mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
338 lines
11 KiB
338 lines
11 KiB
// The "Square Detector" program. |
|
// It loads several images sequentially and tries to find squares in |
|
// each image |
|
|
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/ocl/ocl.hpp" |
|
#include <iostream> |
|
#include <math.h> |
|
#include <string.h> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
#define ACCURACY_CHECK 1 |
|
|
|
#if ACCURACY_CHECK |
|
// check if two vectors of vector of points are near or not |
|
// prior assumption is that they are in correct order |
|
static bool checkPoints( |
|
vector< vector<Point> > set1, |
|
vector< vector<Point> > set2, |
|
int maxDiff = 5) |
|
{ |
|
if(set1.size() != set2.size()) |
|
{ |
|
return false; |
|
} |
|
|
|
for(vector< vector<Point> >::iterator it1 = set1.begin(), it2 = set2.begin(); |
|
it1 < set1.end() && it2 < set2.end(); it1 ++, it2 ++) |
|
{ |
|
vector<Point> pts1 = *it1; |
|
vector<Point> pts2 = *it2; |
|
|
|
|
|
if(pts1.size() != pts2.size()) |
|
{ |
|
return false; |
|
} |
|
for(size_t i = 0; i < pts1.size(); i ++) |
|
{ |
|
Point pt1 = pts1[i], pt2 = pts2[i]; |
|
if(std::abs(pt1.x - pt2.x) > maxDiff || |
|
std::abs(pt1.y - pt2.y) > maxDiff) |
|
{ |
|
return false; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
#endif |
|
|
|
int thresh = 50, N = 11; |
|
const char* wndname = "OpenCL Square Detection Demo"; |
|
|
|
|
|
// helper function: |
|
// finds a cosine of angle between vectors |
|
// from pt0->pt1 and from pt0->pt2 |
|
static double angle( Point pt1, Point pt2, Point pt0 ) |
|
{ |
|
double dx1 = pt1.x - pt0.x; |
|
double dy1 = pt1.y - pt0.y; |
|
double dx2 = pt2.x - pt0.x; |
|
double dy2 = pt2.y - pt0.y; |
|
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10); |
|
} |
|
|
|
|
|
// returns sequence of squares detected on the image. |
|
// the sequence is stored in the specified memory storage |
|
static void findSquares( const Mat& image, vector<vector<Point> >& squares ) |
|
{ |
|
squares.clear(); |
|
Mat pyr, timg, gray0(image.size(), CV_8U), gray; |
|
|
|
// down-scale and upscale the image to filter out the noise |
|
pyrDown(image, pyr, Size(image.cols/2, image.rows/2)); |
|
pyrUp(pyr, timg, image.size()); |
|
vector<vector<Point> > contours; |
|
|
|
// find squares in every color plane of the image |
|
for( int c = 0; c < 3; c++ ) |
|
{ |
|
int ch[] = {c, 0}; |
|
mixChannels(&timg, 1, &gray0, 1, ch, 1); |
|
|
|
// try several threshold levels |
|
for( int l = 0; l < N; l++ ) |
|
{ |
|
// hack: use Canny instead of zero threshold level. |
|
// Canny helps to catch squares with gradient shading |
|
if( l == 0 ) |
|
{ |
|
// apply Canny. Take the upper threshold from slider |
|
// and set the lower to 0 (which forces edges merging) |
|
Canny(gray0, gray, 0, thresh, 5); |
|
// dilate canny output to remove potential |
|
// holes between edge segments |
|
dilate(gray, gray, Mat(), Point(-1,-1)); |
|
} |
|
else |
|
{ |
|
// apply threshold if l!=0: |
|
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0 |
|
cv::threshold(gray0, gray, (l+1)*255/N, 255, THRESH_BINARY); |
|
} |
|
|
|
// find contours and store them all as a list |
|
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE); |
|
|
|
vector<Point> approx; |
|
|
|
// test each contour |
|
for( size_t i = 0; i < contours.size(); i++ ) |
|
{ |
|
// approximate contour with accuracy proportional |
|
// to the contour perimeter |
|
