mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
298 lines
11 KiB
298 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
#define CORE_COUNTNONZERO_ERROR_COUNT 1 |
|
|
|
#define MESSAGE_ERROR_COUNT "Count non zero elements returned by OpenCV function is incorrect." |
|
|
|
#define sign(a) a > 0 ? 1 : a == 0 ? 0 : -1 |
|
|
|
#define MAX_WIDTH 100 |
|
#define MAX_HEIGHT 100 |
|
|
|
class CV_CountNonZeroTest: public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_CountNonZeroTest(); |
|
~CV_CountNonZeroTest(); |
|
|
|
protected: |
|
void run (int); |
|
|
|
private: |
|
float eps_32; |
|
double eps_64; |
|
Mat src; |
|
int current_type; |
|
|
|
void generate_src_data(cv::Size size, int type); |
|
void generate_src_data(cv::Size size, int type, int count_non_zero); |
|
void generate_src_stat_data(cv::Size size, int type, int distribution); |
|
|
|
int get_count_non_zero(); |
|
|
|
void print_information(int right, int result); |
|
}; |
|
|
|
CV_CountNonZeroTest::CV_CountNonZeroTest(): eps_32(std::numeric_limits<float>::min()), eps_64(std::numeric_limits<double>::min()), src(Mat()), current_type(-1) {} |
|
CV_CountNonZeroTest::~CV_CountNonZeroTest() {} |
|
|
|
void CV_CountNonZeroTest::generate_src_data(cv::Size size, int type) |
|
{ |
|
src.create(size, CV_MAKETYPE(type, 1)); |
|
|
|
for (int j = 0; j < size.width; ++j) |
|
for (int i = 0; i < size.height; ++i) |
|
switch (type) |
|
{ |
|
case CV_8U: { src.at<uchar>(i, j) = cv::randu<uchar>(); break; } |
|
case CV_8S: { src.at<char>(i, j) = cv::randu<uchar>() - 128; break; } |
|
case CV_16U: { src.at<ushort>(i, j) = cv::randu<ushort>(); break; } |
|
case CV_16S: { src.at<short>(i, j) = cv::randu<short>(); break; } |
|
case CV_32S: { src.at<int>(i, j) = cv::randu<int>(); break; } |
|
case CV_32F: { src.at<float>(i, j) = cv::randu<float>(); break; } |
|
case CV_64F: { src.at<double>(i, j) = cv::randu<double>(); break; } |
|
default: break; |
|
} |
|
} |
|
|
|
void CV_CountNonZeroTest::generate_src_data(cv::Size size, int type, int count_non_zero) |
|
{ |
|
src = Mat::zeros(size, CV_MAKETYPE(type, 1)); |
|
|
|
int n = 0; RNG& rng = ts->get_rng(); |
|
|
|
while (n < count_non_zero) |
|
{ |
|
int i = rng.next()%size.height, j = rng.next()%size.width; |
|
|
|
switch (type) |
|
{ |
|
case CV_8U: { if (!src.at<uchar>(i, j)) {src.at<uchar>(i, j) = cv::randu<uchar>(); n += (src.at<uchar>(i, j) > 0);} break; } |
|
case CV_8S: { if (!src.at<char>(i, j)) {src.at<char>(i, j) = cv::randu<uchar>() - 128; n += abs(sign(src.at<char>(i, j)));} break; } |
|
case CV_16U: { if (!src.at<ushort>(i, j)) {src.at<ushort>(i, j) = cv::randu<ushort>(); n += (src.at<ushort>(i, j) > 0);} break; } |
|
case CV_16S: { if (!src.at<short>(i, j)) {src.at<short>(i, j) = cv::randu<short>(); n += abs(sign(src.at<short>(i, j)));} break; } |
|
case CV_32S: { if (!src.at<int>(i, j)) {src.at<int>(i, j) = cv::randu<int>(); n += abs(sign(src.at<int>(i, j)));} break; } |
|
case CV_32F: { if (fabs(src.at<float>(i, j)) <= eps_32) {src.at<float>(i, j) = cv::randu<float>(); n += (fabs(src.at<float>(i, j)) > eps_32);} break; } |
|
case CV_64F: { if (fabs(src.at<double>(i, j)) <= eps_64) {src.at<double>(i, j) = cv::randu<double>(); n += (fabs(src.at<double>(i, j)) > eps_64);} break; } |
|
|
|
default: break; |
|
} |
|
} |
|
|
|
} |
|
|
|
void CV_CountNonZeroTest::generate_src_stat_data(cv::Size size, int type, int distribution) |
|
{ |
|
src.create(size, CV_MAKETYPE(type, 1)); |
|
|
|
double mean = 0.0, sigma = 1.0; |
|
double left = -1.0, right = 1.0; |
|
|
|
RNG& rng = ts->get_rng(); |
|
|
|
if (distribution == RNG::NORMAL) |
|
rng.fill(src, RNG::NORMAL, Scalar::all(mean), Scalar::all(sigma)); |
|
else if (distribution == RNG::UNIFORM) |
|
rng.fill(src, RNG::UNIFORM, Scalar::all(left), Scalar::all(right)); |
|
} |
|
|
|
int CV_CountNonZeroTest::get_count_non_zero() |
|
{ |
|
int result = 0; |
|
|
|
for (int i = 0; i < src.rows; ++i) |
|
for (int j = 0; j < src.cols; ++j) |
|
{ |
|
if (current_type == CV_8U) result += (src.at<uchar>(i, j) > 0); |
|
else if (current_type == CV_8S) result += abs(sign(src.at<char>(i, j))); |
|
else if (current_type == CV_16U) result += (src.at<ushort>(i, j) > 0); |
|
else if (current_type == CV_16S) result += abs(sign(src.at<short>(i, j))); |
