CV_StsUnsupportedFormat, "All histograms must have 32fC1 type" ); |
|
|
|
do |
|
{ |
|
const float* srcdata = (const float*)(iterator.ptr[0]); |
|
const float* maskdata = (const float*)(iterator.ptr[1]); |
|
float* dstdata = (float*)(iterator.ptr[2]); |
|
int i; |
|
|
|
for( i = 0; i < iterator.size.width; i++ ) |
|
{ |
|
float s = srcdata[i]; |
|
float m = maskdata[i]; |
|
if( s > FLT_EPSILON ) |
|
if( m <= s ) |
|
dstdata[i] = (float)(m*scale/s); |
|
else |
|
dstdata[i] = (float)scale; |
|
else |
|
dstdata[i] = (float)0; |
|
} |
|
} |
|
while( cvNextNArraySlice( &iterator )); |
|
} |
|
} |
|
|
|
class EqualizeHistCalcHist_Invoker : public cv::ParallelLoopBody |
|
{ |
|
public: |
|
enum {HIST_SZ = 256}; |
|
|
|
EqualizeHistCalcHist_Invoker(cv::Mat& src, int* histogram, cv::Mutex* histogramLock) |
|
: src_(src), globalHistogram_(histogram), histogramLock_(histogramLock) |
|
{ } |
|
|
|
void operator()( const cv::Range& rowRange ) const |
|
{ |
|
int localHistogram[HIST_SZ] = {0, }; |
|
|
|
const size_t sstep = src_.step; |
|
|
|
int width = src_.cols; |
|
int height = rowRange.end - rowRange.start; |
|
|
|
if (src_.isContinuous()) |
|
{ |
|
width *= height; |
|
height = 1; |
|
} |
|
|
|
for (const uchar* ptr = src_.ptr<uchar>(rowRange.start); height--; ptr += sstep) |
|
{ |
|
int x = 0; |
|
for (; x <= width - 4; x += 4) |
|
{ |
|
int t0 = ptr[x], t1 = ptr[x+1]; |
|
localHistogram[t0]++; localHistogram[t1]++; |
|
t0 = ptr[x+2]; t1 = ptr[x+3]; |
|
localHistogram[t0]++; localHistogram[t1]++; |
|
} |
|
|
|
for (; x < width; ++x) |
|
localHistogram[ptr[x]]++; |
|
} |
|
|
|
cv::AutoLock lock(*histogramLock_); |
|
|
|
for( int i = 0; i < HIST_SZ; i++ ) |
|
globalHistogram_[i] += localHistogram[i]; |
|
} |
|
|
|
static bool isWorthParallel( const cv::Mat& src ) |
|
{ |
|
return ( src.total() >= 640*480 ); |
|
} |
|
|
|
private: |
|
EqualizeHistCalcHist_Invoker& operator=(const EqualizeHistCalcHist_Invoker&); |
|
|
|
cv::Mat& src_; |
|
int* globalHistogram_; |
|
cv::Mutex* histogramLock_; |
|
}; |
|
|
|
class EqualizeHistLut_Invoker : public cv::ParallelLoopBody |
|
{ |
|
public: |
|
EqualizeHistLut_Invoker( cv::Mat& src, cv::Mat& dst, int* lut ) |
|
: src_(src), |
|
dst_(dst), |
|
lut_(lut) |
|
{ } |
|
|
|
void operator()( const cv::Range& rowRange ) const |
|
{ |
|
const size_t sstep = src_.step; |
|
const size_t dstep = dst_.step; |
|
|
|
int width = src_.cols; |
|
int height = rowRange.end - rowRange.start; |
|
int* lut = lut_; |
|
|
|
if (src_.isContinuous() && dst_.isContinuous()) |
|
{ |
|
width *= height; |
|
height = 1; |
|
} |
|
|
|
const uchar* sptr = src_.ptr<uchar>(rowRange.start); |
|
uchar* dptr = dst_.ptr<uchar>(rowRange.start); |
|
|
|
for (; height--; sptr += sstep, dptr += dstep) |
|
{ |
|
int x = 0; |
|
for (; x <= width - 4; x += 4) |
|
{ |
|
int v0 = sptr[x]; |
|
int v1 = sptr[x+1]; |
|
int x0 = lut[v0]; |
|
int x1 = lut[v1]; |
|
dptr[x] = (uchar)x0; |
|
dptr[x+1] = (uchar)x1; |
|
|
|
v0 = sptr[x+2]; |
|
v1 = sptr[x+3]; |
|
x0 = lut[v0]; |
|
x1 = lut[v1]; |
|
dptr[x+2] = (uchar)x0; |
|
dptr[x+3] = (uchar)x1; |
|
} |
|
|
|
for (; x < width; ++x) |
|
dptr[x] = (uchar)lut[sptr[x]]; |
|
} |
|
} |
|
|
|
static bool isWorthParallel( const cv::Mat& src ) |
|
{ |
|
return ( src.total() >= 640*480 ); |
|
} |
|
|
|
private: |
|
