mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
8.5 KiB
187 lines
8.5 KiB
import cv2 as cv |
|
import argparse |
|
import sys |
|
import numpy as np |
|
|
|
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE) |
|
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL) |
|
|
|
parser = argparse.ArgumentParser(description='Use this script to run object detection deep learning networks using OpenCV.') |
|
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') |
|
parser.add_argument('--model', required=True, |
|
help='Path to a binary file of model contains trained weights. ' |
|
'It could be a file with extensions .caffemodel (Caffe), ' |
|
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet)') |
|
parser.add_argument('--config', |
|
help='Path to a text file of model contains network configuration. ' |
|
'It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet)') |
|
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'], |
|
help='Optional name of an origin framework of the model. ' |
|
'Detect it automatically if it does not set.') |
|
parser.add_argument('--classes', help='Optional path to a text file with names of classes to label detected objects.') |
|
parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0], |
|
help='Preprocess input image by subtracting mean values. ' |
|
'Mean values should be in BGR order.') |
|
parser.add_argument('--scale', type=float, default=1.0, |
|
help='Preprocess input image by multiplying on a scale factor.') |
|
parser.add_argument('--width', type=int, |
|
help='Preprocess input image by resizing to a specific width.') |
|
parser.add_argument('--height', type=int, |
|
help='Preprocess input image by resizing to a specific height.') |
|
parser.add_argument('--rgb', action='store_true', |
|
help='Indicate that model works with RGB input images instead BGR ones.') |
|
parser.add_argument('--thr', type=float, default=0.5, help='Confidence threshold') |
|
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, |
|
help="Choose one of computation backends: " |
|
"%d: default C++ backend, " |
|
"%d: Halide language (http://halide-lang.org/), " |
|
"%d: Intel's Deep Learning Inference Engine (https://software.seek.intel.com/deep-learning-deployment)" % backends) |
|
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, |
|
help='Choose one of target computation devices: ' |
|
'%d: CPU target (by default), ' |
|
'%d: OpenCL' % targets) |
|
args = parser.parse_args() |
|
|
|
# Load names of classes |
|
classes = None |
|
if args.classes: |
|
with open(args.classes, 'rt') as f: |
|
classes = f.read().rstrip('\n').split('\n') |
|
|
|
# Load a network |
|
net = cv.dnn.readNet(args.model, args.config, args.framework) |
|
net.setPreferableBackend(args.backend) |
|
net.setPreferableTarget(args.target) |
|
|
|
confThreshold = args.thr |
|
|
|
def getOutputsNames(net): |
|
layersNames = net.getLayerNames() |
|
return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()] |
|
|
|
def postprocess(frame, outs): |
|
frameHeight = frame.shape[0] |
|
frameWidth = frame.shape[1] |
|
|
|
def drawPred(classId, conf, left, top, right, bottom): |
|
# Draw a bounding box. |
|
cv.rectangle(frame, (left, top), (right, bottom), (0, 255, 0)) |
|
|
|
label = '%.2f' % conf |
|
|
|
# Print a label of class. |
|
if classes: |
|
assert(classId < len(classes)) |
|
label = '%s: %s' % (classes[classId], label) |
|
|
|
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1) |
|
top = max(top, labelSize[1]) |
|
cv.rectangle(frame, (left, top - labelSize[1]), (left + labelSize[0], top + baseLine), (255, 255, 255), cv.FILLED) |
|
cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) |
|
|
|
layerNames = net.getLayerNames() |
|
lastLayerId = net.getLayerId(layerNames[-1]) |
|
lastLayer = net.getLayer(lastLayerId) |