|
else if (current_type == CV_32S) result += abs(sign(src.at<int>(i, j))); |
|
else if (current_type == CV_32F) result += (fabs(src.at<float>(i, j)) > eps_32); |
|
else result += (fabs(src.at<double>(i, j)) > eps_64); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
void CV_CountNonZeroTest::print_information(int right, int result) |
|
{ |
|
cout << endl; cout << "Checking for the work of countNonZero function..." << endl; cout << endl; |
|
cout << "Type of Mat: "; |
|
switch (current_type) |
|
{ |
|
case 0: {cout << "CV_8U"; break;} |
|
case 1: {cout << "CV_8S"; break;} |
|
case 2: {cout << "CV_16U"; break;} |
|
case 3: {cout << "CV_16S"; break;} |
|
case 4: {cout << "CV_32S"; break;} |
|
case 5: {cout << "CV_32F"; break;} |
|
case 6: {cout << "CV_64F"; break;} |
|
default: break; |
|
} |
|
cout << endl; |
|
cout << "Number of rows: " << src.rows << " Number of cols: " << src.cols << endl; |
|
cout << "True count non zero elements: " << right << " Result: " << result << endl; |
|
cout << endl; |
|
} |
|
|
|
void CV_CountNonZeroTest::run(int) |
|
{ |
|
const size_t N = 1500; |
|
|
|
for (int k = 1; k <= 3; ++k) |
|
for (size_t i = 0; i < N; ++i) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
|
|
int w = rng.next()%MAX_WIDTH + 1, h = rng.next()%MAX_HEIGHT + 1; |
|
|
|
current_type = rng.next()%7; |
|
|
|
switch (k) |
|
{ |
|
case 1: { |
|
generate_src_data(Size(w, h), current_type); |
|
int right = get_count_non_zero(), result = countNonZero(src); |
|
if (result != right) |
|
{ |
|
cout << "Number of experiment: " << i << endl; |
|
cout << "Method of data generation: RANDOM" << endl; |
|
print_information(right, result); |
|
CV_Error(CORE_COUNTNONZERO_ERROR_COUNT, MESSAGE_ERROR_COUNT); |
|
return; |
|
} |
|
|
|
break; |
|
} |
|
|
|
case 2: { |
|
int count_non_zero = rng.next()%(w*h); |
|
generate_src_data(Size(w, h), current_type, count_non_zero); |
|
int result = countNonZero(src); |
|
if (result != count_non_zero) |
|
{ |
|
cout << "Number of experiment: " << i << endl; |
|
cout << "Method of data generation: HALF-RANDOM" << endl; |
|
print_information(count_non_zero, result); |
|
CV_Error(CORE_COUNTNONZERO_ERROR_COUNT, MESSAGE_ERROR_COUNT); |
|
return; |
|
} |
|
|
|
break; |
|
} |
|
|
|
case 3: { |
|
int distribution = cv::randu<uchar>()%2; |
|
generate_src_stat_data(Size(w, h), current_type, distribution); |
|
int right = get_count_non_zero(), result = countNonZero(src); |
|
if (right != result) |
|
{ |
|
cout << "Number of experiment: " << i << endl; |
|
cout << "Method of data generation: STATISTIC" << endl; |
|
print_information(right, result); |
|
CV_Error(CORE_COUNTNONZERO_ERROR_COUNT, MESSAGE_ERROR_COUNT); |
|
return; |
|
} |
|
|
|
break; |
|
} |
|
|
|
default: break; |
|
} |
|
} |
|
} |
|
|
|
TEST (Core_CountNonZero, accuracy) { CV_CountNonZeroTest test; test.safe_run(); } |
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, int> > CountNonZeroND; |
|
|
|
TEST_P (CountNonZeroND, ndim) |
|
{ |
|
const int dims = get<0>(GetParam()); |
|
const int type = get<1>(GetParam()); |
|
const int ONE_SIZE = 5; |
|
|
|
vector<int> sizes(dims); |
|
std::fill(sizes.begin(), sizes.end(), ONE_SIZE); |
|
|
|
Mat data(sizes, CV_MAKETYPE(type, 1)); |
|
data = 0; |
|
EXPECT_EQ(0, cv::countNonZero(data)); |
|
data = Scalar::all(1); |
|
int expected = static_cast<int>(pow(static_cast<float>(ONE_SIZE), dims)); |
|
EXPECT_EQ(expected, cv::countNonZero(data)); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Core, CountNonZeroND, |
|
testing::Combine( |
|
testing::Range(2, 9), |
|
testing::Values(CV_8U, CV_8S, CV_32F) |
|
) |
|
); |
|
|
|
|
|
typedef testing::TestWithParam<tuple<int, cv::Size> > CountNonZeroBig; |
|
|
|
TEST_P(CountNonZeroBig, /**/) |
|
{ |
|
const int type = get<0>(GetParam()); |
|
const Size sz = get<1>(GetParam()); |
|
|
|
EXPECT_EQ(0, cv::countNonZero(cv::Mat::zeros(sz, type))); |
|
EXPECT_EQ(sz.area(), cv::countNonZero(cv::Mat::ones(sz, type))); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Core, CountNonZeroBig, |
|
testing::Combine( |
|
testing::Values(CV_8UC1, CV_32FC1), |
|
testing::Values(Size(1, 524190), Size(524190, 1), Size(3840, 2160)) |
|
) |
|
); |
|
|
|
}} // namespace
|
|
|