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true); |
|
|
|
// square contours should have 4 vertices after approximation |
|
// relatively large area (to filter out noisy contours) |
|
// and be convex. |
|
// Note: absolute value of an area is used because |
|
// area may be positive or negative - in accordance with the |
|
// contour orientation |
|
if( approx.size() == 4 && |
|
fabs(contourArea(Mat(approx))) > 1000 && |
|
isContourConvex(Mat(approx)) ) |
|
{ |
|
double maxCosine = 0; |
|
|
|
for( int j = 2; j < 5; j++ ) |
|
{ |
|
// find the maximum cosine of the angle between joint edges |
|
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1])); |
|
maxCosine = MAX(maxCosine, cosine); |
|
} |
|
|
|
// if cosines of all angles are small |
|
// (all angles are ~90 degree) then write quandrange |
|
// vertices to resultant sequence |
|
if( maxCosine < 0.3 ) |
|
squares.push_back(approx); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
// returns sequence of squares detected on the image. |
|
// the sequence is stored in the specified memory storage |
|
static void findSquares_ocl( const Mat& image, vector<vector<Point> >& squares ) |
|
{ |
|
squares.clear(); |
|
|
|
Mat gray; |
|
cv::ocl::oclMat pyr_ocl, timg_ocl, gray0_ocl, gray_ocl; |
|
|
|
// down-scale and upscale the image to filter out the noise |
|
ocl::pyrDown(ocl::oclMat(image), pyr_ocl); |
|
ocl::pyrUp(pyr_ocl, timg_ocl); |
|
|
|
vector<vector<Point> > contours; |
|
vector<cv::ocl::oclMat> gray0s; |
|
ocl::split(timg_ocl, gray0s); // split 3 channels into a vector of oclMat |
|
// find squares in every color plane of the image |
|
for( int c = 0; c < 3; c++ ) |
|
{ |
|
gray0_ocl = gray0s[c]; |
|
// try several threshold levels |
|
for( int l = 0; l < N; l++ ) |
|
{ |
|
// hack: use Canny instead of zero threshold level. |
|
// Canny helps to catch squares with gradient shading |
|
if( l == 0 ) |
|
{ |
|
// do canny on OpenCL device |
|
// apply Canny. Take the upper threshold from slider |
|
// and set the lower to 0 (which forces edges merging) |
|
cv::ocl::Canny(gray0_ocl, gray_ocl, 0, thresh, 5); |
|
// dilate canny output to remove potential |
|
// holes between edge segments |
|
ocl::dilate(gray_ocl, gray_ocl, Mat(), Point(-1,-1)); |
|
gray = Mat(gray_ocl); |
|
} |
|
else |
|
{ |
|
// apply threshold if l!=0: |
|
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0 |
|
cv::ocl::threshold(gray0_ocl, gray_ocl, (l+1)*255/N, 255, THRESH_BINARY); |
|
gray = gray_ocl; |
|
} |
|
|
|
// find contours and store them all as a list |
|
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE); |
|
|
|
vector<Point> approx; |
|
// test each contour |
|
for( size_t i = 0; i < contours.size(); i++ ) |
|
{ |
|
// approximate contour with accuracy proportional |
|
// to the contour perimeter |
|
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true); |
|
|
|
// square contours should have 4 vertices after approximation |
|
// relatively large area (to filter out noisy contours) |
|
// and be convex. |
|
// Note: absolute value of an area is used because |
|
// area may be positive or negative - in accordance with the |
|
// contour orientation |
|
if( approx.size() == 4 && |
|
fabs(contourArea(Mat(approx))) > 1000 && |
|
isContourConvex(Mat(approx)) ) |
|
{ |
|
double maxCosine = 0; |
|
for( int j = 2; j < 5; j++ ) |
|
{ |
|
// find the maximum cosine of the angle between joint edges |
|
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1])); |
|
