mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
316 lines
8.9 KiB
316 lines
8.9 KiB
#include <iostream> |
|
#include <iomanip> |
|
#include <string> |
|
|
|
#include "cvconfig.h" |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/core/opengl_interop.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/gpu/gpu.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
void getFlowField(const Mat& u, const Mat& v, Mat& flowField); |
|
|
|
#ifdef HAVE_OPENGL |
|
|
|
void needleMapDraw(void* userdata); |
|
|
|
#endif |
|
|
|
int main(int argc, const char* argv[]) |
|
{ |
|
try |
|
{ |
|
const char* keys = |
|
"{ h | help | false | print help message }" |
|
"{ l | left | | specify left image }" |
|
"{ r | right | | specify right image }" |
|
"{ s | scale | 0.8 | set pyramid scale factor }" |
|
"{ a | alpha | 0.197 | set alpha }" |
|
"{ g | gamma | 50.0 | set gamma }" |
|
"{ i | inner | 10 | set number of inner iterations }" |
|
"{ o | outer | 77 | set number of outer iterations }" |
|
"{ si | solver | 10 | set number of basic solver iterations }" |
|
"{ t | time_step | 0.1 | set frame interpolation time step }"; |
|
|
|
CommandLineParser cmd(argc, argv, keys); |
|
|
|
if (cmd.get<bool>("help")) |
|
{ |
|
cout << "Usage: brox_optical_flow [options]" << endl; |
|
cout << "Avaible options:" << endl; |
|
cmd.printParams(); |
|
return 0; |
|
} |
|
|
|
string frame0Name = cmd.get<string>("left"); |
|
string frame1Name = cmd.get<string>("right"); |
|
float scale = cmd.get<float>("scale"); |
|
float alpha = cmd.get<float>("alpha"); |
|
float gamma = cmd.get<float>("gamma"); |
|
int inner_iterations = cmd.get<int>("inner"); |
|
int outer_iterations = cmd.get<int>("outer"); |
|
int solver_iterations = cmd.get<int>("solver"); |
|
float timeStep = cmd.get<float>("time_step"); |
|
|
|
if (frame0Name.empty() || frame1Name.empty()) |
|
{ |
|
cerr << "Missing input file names" << endl; |
|
return -1; |
|
} |
|
|
|
Mat frame0Color = imread(frame0Name); |
|
Mat frame1Color = imread(frame1Name); |
|
|
|
if (frame0Color.empty() || frame1Color.empty()) |
|
{ |
|
cout << "Can't load input images" << endl; |
|
return -1; |
|
} |
|
|
|
cv::gpu::printShortCudaDeviceInfo(cv::gpu::getDevice()); |
|
|
|
cout << "OpenCV / NVIDIA Computer Vision" << endl; |
|
cout << "Optical Flow Demo: Frame Interpolation" << endl; |
|
cout << "=========================================" << endl; |
|
|
|
namedWindow("Forward flow"); |
|
namedWindow("Backward flow"); |
|
|
|
namedWindow("Needle Map", WINDOW_OPENGL); |
|
|
|
namedWindow("Interpolated frame"); |
|
|
|
setGlDevice(); |
|
|
|
cout << "Press:" << endl; |
|
cout << "\tESC to quit" << endl; |
|
cout << "\t'a' to move to the previous frame" << endl; |
|
cout << "\t's' to move to the next frame\n" << endl; |
|
|
|
frame0Color.convertTo(frame0Color, CV_32F, 1.0 / 255.0); |
|
frame1Color.convertTo(frame1Color, CV_32F, 1.0 / 255.0); |
|
|
|
Mat frame0Gray, frame1Gray; |
|
|
|
cvtColor(frame0Color, frame0Gray, COLOR_BGR2GRAY); |
|
cvtColor(frame1Color, frame1Gray, COLOR_BGR2GRAY); |
|
|
|
GpuMat d_frame0(frame0Gray); |
|
GpuMat d_frame1(frame1Gray); |
|
|
|
cout << "Estimating optical flow" << endl; |
|
|
|
BroxOpticalFlow d_flow(alpha, gamma, scale, inner_iterations, outer_iterations, solver_iterations); |
|
|
|
cout << "\tForward..." << endl; |
|
|
|
GpuMat d_fu, d_fv; |
|
|
|
d_flow(d_frame0, d_frame1, d_fu, d_fv); |
|
|
|
Mat flowFieldForward; |
|
getFlowField(Mat(d_fu), Mat(d_fv), flowFieldForward); |
|
|
|
cout << "\tBackward..." << endl; |
|
|
|
GpuMat d_bu, d_bv; |
|
|
|
d_flow(d_frame1, d_frame0, d_bu, d_bv); |
|
|
|
Mat flowFieldBackward; |
|
getFlowField(Mat(d_bu), Mat(d_bv), flowFieldBackward); |
|
|
|
#ifdef HAVE_OPENGL |
|
cout << "Create Optical Flow Needle Map..." << endl; |
|
|
|
GpuMat d_vertex, d_colors; |
|
|
|
createOpticalFlowNeedleMap(d_fu, d_fv, d_vertex, d_colors); |
|
#endif |
|
|
|
cout << "Interpolating..." << endl; |
|
|
|
// first frame color components |
|
GpuMat d_b, d_g, d_r; |
|
|
|
// second frame color components |
|
GpuMat d_bt, d_gt, d_rt; |
|
|
|
// prepare color components on host and copy them to device memory |
|
