mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
567 lines
17 KiB
567 lines
17 KiB
/* |
|
* The copyright in this software is being made available under the 2-clauses |
|
* BSD License, included below. This software may be subject to other third |
|
* party and contributor rights, including patent rights, and no such rights |
|
* are granted under this license. |
|
* |
|
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium |
|
* Copyright (c) 2002-2014, Professor Benoit Macq |
|
* Copyright (c) 2001-2003, David Janssens |
|
* Copyright (c) 2002-2003, Yannick Verschueren |
|
* Copyright (c) 2003-2007, Francois-Olivier Devaux |
|
* Copyright (c) 2003-2014, Antonin Descampe |
|
* Copyright (c) 2005, Herve Drolon, FreeImage Team |
|
* Copyright (c) 2008, 2011-2012, Centre National d'Etudes Spatiales (CNES), FR |
|
* Copyright (c) 2012, CS Systemes d'Information, France |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
*/ |
|
|
|
#ifdef __SSE__ |
|
#include <xmmintrin.h> |
|
#endif |
|
#ifdef __SSE2__ |
|
#include <emmintrin.h> |
|
#endif |
|
#ifdef __SSE4_1__ |
|
#include <smmintrin.h> |
|
#endif |
|
|
|
#include "opj_includes.h" |
|
|
|
/* <summary> */ |
|
/* This table contains the norms of the basis function of the reversible MCT. */ |
|
/* </summary> */ |
|
static const OPJ_FLOAT64 opj_mct_norms[3] = { 1.732, .8292, .8292 }; |
|
|
|
/* <summary> */ |
|
/* This table contains the norms of the basis function of the irreversible MCT. */ |
|
/* </summary> */ |
|
static const OPJ_FLOAT64 opj_mct_norms_real[3] = { 1.732, 1.805, 1.573 }; |
|
|
|
const OPJ_FLOAT64 * opj_mct_get_mct_norms() |
|
{ |
|
return opj_mct_norms; |
|
} |
|
|
|
const OPJ_FLOAT64 * opj_mct_get_mct_norms_real() |
|
{ |
|
return opj_mct_norms_real; |
|
} |
|
|
|
/* <summary> */ |
|
/* Forward reversible MCT. */ |
|
/* </summary> */ |
|
#ifdef __SSE2__ |
|
void opj_mct_encode( |
|
OPJ_INT32* OPJ_RESTRICT c0, |
|
OPJ_INT32* OPJ_RESTRICT c1, |
|
OPJ_INT32* OPJ_RESTRICT c2, |
|
OPJ_SIZE_T n) |
|
{ |
|
OPJ_SIZE_T i; |
|
const OPJ_SIZE_T len = n; |
|
/* buffer are aligned on 16 bytes */ |
|
assert(((size_t)c0 & 0xf) == 0); |
|
assert(((size_t)c1 & 0xf) == 0); |
|
assert(((size_t)c2 & 0xf) == 0); |
|
|
|
for (i = 0; i < (len & ~3U); i += 4) { |
|
__m128i y, u, v; |
|
__m128i r = _mm_load_si128((const __m128i *) & (c0[i])); |
|
__m128i g = _mm_load_si128((const __m128i *) & (c1[i])); |
|
__m128i b = _mm_load_si128((const __m128i *) & (c2[i])); |
|
y = _mm_add_epi32(g, g); |
|
y = _mm_add_epi32(y, b); |
|
y = _mm_add_epi32(y, r); |
|
y = _mm_srai_epi32(y, 2); |
|
u = _mm_sub_epi32(b, g); |
|
v = _mm_sub_epi32(r, g); |
|