EqualizeHistLut_Invoker& operator=(const EqualizeHistLut_Invoker&); |
|
|
|
cv::Mat& src_; |
|
cv::Mat& dst_; |
|
int* lut_; |
|
}; |
|
|
|
CV_IMPL void cvEqualizeHist( const CvArr* srcarr, CvArr* dstarr ) |
|
{ |
|
cv::equalizeHist(cv::cvarrToMat(srcarr), cv::cvarrToMat(dstarr)); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace cv { |
|
|
|
static bool ocl_equalizeHist(InputArray _src, OutputArray _dst) |
|
{ |
|
size_t wgs = std::min<size_t>(ocl::Device::getDefault().maxWorkGroupSize(), BINS); |
|
|
|
// calculation of histogram |
|
UMat hist; |
|
if (!ocl_calcHist1(_src, hist)) |
|
return false; |
|
|
|
UMat lut(1, 256, CV_8UC1); |
|
ocl::Kernel k("calcLUT", ocl::imgproc::histogram_oclsrc, |
|
format("-D BINS=%d -D HISTS_COUNT=1 -D WGS=%d", BINS, (int)wgs)); |
|
if (k.empty()) |
|
return false; |
|
|
|
k.args(ocl::KernelArg::PtrWriteOnly(lut), |
|
ocl::KernelArg::PtrReadOnly(hist), (int)_src.total()); |
|
|
|
// calculation of LUT |
|
if (!k.run(1, &wgs, &wgs, false)) |
|
return false; |
|
|
|
// execute LUT transparently |
|
LUT(_src, lut, _dst); |
|
return true; |
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
void cv::equalizeHist( InputArray _src, OutputArray _dst ) |
|
{ |
|
CV_Assert( _src.type() == CV_8UC1 ); |
|
|
|
if (_src.empty()) |
|
return; |
|
|
|
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(), |
|
ocl_equalizeHist(_src, _dst)) |
|
|
|
Mat src = _src.getMat(); |
|
_dst.create( src.size(), src.type() ); |
|
Mat dst = _dst.getMat(); |
|
|
|
Mutex histogramLockInstance; |
|
|
|
const int hist_sz = EqualizeHistCalcHist_Invoker::HIST_SZ; |
|
int hist[hist_sz] = {0,}; |
|
int lut[hist_sz]; |
|
|
|
EqualizeHistCalcHist_Invoker calcBody(src, hist, &histogramLockInstance); |
|
EqualizeHistLut_Invoker lutBody(src, dst, lut); |
|
cv::Range heightRange(0, src.rows); |
|
|
|
if(EqualizeHistCalcHist_Invoker::isWorthParallel(src)) |
|
parallel_for_(heightRange, calcBody); |
|
else |
|
calcBody(heightRange); |
|
|
|
int i = 0; |
|
while (!hist[i]) ++i; |
|
|
|
int total = (int)src.total(); |
|
if (hist[i] == total) |
|
{ |
|
dst.setTo(i); |
|
return; |
|
} |
|
|
|
float scale = (hist_sz - 1.f)/(total - hist[i]); |
|
int sum = 0; |
|
|
|
for (lut[i++] = 0; i < hist_sz; ++i) |
|
{ |
|
sum += hist[i]; |
|
lut[i] = saturate_cast<uchar>(sum * scale); |
|
} |
|
|
|
if(EqualizeHistLut_Invoker::isWorthParallel(src)) |
|
parallel_for_(heightRange, lutBody); |
|
else |
|
lutBody(heightRange); |
|
} |
|
|
|
// ---------------------------------------------------------------------- |
|
|
|
/* Implementation of RTTI and Generic Functions for CvHistogram */ |
|
#define CV_TYPE_NAME_HIST "opencv-hist" |
|
|
|
static int icvIsHist( const void * ptr ) |
|
{ |
|
return CV_IS_HIST( ((CvHistogram*)ptr) ); |
|
} |
|
|
|
static CvHistogram * icvCloneHist( const CvHistogram * src ) |
|
{ |
|
CvHistogram * dst=NULL; |
|
cvCopyHist(src, &dst); |
|
return dst; |
|
} |
|
|
|
static void *icvReadHist( CvFileStorage * fs, CvFileNode * node ) |
|
{ |
|
CvHistogram * h = 0; |
|
int type = 0; |
|
int is_uniform = 0; |
|
int have_ranges = 0; |
|
|
|
h = (CvHistogram *)cvAlloc( sizeof(CvHistogram) ); |
|
|
|
type = cvReadIntByName( fs, node, "type", 0 ); |
|
is_uniform = cvReadIntByName( fs, node, "is_uniform", 0 ); |
|
have_ranges = cvReadIntByName( fs, node, "have_ranges", 0 ); |
|