Mat channels[3]; |
|
cv::split(frame0Color, channels); |
|
|
|
d_b.upload(channels[0]); |
|
d_g.upload(channels[1]); |
|
d_r.upload(channels[2]); |
|
|
|
cv::split(frame1Color, channels); |
|
|
|
d_bt.upload(channels[0]); |
|
d_gt.upload(channels[1]); |
|
d_rt.upload(channels[2]); |
|
|
|
// temporary buffer |
|
GpuMat d_buf; |
|
|
|
// intermediate frame color components (GPU memory) |
|
GpuMat d_rNew, d_gNew, d_bNew; |
|
|
|
GpuMat d_newFrame; |
|
|
|
vector<Mat> frames; |
|
frames.reserve(static_cast<int>(1.0f / timeStep) + 2); |
|
|
|
frames.push_back(frame0Color); |
|
|
|
// compute interpolated frames |
|
for (float timePos = timeStep; timePos < 1.0f; timePos += timeStep) |
|
{ |
|
// interpolate blue channel |
|
interpolateFrames(d_b, d_bt, d_fu, d_fv, d_bu, d_bv, timePos, d_bNew, d_buf); |
|
|
|
// interpolate green channel |
|
interpolateFrames(d_g, d_gt, d_fu, d_fv, d_bu, d_bv, timePos, d_gNew, d_buf); |
|
|
|
// interpolate red channel |
|
interpolateFrames(d_r, d_rt, d_fu, d_fv, d_bu, d_bv, timePos, d_rNew, d_buf); |
|
|
|
GpuMat channels[] = {d_bNew, d_gNew, d_rNew}; |
|
merge(channels, 3, d_newFrame); |
|
|
|
frames.push_back(Mat(d_newFrame)); |
|
|
|
cout << setprecision(4) << timePos * 100.0f << "%\r"; |
|
} |
|
|
|
frames.push_back(frame1Color); |
|
|
|
cout << setw(5) << "100%" << endl; |
|
|
|
cout << "Done" << endl; |
|
|
|
imshow("Forward flow", flowFieldForward); |
|
imshow("Backward flow", flowFieldBackward); |
|
|
|
#ifdef HAVE_OPENGL |
|
GlArrays arr; |
|
arr.setVertexArray(d_vertex); |
|
arr.setColorArray(d_colors, false); |
|
|
|
setOpenGlDrawCallback("Needle Map", needleMapDraw, &arr); |
|
#endif |
|
|
|
int currentFrame = 0; |
|
|
|
imshow("Interpolated frame", frames[currentFrame]); |
|
|
|
while (true) |
|
{ |
|
int key = toupper(waitKey(10) & 0xff); |
|
|
|
switch (key) |
|
{ |
|
case 27: |
|
return 0; |
|
break; |
|
|
|
case 'A': |
|
if (currentFrame > 0) |
|
--currentFrame; |
|
|
|
imshow("Interpolated frame", frames[currentFrame]); |
|
break; |
|
|
|
case 'S': |
|
if (currentFrame < frames.size() - 1) |
|
++currentFrame; |
|
|
|
imshow("Interpolated frame", frames[currentFrame]); |
|
break; |
|
} |
|
} |
|
} |
|
catch (const exception& ex) |
|
{ |
|
cerr << ex.what() << endl; |
|
return -1; |
|
} |
|
catch (...) |
|
{ |
|
cerr << "Unknow error" << endl; |
|
return -1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
template <typename T> inline T clamp (T x, T a, T b) |
|
{ |
|
return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a)); |
|
} |
|
|
|
template <typename T> inline T mapValue(T x, T a, T b, T c, T d) |
|
{ |
|
x = clamp(x, a, b); |
|
return c + (d - c) * (x - a) / (b - a); |
|
} |
|
|
|
void getFlowField(const Mat& u, const Mat& v, Mat& flowField) |
|
{ |
|
float maxDisplacement = 1.0f; |
|
|
|
for (int i = 0; i < u.rows; ++i) |
|
{ |
|
const float* ptr_u = u.ptr<float>(i); |
|
const float* ptr_v = v.ptr<float>(i); |
|
|
|
for (int j = 0; j < u.cols; ++j) |
|
{ |
|
float d = max(fabsf(ptr_u[j]), fabsf(ptr_v[j])); |
|
|
|
if (d > maxDisplacement) |
|
maxDisplacement = d; |
|
} |
|
} |
|
|
|
flowField.create(u.size(), CV_8UC4); |
|
|
|
for (int i = 0; i < flowField.rows; ++i) |
|
{ |
|
const float* ptr_u = u.ptr<float>(i); |
|
const float* ptr_v = v.ptr<float>(i); |
|
|
|
|
|
Vec4b* row = flowField.ptr<Vec4b>(i); |
|
|
|
for (int j = 0; j < flowField.cols; ++j) |
|
{ |
|
row[j][0] = 0; |
|
row[j][1] = static_cast<unsigned char> (mapValue (-ptr_v[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f)); |
|
row[j][2] = static_cast<unsigned char> (mapValue ( ptr_u[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f)); |
|
row[j][3] = 255; |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENGL |
|
|
|
void needleMapDraw(void* userdata) |
|
{ |
|
const GlArrays* arr = static_cast<const GlArrays*>(userdata); |
|
|
|
GlCamera camera; |
|
camera.setOrthoProjection(0.0, 1.0, 1.0, 0.0, 0.0, 1.0); |
|
camera.lookAt(Point3d(0.0, 0.0, 1.0), Point3d(0.0, 0.0, 0.0), Point3d(0.0, 1.0, 0.0)); |
|
|
|
camera.setupProjectionMatrix(); |
|
camera.setupModelViewMatrix(); |
|
|
|
render(*arr, RenderMode::TRIANGLES); |
|
} |
|
|
|
#endif
|
|
|