_mm_store_si128((__m128i *) & (c0[i]), y); |
|
_mm_store_si128((__m128i *) & (c1[i]), u); |
|
_mm_store_si128((__m128i *) & (c2[i]), v); |
|
} |
|
|
|
for (; i < len; ++i) { |
|
OPJ_INT32 r = c0[i]; |
|
OPJ_INT32 g = c1[i]; |
|
OPJ_INT32 b = c2[i]; |
|
OPJ_INT32 y = (r + (g * 2) + b) >> 2; |
|
OPJ_INT32 u = b - g; |
|
OPJ_INT32 v = r - g; |
|
c0[i] = y; |
|
c1[i] = u; |
|
c2[i] = v; |
|
} |
|
} |
|
#else |
|
void opj_mct_encode( |
|
OPJ_INT32* OPJ_RESTRICT c0, |
|
OPJ_INT32* OPJ_RESTRICT c1, |
|
OPJ_INT32* OPJ_RESTRICT c2, |
|
OPJ_SIZE_T n) |
|
{ |
|
OPJ_SIZE_T i; |
|
const OPJ_SIZE_T len = n; |
|
|
|
for (i = 0; i < len; ++i) { |
|
OPJ_INT32 r = c0[i]; |
|
OPJ_INT32 g = c1[i]; |
|
OPJ_INT32 b = c2[i]; |
|
OPJ_INT32 y = (r + (g * 2) + b) >> 2; |
|
OPJ_INT32 u = b - g; |
|
OPJ_INT32 v = r - g; |
|
c0[i] = y; |
|
c1[i] = u; |
|
c2[i] = v; |
|
} |
|
} |
|
#endif |
|
|
|
/* <summary> */ |
|
/* Inverse reversible MCT. */ |
|
/* </summary> */ |
|
#ifdef __SSE2__ |
|
void opj_mct_decode( |
|
OPJ_INT32* OPJ_RESTRICT c0, |
|
OPJ_INT32* OPJ_RESTRICT c1, |
|
OPJ_INT32* OPJ_RESTRICT c2, |
|
OPJ_SIZE_T n) |
|
{ |
|
OPJ_SIZE_T i; |
|
const OPJ_SIZE_T len = n; |
|
|
|
for (i = 0; i < (len & ~3U); i += 4) { |
|
__m128i r, g, b; |
|
__m128i y = _mm_load_si128((const __m128i *) & (c0[i])); |
|
__m128i u = _mm_load_si128((const __m128i *) & (c1[i])); |
|
__m128i v = _mm_load_si128((const __m128i *) & (c2[i])); |
|
g = y; |
|
g = _mm_sub_epi32(g, _mm_srai_epi32(_mm_add_epi32(u, v), 2)); |
|
r = _mm_add_epi32(v, g); |
|
b = _mm_add_epi32(u, g); |
|
_mm_store_si128((__m128i *) & (c0[i]), r); |
|
_mm_store_si128((__m128i *) & (c1[i]), g); |
|
_mm_store_si128((__m128i *) & (c2[i]), b); |
|
} |
|
for (; i < len; ++i) { |
|
OPJ_INT32 y = c0[i]; |
|
OPJ_INT32 u = c1[i]; |
|
OPJ_INT32 v = c2[i]; |
|
OPJ_INT32 g = y - ((u + v) >> 2); |
|
OPJ_INT32 r = v + g; |
|
OPJ_INT32 b = u + g; |
|
c0[i] = r; |
|
c1[i] = g; |
|
c2[i] = b; |
|
} |
|
} |
|
#else |
|
void opj_mct_decode( |
|
OPJ_INT32* OPJ_RESTRICT c0, |
|
OPJ_INT32* OPJ_RESTRICT c1, |
|
OPJ_INT32* OPJ_RESTRICT c2, |
|
OPJ_SIZE_T n) |
|
{ |
|
OPJ_UINT32 i; |
|
for (i = 0; i < n; ++i) { |
|
OPJ_INT32 y = c0[i]; |
|
OPJ_INT32 u = c1[i]; |
|
OPJ_INT32 v = c2[i]; |
|
OPJ_INT32 g = y - ((u + v) >> 2); |
|
OPJ_INT32 r = v + g; |
|
OPJ_INT32 b = u + g; |
|
c0[i] = r; |
|
c1[i] = g; |
|
c2[i] = b; |
|
} |
|
} |
|
#endif |
|
|
|
/* <summary> */ |
|
/* Get norm of basis function of reversible MCT. */ |
|
/* </summary> */ |
|
OPJ_FLOAT64 opj_mct_getnorm(OPJ_UINT32 compno) |
|
{ |
|
return opj_mct_norms[compno]; |
|
} |
|
|
|
/* <summary> */ |
|
/* Forward irreversible MCT. */ |
|
/* </summary> */ |
|
