mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
205 lines
6.8 KiB
205 lines
6.8 KiB
<!DOCTYPE html> |
|
|
|
<html> |
|
|
|
<head> |
|
<script async src="../../opencv.js" type="text/javascript"></script> |
|
<script src="../../utils.js" type="text/javascript"></script> |
|
|
|
<script type='text/javascript'> |
|
var netDet = undefined, netRecogn = undefined; |
|
var persons = {}; |
|
|
|
//! [Run face detection model] |
|
function detectFaces(img) { |
|
var blob = cv.blobFromImage(img, 1, {width: 128, height: 96}, [104, 177, 123, 0], false, false); |
|
netDet.setInput(blob); |
|
var out = netDet.forward(); |
|
|
|
var faces = []; |
|
for (var i = 0, n = out.data32F.length; i < n; i += 7) { |
|
var confidence = out.data32F[i + 2]; |
|
var left = out.data32F[i + 3] * img.cols; |
|
var top = out.data32F[i + 4] * img.rows; |
|
var right = out.data32F[i + 5] * img.cols; |
|
var bottom = out.data32F[i + 6] * img.rows; |
|
left = Math.min(Math.max(0, left), img.cols - 1); |
|
right = Math.min(Math.max(0, right), img.cols - 1); |
|
bottom = Math.min(Math.max(0, bottom), img.rows - 1); |
|
top = Math.min(Math.max(0, top), img.rows - 1); |
|
|
|
if (confidence > 0.5 && left < right && top < bottom) { |
|
faces.push({x: left, y: top, width: right - left, height: bottom - top}) |
|
} |
|
} |
|
blob.delete(); |
|
out.delete(); |
|
return faces; |
|
}; |
|
//! [Run face detection model] |
|
|
|
//! [Get 128 floating points feature vector] |
|
function face2vec(face) { |
|
var blob = cv.blobFromImage(face, 1.0 / 255, {width: 96, height: 96}, [0, 0, 0, 0], true, false) |
|
netRecogn.setInput(blob); |
|
var vec = netRecogn.forward(); |
|
blob.delete(); |
|
return vec; |
|
}; |
|
//! [Get 128 floating points feature vector] |
|
|
|
//! [Recognize] |
|
function recognize(face) { |
|
var vec = face2vec(face); |
|
|
|
var bestMatchName = 'unknown'; |
|
var bestMatchScore = 0.5; // Actually, the minimum is -1 but we use it as a threshold. |
|
for (name in persons) { |
|
var personVec = persons[name]; |
|
var score = vec.dot(personVec); |
|
if (score > bestMatchScore) { |
|
bestMatchScore = score; |
|
bestMatchName = name; |
|
} |
|
} |
|
vec.delete(); |
|
return bestMatchName; |
|
}; |
|
//! [Recognize] |
|
|
|
function loadModels(callback) { |
|
var utils = new Utils(''); |
|
var proto = 'https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt'; |
|
var weights = 'https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel'; |
|
var recognModel = 'https://raw.githubusercontent.com/pyannote/pyannote-data/master/openface.nn4.small2.v1.t7'; |
|
utils.createFileFromUrl('face_detector.prototxt', proto, () => { |
|
document.getElementById('status').innerHTML = 'Downloading face_detector.caffemodel'; |
|
utils.createFileFromUrl('face_detector.caffemodel', weights, () => { |
|
document.getElementById('status').innerHTML = 'Downloading OpenFace model'; |
|
utils.createFileFromUrl('face_recognition.t7', recognModel, () => { |
|
document.getElementById('status').innerHTML = ''; |
|
netDet = cv.readNetFromCaffe('face_detector.prototxt', 'face_detector.caffemodel'); |
|
netRecogn = cv.readNetFromTorch('face_recognition.t7'); |
|
callback(); |
|
}); |
|
}); |
|
}); |
|
}; |
|
|
|
function main() { |
|
// Create a camera object. |
|
var output = document.getElementById('output'); |
|
var camera = document.createElement("video"); |
|
camera.setAttribute("width", output.width); |
|
camera.setAttribute("height", output.height); |
|
|
|
// Get a permission from user to use a camera. |
|