|
|
|
if net.getLayer(0).outputNameToIndex('im_info') != -1: # Faster-RCNN or R-FCN |
|
# Network produces output blob with a shape 1x1xNx7 where N is a number of |
|
# detections and an every detection is a vector of values |
|
# [batchId, classId, confidence, left, top, right, bottom] |
|
assert(len(outs) == 1) |
|
out = outs[0] |
|
for detection in out[0, 0]: |
|
confidence = detection[2] |
|
if confidence > confThreshold: |
|
left = int(detection[3]) |
|
top = int(detection[4]) |
|
right = int(detection[5]) |
|
bottom = int(detection[6]) |
|
classId = int(detection[1]) - 1 # Skip background label |
|
drawPred(classId, confidence, left, top, right, bottom) |
|
elif lastLayer.type == 'DetectionOutput': |
|
# Network produces output blob with a shape 1x1xNx7 where N is a number of |
|
# detections and an every detection is a vector of values |
|
# [batchId, classId, confidence, left, top, right, bottom] |
|
assert(len(outs) == 1) |
|
out = outs[0] |
|
for detection in out[0, 0]: |
|
confidence = detection[2] |
|
if confidence > confThreshold: |
|
left = int(detection[3] * frameWidth) |
|
top = int(detection[4] * frameHeight) |
|
right = int(detection[5] * frameWidth) |
|
bottom = int(detection[6] * frameHeight) |
|
classId = int(detection[1]) - 1 # Skip background label |
|
drawPred(classId, confidence, left, top, right, bottom) |
|
elif lastLayer.type == 'Region': |
|
# Network produces output blob with a shape NxC where N is a number of |
|
# detected objects and C is a number of classes + 4 where the first 4 |
|
# numbers are [center_x, center_y, width, height] |
|
classIds = [] |
|
confidences = [] |
|
boxes = [] |
|
for out in outs: |
|
for detection in out: |
|
scores = detection[5:] |
|
classId = np.argmax(scores) |
|
confidence = scores[classId] |
|
if confidence > confThreshold: |
|
center_x = int(detection[0] * frameWidth) |
|
center_y = int(detection[1] * frameHeight) |
|
width = int(detection[2] * frameWidth) |
|
height = int(detection[3] * frameHeight) |
|
left = center_x - width / 2 |
|
top = center_y - height / 2 |
|
classIds.append(classId) |
|
confidences.append(float(confidence)) |
|
boxes.append([left, top, width, height]) |
|
indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, 0.4) |
|
for i in indices: |
|
i = i[0] |
|
box = boxes[i] |
|
left = box[0] |
|
top = box[1] |
|
width = box[2] |
|
height = box[3] |
|
drawPred(classIds[i], confidences[i], left, top, left + width, top + height) |
|
|
|
# Process inputs |
|
winName = 'Deep learning object detection in OpenCV' |
|
cv.namedWindow(winName, cv.WINDOW_NORMAL) |
|
|
|
def callback(pos): |
|
global confThreshold |
|
confThreshold = pos / 100.0 |
|
|
|
cv.createTrackbar('Confidence threshold, %', winName, int(confThreshold * 100), 99, callback) |
|
|
|
cap = cv.VideoCapture(args.input if args.input else 0) |
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
cv.waitKey() |
|
break |
|
|
|
frameHeight = frame.shape[0] |
|
frameWidth = frame.shape[1] |
|
|
|
# Create a 4D blob from a frame. |
|
inpWidth = args.width if args.width else frameWidth |
|
inpHeight = args.height if args.height else frameHeight |
|
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False) |
|
|
|
# Run a model |
|
net.setInput(blob) |
|
if net.getLayer(0).outputNameToIndex('im_info') != -1: # Faster-RCNN or R-FCN |
|
frame = cv.resize(frame, (inpWidth, inpHeight)) |
|
net.setInput(np.array([inpHeight, inpWidth, 1.6], dtype=np.float32), 'im_info'); |
|
outs = net.forward(getOutputsNames(net)) |
|
|
|
postprocess(frame, outs) |
|
|
|
# Put efficiency information. |
|
t, _ = net.getPerfProfile() |
|
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency()) |
|
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) |
|
|
|
cv.imshow(winName, frame)
|
|
|