maxCosine = MAX(maxCosine, cosine); |
|
} |
|
|
|
// if cosines of all angles are small |
|
// (all angles are ~90 degree) then write quandrange |
|
// vertices to resultant sequence |
|
if( maxCosine < 0.3 ) |
|
squares.push_back(approx); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
// the function draws all the squares in the image |
|
static void drawSquares( Mat& image, const vector<vector<Point> >& squares ) |
|
{ |
|
for( size_t i = 0; i < squares.size(); i++ ) |
|
{ |
|
const Point* p = &squares[i][0]; |
|
int n = (int)squares[i].size(); |
|
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA); |
|
} |
|
} |
|
|
|
|
|
// draw both pure-C++ and ocl square results onto a single image |
|
static Mat drawSquaresBoth( const Mat& image, |
|
const vector<vector<Point> >& sqsCPP, |
|
const vector<vector<Point> >& sqsOCL |
|
) |
|
{ |
|
Mat imgToShow(Size(image.cols * 2, image.rows), image.type()); |
|
Mat lImg = imgToShow(Rect(Point(0, 0), image.size())); |
|
Mat rImg = imgToShow(Rect(Point(image.cols, 0), image.size())); |
|
image.copyTo(lImg); |
|
image.copyTo(rImg); |
|
drawSquares(lImg, sqsCPP); |
|
drawSquares(rImg, sqsOCL); |
|
float fontScale = 0.8f; |
|
Scalar white = Scalar::all(255), black = Scalar::all(0); |
|
|
|
putText(lImg, "C++", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, black, 2); |
|
putText(rImg, "OCL", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, black, 2); |
|
putText(lImg, "C++", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, white, 1); |
|
putText(rImg, "OCL", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, white, 1); |
|
|
|
return imgToShow; |
|
} |
|
|
|
|
|
int main(int argc, char** argv) |
|
{ |
|
const char* keys = |
|
"{ i | input | | specify input image }" |
|
"{ o | output | squares_output.jpg | specify output save path}"; |
|
CommandLineParser cmd(argc, argv, keys); |
|
string inputName = cmd.get<string>("i"); |
|
string outfile = cmd.get<string>("o"); |
|
if(inputName.empty()) |
|
{ |
|
cout << "Avaible options:" << endl; |
|
cmd.printParams(); |
|
return 0; |
|
} |
|
|
|
vector<ocl::Info> info; |
|
CV_Assert(ocl::getDevice(info)); |
|
int iterations = 10; |
|
namedWindow( wndname, 1 ); |
|
vector<vector<Point> > squares_cpu, squares_ocl; |
|
|
|
Mat image = imread(inputName, 1); |
|
if( image.empty() ) |
|
{ |
|
cout << "Couldn't load " << inputName << endl; |
|
return -1; |
|
} |
|
int j = iterations; |
|
int64 t_ocl = 0, t_cpp = 0; |
|
//warm-ups |
|
cout << "warming up ..." << endl; |
|
findSquares(image, squares_cpu); |
|
findSquares_ocl(image, squares_ocl); |
|
|
|
|
|
#if ACCURACY_CHECK |
|
cout << "Checking ocl accuracy ... " << endl; |
|
cout << (checkPoints(squares_cpu, squares_ocl) ? "Pass" : "Failed") << endl; |
|
#endif |
|
do |
|
{ |
|
int64 t_start = cv::getTickCount(); |
|
findSquares(image, squares_cpu); |
|
t_cpp += cv::getTickCount() - t_start; |
|
|
|
|
|
t_start = cv::getTickCount(); |
|
findSquares_ocl(image, squares_ocl); |
|
t_ocl += cv::getTickCount() - t_start; |
|
cout << "run loop: " << j << endl; |
|
} |
|
while(--j); |
|
cout << "cpp average time: " << 1000.0f * (double)t_cpp / getTickFrequency() / iterations << "ms" << endl; |
|
cout << "ocl average time: " << 1000.0f * (double)t_ocl / getTickFrequency() / iterations << "ms" << endl; |
|
|
|
Mat result = drawSquaresBoth(image, squares_cpu, squares_ocl); |
|
imshow(wndname, result); |
|
imwrite(outfile, result); |
|
cvWaitKey(0); |
|
|
|
return 0; |
|
}
|
|
|