mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
6.5 KiB
185 lines
6.5 KiB
#include <opencv2/dnn.hpp> |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
#include <fstream> |
|
#include <iostream> |
|
#include <cstdlib> |
|
using namespace std; |
|
|
|
const size_t inWidth = 300; |
|
const size_t inHeight = 300; |
|
const float inScaleFactor = 0.007843f; |
|
const float meanVal = 127.5; |
|
const char* classNames[] = {"background", |
|
"aeroplane", "bicycle", "bird", "boat", |
|
"bottle", "bus", "car", "cat", "chair", |
|
"cow", "diningtable", "dog", "horse", |
|
"motorbike", "person", "pottedplant", |
|
"sheep", "sofa", "train", "tvmonitor"}; |
|
|
|
const char* params |
|
= "{ help | false | print usage }" |
|
"{ proto | MobileNetSSD_deploy.prototxt | model configuration }" |
|
"{ model | MobileNetSSD_deploy.caffemodel | model weights }" |
|
"{ camera_device | 0 | camera device number }" |
|
"{ video | | video or image for detection}" |
|
"{ out | | path to output video file}" |
|
"{ min_confidence | 0.2 | min confidence }" |
|
"{ opencl | false | enable OpenCL }" |
|
; |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
CommandLineParser parser(argc, argv, params); |
|
parser.about("This sample uses MobileNet Single-Shot Detector " |
|
"(https://arxiv.org/abs/1704.04861) " |
|
"to detect objects on camera/video/image.\n" |
|
".caffemodel model's file is available here: " |
|
"https://github.com/chuanqi305/MobileNet-SSD\n" |
|
"Default network is 300x300 and 20-classes VOC.\n"); |
|
|
|
if (parser.get<bool>("help") || argc == 1) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
String modelConfiguration = parser.get<string>("proto"); |
|
String modelBinary = parser.get<string>("model"); |
|
CV_Assert(!modelConfiguration.empty() && !modelBinary.empty()); |
|
|
|
//! [Initialize network] |
|
dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary); |
|
//! [Initialize network] |
|
|
|
if (parser.get<bool>("opencl")) |
|
{ |
|
net.setPreferableTarget(DNN_TARGET_OPENCL); |
|
} |
|
|
|
if (net.empty()) |
|
{ |
|
cerr << "Can't load network by using the following files: " << endl; |
|
cerr << "prototxt: " << modelConfiguration << endl; |
|
cerr << "caffemodel: " << modelBinary << endl; |
|
cerr << "Models can be downloaded here:" << endl; |
|
cerr << "https://github.com/chuanqi305/MobileNet-SSD" << endl; |
|
exit(-1); |
|
} |
|
|
|
VideoCapture cap; |
|
if (!parser.has("video")) |
|
{ |
|
int cameraDevice = parser.get<int>("camera_device"); |
|
cap = VideoCapture(cameraDevice); |
|
if(!cap.isOpened()) |
|
{ |
|
cout << "Couldn't find camera: " << cameraDevice << endl; |
|
return -1; |
|
} |
|
} |
|
else |
|
{ |
|
cap.open(parser.get<String>("video")); |
|
if(!cap.isOpened()) |
|
{ |
|
cout << "Couldn't open image or video: " << parser.get<String>("video") << endl; |
|
return -1; |
|
} |
|
} |
|
|
|
//Acquire input size |
|
Size inVideoSize((int) cap.get(CV_CAP_PROP_FRAME_WIDTH), |
|
(int) cap.get(CV_CAP_PROP_FRAME_HEIGHT)); |
|
|
|
double fps = cap.get(CV_CAP_PROP_FPS); |
|
int fourcc = static_cast<int>(cap.get(CV_CAP_PROP_FOURCC)); |
|
VideoWriter outputVideo; |
|
outputVideo.open(parser.get<String>("out") , |
|
(fourcc != 0 ? fourcc : VideoWriter::fourcc('M','J','P','G')), |
|
(fps != 0 ? fps : 10.0), inVideoSize, true); |
|
|
|
for(;;) |
|
{ |
|
Mat frame; |
|
cap >> frame; // get a new frame from camera/video or read image |
|
|
|
if (frame.empty()) |
|
{ |
|
waitKey(); |
|
break; |
|
} |
|
|
|
if (frame.channels() == 4) |
|
cvtColor(frame, frame, COLOR_BGRA2BGR); |
|
|
|
//! [Prepare blob] |
|
Mat inputBlob = blobFromImage(frame, inScaleFactor, |
|
Size(inWidth, inHeight), |
|
Scalar(meanVal, meanVal, meanVal), |
|
false, false); //Convert Mat to batch of images |
|
//! [Prepare blob] |
|
|
|
//! [Set input blob] |
|
net.setInput(inputBlob); //set the network input |
|
//! [Set input blob] |
|
|
|
//! [Make forward pass] |
|
Mat detection = net.forward(); //compute output |
|
//! [Make forward pass] |
|
|
|
vector<double> layersTimings; |
|
double freq = getTickFrequency() / 1000; |
|
double time = net.getPerfProfile(layersTimings) / freq; |
|
|
|
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); |
|
|
|
if (!outputVideo.isOpened()) |
|
{ |
|
putText(frame, format("FPS: %.2f ; time: %.2f ms", 1000.f/time, time), |
|
Point(20,20), 0, 0.5, Scalar(0,0,255)); |
|
} |
|
else |
|
cout << "Inference time, ms: " << time << endl; |
|
|
|
float confidenceThreshold = parser.get<float>("min_confidence"); |
|
for(int i = 0; i < detectionMat.rows; i++) |
|
{ |
|
float confidence = detectionMat.at<float>(i, 2); |
|
|
|
if(confidence > confidenceThreshold) |
|
{ |
|
size_t objectClass = (size_t)(detectionMat.at<float>(i, 1)); |
|
|
|
int left = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); |
|
int top = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); |
|
int right = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); |
|
int bottom = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); |
|
|
|
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0)); |
|
String label = format("%s: %.2f", classNames[objectClass], confidence); |
|
int baseLine = 0; |
|
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
|
top = max(top, labelSize.height); |
|
rectangle(frame, Point(left, top - labelSize.height), |
|
Point(left + labelSize.width, top + baseLine), |
|
Scalar(255, 255, 255), CV_FILLED); |
|
putText(frame, label, Point(left, top), |
|
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); |
|
} |
|
} |
|
|
|
if (outputVideo.isOpened()) |
|
outputVideo << frame; |
|
|
|
imshow("detections", frame); |
|
if (waitKey(1) >= 0) break; |
|
} |
|
|
|
return 0; |
|
} // main
|
|
|