#ifdef __SSE4_1__ |
|
void opj_mct_encode_real( |
|
OPJ_INT32* OPJ_RESTRICT c0, |
|
OPJ_INT32* OPJ_RESTRICT c1, |
|
OPJ_INT32* OPJ_RESTRICT c2, |
|
OPJ_SIZE_T n) |
|
{ |
|
OPJ_SIZE_T i; |
|
const OPJ_SIZE_T len = n; |
|
|
|
const __m128i ry = _mm_set1_epi32(2449); |
|
const __m128i gy = _mm_set1_epi32(4809); |
|
const __m128i by = _mm_set1_epi32(934); |
|
const __m128i ru = _mm_set1_epi32(1382); |
|
const __m128i gu = _mm_set1_epi32(2714); |
|
/* const __m128i bu = _mm_set1_epi32(4096); */ |
|
/* const __m128i rv = _mm_set1_epi32(4096); */ |
|
const __m128i gv = _mm_set1_epi32(3430); |
|
const __m128i bv = _mm_set1_epi32(666); |
|
const __m128i mulround = _mm_shuffle_epi32(_mm_cvtsi32_si128(4096), |
|
_MM_SHUFFLE(1, 0, 1, 0)); |
|
|
|
for (i = 0; i < (len & ~3U); i += 4) { |
|
__m128i lo, hi; |
|
__m128i y, u, v; |
|
__m128i r = _mm_load_si128((const __m128i *) & (c0[i])); |
|
__m128i g = _mm_load_si128((const __m128i *) & (c1[i])); |
|
__m128i b = _mm_load_si128((const __m128i *) & (c2[i])); |
|
|
|
lo = r; |
|
hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1)); |
|
lo = _mm_mul_epi32(lo, ry); |
|
hi = _mm_mul_epi32(hi, ry); |
|
lo = _mm_add_epi64(lo, mulround); |
|
hi = _mm_add_epi64(hi, mulround); |
|
lo = _mm_srli_epi64(lo, 13); |
|
hi = _mm_slli_epi64(hi, 32 - 13); |
|
y = _mm_blend_epi16(lo, hi, 0xCC); |
|
|
|
lo = g; |
|
hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); |
|
lo = _mm_mul_epi32(lo, gy); |
|
hi = _mm_mul_epi32(hi, gy); |
|
lo = _mm_add_epi64(lo, mulround); |
|
hi = _mm_add_epi64(hi, mulround); |
|
lo = _mm_srli_epi64(lo, 13); |
|
hi = _mm_slli_epi64(hi, 32 - 13); |
|
y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC)); |
|
|
|
lo = b; |
|
hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1)); |
|
lo = _mm_mul_epi32(lo, by); |
|
hi = _mm_mul_epi32(hi, by); |
|
lo = _mm_add_epi64(lo, mulround); |
|
hi = _mm_add_epi64(hi, mulround); |
|
lo = _mm_srli_epi64(lo, 13); |
|
hi = _mm_slli_epi64(hi, 32 - 13); |
|
y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC)); |
|
_mm_store_si128((__m128i *) & (c0[i]), y); |
|
|
|
/*lo = b; |
|
hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1)); |
|
lo = _mm_mul_epi32(lo, mulround); |
|
hi = _mm_mul_epi32(hi, mulround);*/ |
|
lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 2, 0))); |
|
hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 3, 1))); |
|
lo = _mm_slli_epi64(lo, 12); |
|
hi = _mm_slli_epi64(hi, 12); |
|
lo = _mm_add_epi64(lo, mulround); |
|
hi = _mm_add_epi64(hi, mulround); |
|
lo = _mm_srli_epi64(lo, 13); |
|
hi = _mm_slli_epi64(hi, 32 - 13); |
|
u = _mm_blend_epi16(lo, hi, 0xCC); |
|
|
|
lo = r; |
|
hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1)); |
|
lo = _mm_mul_epi32(lo, ru); |
|
hi = _mm_mul_epi32(hi, ru); |
|
lo = _mm_add_epi64(lo, mulround); |
|
hi = _mm_add_epi64(hi, mulround); |
|
lo = _mm_srli_epi64(lo, 13); |
|
hi = _mm_slli_epi64(hi, 32 - 13); |
|
u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC)); |
|
|
|
lo = g; |
|
hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); |
|
lo = _mm_mul_epi32(lo, gu); |
|
hi = _mm_mul_epi32(hi, gu); |
|
lo = _mm_add_epi64(lo, mulround); |
|
hi = _mm_add_epi64(hi, mulround); |
|
lo = _mm_srli_epi64(lo, 13); |
|
hi = _mm_slli_epi64(hi, 32 - 13); |
|
u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC)); |
|
_mm_store_si128((__m128i *) & (c1[i]), u); |
|
|
|
/*lo = r; |
|
hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1)); |
|
lo = _mm_mul_epi32(lo, mulround); |
|
hi = _mm_mul_epi32(hi, mulround);*/ |
|
lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 2, 0))); |
|
hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 3, 1))); |
|
lo = _mm_slli_epi64(lo, 12); |
|
hi = _mm_slli_epi64(hi, 12); |
|
lo = _mm_add_epi64(lo, mulround); |
|
hi = _mm_add_epi64(hi, mulround); |
|
lo = _mm_srli_epi64(lo, 13); |
|
hi = _mm_slli_epi64(hi, 32 - 13); |
|
v = _mm_blend_epi16(lo, hi, 0xCC); |
|
|
|
lo = g; |
|
hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); |
|
lo = _mm_mul_epi32(lo, gv); |
|
hi = _mm_mul_epi32(hi, gv); |
|
lo = _mm_add_epi64(lo, mulround); |
|
hi = _mm_add_epi64(hi, mulround); |
|
lo = _mm_srli_epi64(lo, 13); |
|
hi = _mm_slli_epi64(hi, 32 - 13); |
|
v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC)); |
|
|
|
lo = b; |
|
hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1)); |
|
lo = _mm_mul_epi32(lo, bv); |
|
hi = _mm_mul_epi32(hi, bv); |
|
lo = _mm_add_epi64(lo, mulround); |
|
hi = _mm_add_epi64(hi, mulround); |
|
lo = _mm_srli_epi64(lo, 13); |
|
hi = _mm_slli_epi64(hi, 32 - 13); |
|
v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC)); |
|
_mm_store_si128((__m128i *) & (c2[i]), v); |
|
} |
|
for (; i < len; ++i) { |
|
OPJ_INT32 r = c0[i]; |
|
OPJ_INT32 g = c1[i]; |
|
OPJ_INT32 b = c2[i]; |
|
OPJ_INT32 y = opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, |
|
4809) + opj_int_fix_mul(b, 934); |
|
OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, |
|
2714) + opj_int_fix_mul(b, 4096); |
|
OPJ_INT32 v = opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, |
|
3430) - opj_int_fix_mul(b, 666); |
|
c0[i] = y; |
|
c1[i] = u; |
|
c2[i] = v; |
|
} |
|
} |
|
#else |
|
void opj_mct_encode_real( |
|
OPJ_INT32* OPJ_RESTRICT c0, |
|
OPJ_INT32* OPJ_RESTRICT c1, |
|
OPJ_INT32* OPJ_RESTRICT c2, |
|