h->type = CV_HIST_MAGIC_VAL | type | |
|
(is_uniform ? CV_HIST_UNIFORM_FLAG : 0) | |
|
(have_ranges ? CV_HIST_RANGES_FLAG : 0); |
|
|
|
if(type == CV_HIST_ARRAY) |
|
{ |
|
// read histogram bins |
|
CvMatND* mat = (CvMatND*)cvReadByName( fs, node, "mat" ); |
|
int i, sizes[CV_MAX_DIM]; |
|
|
|
if(!CV_IS_MATND(mat)) |
|
CV_Error( CV_StsError, "Expected CvMatND"); |
|
|
|
for(i=0; i<mat->dims; i++) |
|
sizes[i] = mat->dim[i].size; |
|
|
|
cvInitMatNDHeader( &(h->mat), mat->dims, sizes, mat->type, mat->data.ptr ); |
|
h->bins = &(h->mat); |
|
|
|
// take ownership of refcount pointer as well |
|
h->mat.refcount = mat->refcount; |
|
|
|
// increase refcount so freeing temp header doesn't free data |
|
cvIncRefData( mat ); |
|
|
|
// free temporary header |
|
cvReleaseMatND( &mat ); |
|
} |
|
else |
|
{ |
|
h->bins = cvReadByName( fs, node, "bins" ); |
|
if(!CV_IS_SPARSE_MAT(h->bins)){ |
|
CV_Error( CV_StsError, "Unknown Histogram type"); |
|
} |
|
} |
|
|
|
// read thresholds |
|
if(have_ranges) |
|
{ |
|
int i, dims, size[CV_MAX_DIM], total = 0; |
|
CvSeqReader reader; |
|
CvFileNode * thresh_node; |
|
|
|
dims = cvGetDims( h->bins, size ); |
|
for( i = 0; i < dims; i++ ) |
|
total += size[i]+1; |
|
|
|
thresh_node = cvGetFileNodeByName( fs, node, "thresh" ); |
|
if(!thresh_node) |
|
CV_Error( CV_StsError, "'thresh' node is missing"); |
|
cvStartReadRawData( fs, thresh_node, &reader ); |
|
|
|
if(is_uniform) |
|
{ |
|
for(i=0; i<dims; i++) |
|
cvReadRawDataSlice( fs, &reader, 2, h->thresh[i], "f" ); |
|
h->thresh2 = NULL; |
|
} |
|
else |
|
{ |
|
float* dim_ranges; |
|
h->thresh2 = (float**)cvAlloc( |
|
dims*sizeof(h->thresh2[0])+ |
|
total*sizeof(h->thresh2[0][0])); |
|
dim_ranges = (float*)(h->thresh2 + dims); |
|
for(i=0; i < dims; i++) |
|
{ |
|
h->thresh2[i] = dim_ranges; |
|
cvReadRawDataSlice( fs, &reader, size[i]+1, dim_ranges, "f" ); |
|
dim_ranges += size[i] + 1; |
|
} |
|
} |
|
} |
|
|
|
return h; |
|
} |
|
|
|
static void icvWriteHist( CvFileStorage* fs, const char* name, |
|
const void* struct_ptr, CvAttrList /*attributes*/ ) |
|
{ |
|
const CvHistogram * hist = (const CvHistogram *) struct_ptr; |
|
int sizes[CV_MAX_DIM]; |
|
int dims; |
|
int i; |
|
int is_uniform, have_ranges; |
|
|
|
cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HIST ); |
|
|
|
is_uniform = (CV_IS_UNIFORM_HIST(hist) ? 1 : 0); |
|
have_ranges = (hist->type & CV_HIST_RANGES_FLAG ? 1 : 0); |
|
|
|
cvWriteInt( fs, "type", (hist->type & 1) ); |
|
cvWriteInt( fs, "is_uniform", is_uniform ); |
|
cvWriteInt( fs, "have_ranges", have_ranges ); |
|
if(!CV_IS_SPARSE_HIST(hist)) |
|
cvWrite( fs, "mat", &(hist->mat) ); |
|
else |
|
cvWrite( fs, "bins", hist->bins ); |
|
|
|
// write thresholds |
|
if(have_ranges){ |
|
dims = cvGetDims( hist->bins, sizes ); |
|
cvStartWriteStruct( fs, "thresh", CV_NODE_SEQ + CV_NODE_FLOW ); |
|
if(is_uniform){ |
|
for(i=0; i<dims; i++){ |
|
cvWriteRawData( fs, hist->thresh[i], 2, "f" ); |
|
} |
|
} |
|
else{ |
|
for(i=0; i<dims; i++){ |
|
cvWriteRawData( fs, hist->thresh2[i], sizes[i]+1, "f" ); |
|
} |
|
} |
|
cvEndWriteStruct( fs ); |
|
} |
|
|
|
cvEndWriteStruct( fs ); |
|
} |
|
|
|
|
|
CvType hist_type( CV_TYPE_NAME_HIST, icvIsHist, (CvReleaseFunc)cvReleaseHist, |
|
icvReadHist, icvWriteHist, (CvCloneFunc)icvCloneHist ); |
|
|
|
/* End of file. */
|
|
|