navigator.mediaDevices.getUserMedia({video: true, audio: false}) |
|
.then(function(stream) { |
|
camera.srcObject = stream; |
|
camera.onloadedmetadata = function(e) { |
|
camera.play(); |
|
}; |
|
}); |
|
|
|
//! [Open a camera stream] |
|
var cap = new cv.VideoCapture(camera); |
|
var frame = new cv.Mat(camera.height, camera.width, cv.CV_8UC4); |
|
var frameBGR = new cv.Mat(camera.height, camera.width, cv.CV_8UC3); |
|
//! [Open a camera stream] |
|
|
|
//! [Add a person] |
|
document.getElementById('addPersonButton').onclick = function() { |
|
var rects = detectFaces(frameBGR); |
|
if (rects.length > 0) { |
|
var face = frameBGR.roi(rects[0]); |
|
|
|
var name = prompt('Say your name:'); |
|
var cell = document.getElementById("targetNames").insertCell(0); |
|
cell.innerHTML = name; |
|
|
|
persons[name] = face2vec(face).clone(); |
|
|
|
var canvas = document.createElement("canvas"); |
|
canvas.setAttribute("width", 96); |
|
canvas.setAttribute("height", 96); |
|
var cell = document.getElementById("targetImgs").insertCell(0); |
|
cell.appendChild(canvas); |
|
|
|
var faceResized = new cv.Mat(canvas.height, canvas.width, cv.CV_8UC3); |
|
cv.resize(face, faceResized, {width: canvas.width, height: canvas.height}); |
|
cv.cvtColor(faceResized, faceResized, cv.COLOR_BGR2RGB); |
|
cv.imshow(canvas, faceResized); |
|
faceResized.delete(); |
|
} |
|
}; |
|
//! [Add a person] |
|
|
|
//! [Define frames processing] |
|
var isRunning = false; |
|
const FPS = 30; // Target number of frames processed per second. |
|
function captureFrame() { |
|
var begin = Date.now(); |
|
cap.read(frame); // Read a frame from camera |
|
cv.cvtColor(frame, frameBGR, cv.COLOR_RGBA2BGR); |
|
|
|
var faces = detectFaces(frameBGR); |
|
faces.forEach(function(rect) { |
|
cv.rectangle(frame, {x: rect.x, y: rect.y}, {x: rect.x + rect.width, y: rect.y + rect.height}, [0, 255, 0, 255]); |
|
|
|
var face = frameBGR.roi(rect); |
|
var name = recognize(face); |
|
cv.putText(frame, name, {x: rect.x, y: rect.y}, cv.FONT_HERSHEY_SIMPLEX, 1.0, [0, 255, 0, 255]); |
|
}); |
|
|
|
cv.imshow(output, frame); |
|
|
|
// Loop this function. |
|
if (isRunning) { |
|
var delay = 1000 / FPS - (Date.now() - begin); |
|
setTimeout(captureFrame, delay); |
|
} |
|
}; |
|
//! [Define frames processing] |
|
|
|
document.getElementById('startStopButton').onclick = function toggle() { |
|
if (isRunning) { |
|
isRunning = false; |
|
document.getElementById('startStopButton').innerHTML = 'Start'; |
|
document.getElementById('addPersonButton').disabled = true; |
|
} else { |
|
function run() { |
|
isRunning = true; |
|
captureFrame(); |
|
document.getElementById('startStopButton').innerHTML = 'Stop'; |
|
document.getElementById('startStopButton').disabled = false; |
|
document.getElementById('addPersonButton').disabled = false; |
|
} |
|
if (netDet == undefined || netRecogn == undefined) { |
|
document.getElementById('startStopButton').disabled = true; |
|
loadModels(run); // Load models and run a pipeline; |
|
} else { |
|
run(); |
|
} |
|
} |
|
}; |
|
|
|
document.getElementById('startStopButton').disabled = false; |
|
}; |
|
</script> |
|
|
|
</head> |
|
|
|
<body onload="main()"> |
|
<button id="startStopButton" type="button" disabled="true">Start</button> |
|
<div id="status"></div> |
|
<canvas id="output" width=640 height=480 style="max-width: 100%"></canvas> |
|
|
|
<table> |
|
<tr id="targetImgs"></tr> |
|
<tr id="targetNames"></tr> |
|
</table> |
|
<button id="addPersonButton" type="button" disabled="true">Add a person</button> |
|
</body> |
|
|
|
</html>
|
|
|