OPJ_SIZE_T n) |
|
{ |
|
OPJ_UINT32 i; |
|
for (i = 0; i < n; ++i) { |
|
OPJ_INT32 r = c0[i]; |
|
OPJ_INT32 g = c1[i]; |
|
OPJ_INT32 b = c2[i]; |
|
OPJ_INT32 y = opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, |
|
4809) + opj_int_fix_mul(b, 934); |
|
OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, |
|
2714) + opj_int_fix_mul(b, 4096); |
|
OPJ_INT32 v = opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, |
|
3430) - opj_int_fix_mul(b, 666); |
|
c0[i] = y; |
|
c1[i] = u; |
|
c2[i] = v; |
|
} |
|
} |
|
#endif |
|
|
|
/* <summary> */ |
|
/* Inverse irreversible MCT. */ |
|
/* </summary> */ |
|
void opj_mct_decode_real( |
|
OPJ_FLOAT32* OPJ_RESTRICT c0, |
|
OPJ_FLOAT32* OPJ_RESTRICT c1, |
|
OPJ_FLOAT32* OPJ_RESTRICT c2, |
|
OPJ_SIZE_T n) |
|
{ |
|
OPJ_UINT32 i; |
|
#ifdef __SSE__ |
|
__m128 vrv, vgu, vgv, vbu; |
|
vrv = _mm_set1_ps(1.402f); |
|
vgu = _mm_set1_ps(0.34413f); |
|
vgv = _mm_set1_ps(0.71414f); |
|
vbu = _mm_set1_ps(1.772f); |
|
for (i = 0; i < (n >> 3); ++i) { |
|
__m128 vy, vu, vv; |
|
__m128 vr, vg, vb; |
|
|
|
vy = _mm_load_ps(c0); |
|
vu = _mm_load_ps(c1); |
|
vv = _mm_load_ps(c2); |
|
vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv)); |
|
vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv)); |
|
vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu)); |
|
_mm_store_ps(c0, vr); |
|
_mm_store_ps(c1, vg); |
|
_mm_store_ps(c2, vb); |
|
c0 += 4; |
|
c1 += 4; |
|
c2 += 4; |
|
|
|
vy = _mm_load_ps(c0); |
|
vu = _mm_load_ps(c1); |
|
vv = _mm_load_ps(c2); |
|
vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv)); |
|
vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv)); |
|
vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu)); |
|
_mm_store_ps(c0, vr); |
|
_mm_store_ps(c1, vg); |
|
_mm_store_ps(c2, vb); |
|
c0 += 4; |
|
c1 += 4; |
|
c2 += 4; |
|
} |
|
n &= 7; |
|
#endif |
|
for (i = 0; i < n; ++i) { |
|
OPJ_FLOAT32 y = c0[i]; |
|
OPJ_FLOAT32 u = c1[i]; |
|
OPJ_FLOAT32 v = c2[i]; |
|
OPJ_FLOAT32 r = y + (v * 1.402f); |
|
OPJ_FLOAT32 g = y - (u * 0.34413f) - (v * (0.71414f)); |
|
OPJ_FLOAT32 b = y + (u * 1.772f); |
|
c0[i] = r; |
|
c1[i] = g; |
|
c2[i] = b; |
|
} |
|
} |
|
|
|
/* <summary> */ |
|
/* Get norm of basis function of irreversible MCT. */ |
|
/* </summary> */ |
|
OPJ_FLOAT64 opj_mct_getnorm_real(OPJ_UINT32 compno) |
|
{ |
|
return opj_mct_norms_real[compno]; |
|
} |
|
|
|
|
|
OPJ_BOOL opj_mct_encode_custom( |
|
OPJ_BYTE * pCodingdata, |
|
OPJ_SIZE_T n, |
|
OPJ_BYTE ** pData, |
|
OPJ_UINT32 pNbComp, |
|
OPJ_UINT32 isSigned) |
|
{ |
|
OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata; |
|
OPJ_SIZE_T i; |
|
OPJ_UINT32 j; |
|
OPJ_UINT32 k; |
