Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

172 lines
6.3 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#define PERF_TEST 0
////////////////////////////////////////////////////////////////////////////////
// MatchTemplate
#define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF_NORMED))
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
const char* TEMPLATE_METHOD_NAMES[6] = {"TM_SQDIFF", "TM_SQDIFF_NORMED", "TM_CCORR", "TM_CCORR_NORMED", "TM_CCOEFF", "TM_CCOEFF_NORMED"};
PARAM_TEST_CASE(MatchTemplate8U, cv::Size, TemplateSize, Channels, TemplateMethod)
{
cv::Size size;
cv::Size templ_size;
int cn;
int method;
//std::vector<cv::ocl::Info> oclinfo;
virtual void SetUp()
{
size = GET_PARAM(0);
templ_size = GET_PARAM(1);
cn = GET_PARAM(2);
method = GET_PARAM(3);
//int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
//CV_Assert(devnums > 0);
}
};
TEST_P(MatchTemplate8U, Accuracy)
{
std::cout << "Method: " << TEMPLATE_METHOD_NAMES[method] << std::endl;
std::cout << "Image Size: (" << size.width << ", " << size.height << ")"<< std::endl;
std::cout << "Template Size: (" << templ_size.width << ", " << templ_size.height << ")"<< std::endl;
std::cout << "Channels: " << cn << std::endl;
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
cv::ocl::oclMat dst, ocl_image(image), ocl_templ(templ);
cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);
cv::Mat dst_gold;
cv::matchTemplate(image, templ, dst_gold, method);
char sss [100] = "";
cv::Mat mat_dst;
dst.download(mat_dst);
EXPECT_MAT_NEAR(dst_gold, mat_dst, templ_size.area() * 1e-1, sss);
#if PERF_TEST
{
P_TEST_FULL({}, {cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);}, {});
P_TEST_FULL({}, {cv::matchTemplate(image, templ, dst_gold, method);}, {});
}
#endif // PERF_TEST
}
PARAM_TEST_CASE(MatchTemplate32F, cv::Size, TemplateSize, Channels, TemplateMethod)
{
cv::Size size;
cv::Size templ_size;
int cn;
int method;
//std::vector<cv::ocl::Info> oclinfo;
virtual void SetUp()
{
size = GET_PARAM(0);
templ_size = GET_PARAM(1);
cn = GET_PARAM(2);
method = GET_PARAM(3);
//int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
//CV_Assert(devnums > 0);
}
};
TEST_P(MatchTemplate32F, Accuracy)
{
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
cv::ocl::oclMat dst, ocl_image(image), ocl_templ(templ);
cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);
cv::Mat dst_gold;
cv::matchTemplate(image, templ, dst_gold, method);
char sss [100] = "";
cv::Mat mat_dst;
dst.download(mat_dst);
EXPECT_MAT_NEAR(dst_gold, mat_dst, templ_size.area() * 1e-1, sss);
#if PERF_TEST
{
std::cout << "Method: " << TEMPLATE_METHOD_NAMES[method] << std::endl;
std::cout << "Image Size: (" << size.width << ", " << size.height << ")"<< std::endl;
std::cout << "Template Size: (" << templ_size.width << ", " << templ_size.height << ")"<< std::endl;
std::cout << "Channels: " << cn << std::endl;
P_TEST_FULL({}, {cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);}, {});
P_TEST_FULL({}, {cv::matchTemplate(image, templ, dst_gold, method);}, {});
}
#endif // PERF_TEST
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate8U,
testing::Combine(
DIFFERENT_SIZES,
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16))/*, TemplateSize(cv::Size(30, 30))*/),
testing::Values(Channels(1), Channels(4)),
ALL_TEMPLATE_METHODS
)
);
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate32F, testing::Combine(
DIFFERENT_SIZES,
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16))/*, TemplateSize(cv::Size(30, 30))*/),
testing::Values(Channels(1), Channels(4)),
testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR))));