|
OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp; |
|
OPJ_INT32 * lCurrentData = 00; |
|
OPJ_INT32 * lCurrentMatrix = 00; |
|
OPJ_INT32 ** lData = (OPJ_INT32 **) pData; |
|
OPJ_UINT32 lMultiplicator = 1 << 13; |
|
OPJ_INT32 * lMctPtr; |
|
|
|
OPJ_ARG_NOT_USED(isSigned); |
|
|
|
lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof( |
|
OPJ_INT32)); |
|
if (! lCurrentData) { |
|
return OPJ_FALSE; |
|
} |
|
|
|
lCurrentMatrix = lCurrentData + pNbComp; |
|
|
|
for (i = 0; i < lNbMatCoeff; ++i) { |
|
lCurrentMatrix[i] = (OPJ_INT32)(*(lMct++) * (OPJ_FLOAT32)lMultiplicator); |
|
} |
|
|
|
for (i = 0; i < n; ++i) { |
|
lMctPtr = lCurrentMatrix; |
|
for (j = 0; j < pNbComp; ++j) { |
|
lCurrentData[j] = (*(lData[j])); |
|
} |
|
|
|
for (j = 0; j < pNbComp; ++j) { |
|
*(lData[j]) = 0; |
|
for (k = 0; k < pNbComp; ++k) { |
|
*(lData[j]) += opj_int_fix_mul(*lMctPtr, lCurrentData[k]); |
|
++lMctPtr; |
|
} |
|
|
|
++lData[j]; |
|
} |
|
} |
|
|
|
opj_free(lCurrentData); |
|
|
|
return OPJ_TRUE; |
|
} |
|
|
|
OPJ_BOOL opj_mct_decode_custom( |
|
OPJ_BYTE * pDecodingData, |
|
OPJ_SIZE_T n, |
|
OPJ_BYTE ** pData, |
|
OPJ_UINT32 pNbComp, |
|
OPJ_UINT32 isSigned) |
|
{ |
|
OPJ_FLOAT32 * lMct; |
|
OPJ_SIZE_T i; |
|
OPJ_UINT32 j; |
|
OPJ_UINT32 k; |
|
|
|
OPJ_FLOAT32 * lCurrentData = 00; |
|
OPJ_FLOAT32 * lCurrentResult = 00; |
|
OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData; |
|
|
|
OPJ_ARG_NOT_USED(isSigned); |
|
|
|
lCurrentData = (OPJ_FLOAT32 *) opj_malloc(2 * pNbComp * sizeof(OPJ_FLOAT32)); |
|
if (! lCurrentData) { |
|
return OPJ_FALSE; |
|
} |
|
lCurrentResult = lCurrentData + pNbComp; |
|
|
|
for (i = 0; i < n; ++i) { |
|
lMct = (OPJ_FLOAT32 *) pDecodingData; |
|
for (j = 0; j < pNbComp; ++j) { |
|
lCurrentData[j] = (OPJ_FLOAT32)(*(lData[j])); |
|
} |
|
for (j = 0; j < pNbComp; ++j) { |
|
lCurrentResult[j] = 0; |
|
for (k = 0; k < pNbComp; ++k) { |
|
lCurrentResult[j] += *(lMct++) * lCurrentData[k]; |
|
} |
|
*(lData[j]++) = (OPJ_FLOAT32)(lCurrentResult[j]); |
|
} |
|
} |
|
opj_free(lCurrentData); |
|
return OPJ_TRUE; |
|
} |
|
|
|
void opj_calculate_norms(OPJ_FLOAT64 * pNorms, |
|
OPJ_UINT32 pNbComps, |
|
OPJ_FLOAT32 * pMatrix) |
|
{ |
|
OPJ_UINT32 i, j, lIndex; |
|
OPJ_FLOAT32 lCurrentValue; |
|
OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms; |
|
OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix; |
|
|
|
for (i = 0; i < pNbComps; ++i) { |
|
lNorms[i] = 0; |
|
lIndex = i; |
|
|
|
for (j = 0; j < pNbComps; ++j) { |
|
lCurrentValue = lMatrix[lIndex]; |
|
lIndex += pNbComps; |
|
lNorms[i] += lCurrentValue * lCurrentValue; |
|
} |
|
lNorms[i] = sqrt(lNorms[i]); |
|
} |
|
}
|
|
|