Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

872 lines
36 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef CHESSBOARD_HPP_
#define CHESSBOARD_HPP_
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include <vector>
#include <set>
#include <map>
namespace cv {
namespace details{
/**
* \brief Fast point sysmetric cross detector based on a localized radon transformation
*/
class FastX : public cv::Feature2D
{
public:
struct Parameters
{
float strength; //!< minimal strength of a valid junction in dB
float resolution; //!< angle resolution in radians
int branches; //!< the number of branches
int min_scale; //!< scale level [0..8]
int max_scale; //!< scale level [0..8]
bool filter; //!< post filter feature map to improve impulse response
bool super_resolution; //!< up-sample
Parameters()
{
strength = 40;
resolution = float(CV_PI*0.25);
branches = 2;
min_scale = 2;
max_scale = 5;
super_resolution = true;
filter = true;
}
};
public:
FastX(const Parameters &config = Parameters());
virtual ~FastX(){};
void reconfigure(const Parameters &para);
//declaration to be wrapped by rbind
void detect(cv::InputArray image,std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::Mat())override
{cv::Feature2D::detect(image.getMat(),keypoints,mask.getMat());}
virtual void detectAndCompute(cv::InputArray image,
cv::InputArray mask,
std::vector<cv::KeyPoint>& keypoints,
cv::OutputArray descriptors,
bool useProvidedKeyPoints = false)override;
void detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints,
std::vector<cv::Mat> &feature_maps,
const cv::Mat& mask=cv::Mat())const;
void detectImpl(const cv::Mat& image,
std::vector<cv::Mat> &rotated_images,
std::vector<cv::Mat> &feature_maps,
const cv::Mat& mask=cv::Mat())const;
void findKeyPoints(const std::vector<cv::Mat> &feature_map,
std::vector<cv::KeyPoint>& keypoints,
const cv::Mat& mask = cv::Mat())const;
std::vector<std::vector<float> > calcAngles(const std::vector<cv::Mat> &rotated_images,
std::vector<cv::KeyPoint> &keypoints)const;
// define pure virtual methods
virtual int descriptorSize()const override{return 0;};
virtual int descriptorType()const override{return 0;};
virtual void operator()( cv::InputArray image, cv::InputArray mask, std::vector<cv::KeyPoint>& keypoints, cv::OutputArray descriptors, bool useProvidedKeypoints=false )const
{
descriptors.clear();
detectImpl(image.getMat(),keypoints,mask);
if(!useProvidedKeypoints) // suppress compiler warning
return;
return;
}
protected:
virtual void computeImpl( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors)const
{
descriptors = cv::Mat();
detectImpl(image,keypoints);
}
private:
void detectImpl(const cv::Mat& _src, std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask)const;
virtual void detectImpl(cv::InputArray image, std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::noArray())const;
void rotate(float angle,cv::InputArray img,cv::Size size,cv::OutputArray out)const;
void calcFeatureMap(const cv::Mat &images,cv::Mat& out)const;
private:
Parameters parameters;
};
/**
* \brief Ellipse class
*/
class Ellipse
{
public:
Ellipse();
Ellipse(const cv::Point2f &center, const cv::Size2f &axes, float angle);
void draw(cv::InputOutputArray img,const cv::Scalar &color = cv::Scalar::all(120))const;
bool contains(const cv::Point2f &pt)const;
cv::Point2f getCenter()const;
const cv::Size2f &getAxes()const;
private:
cv::Point2f center;
cv::Size2f axes;
float angle,cosf,sinf;
};
/**
* \brief Chessboard corner detector
*
* The detectors tries to find all chessboard corners of an imaged
* chessboard and returns them as an ordered vector of KeyPoints.
* Thereby, the left top corner has index 0 and the bottom right
* corner n*m-1.
*/
class Chessboard: public cv::Feature2D
{
public:
static const int DUMMY_FIELD_SIZE = 100; // in pixel
/**
* \brief Configuration of a chessboard corner detector
*
*/
struct Parameters
{
cv::Size chessboard_size; //!< size of the chessboard
int min_scale; //!< scale level [0..8]
int max_scale; //!< scale level [0..8]
int max_points; //!< maximal number of points regarded
int max_tests; //!< maximal number of tested hypothesis
bool super_resolution; //!< use super-repsolution for chessboard detection
bool larger; //!< indicates if larger boards should be returned
bool marker; //!< indicates that valid boards must have a white and black cirlce marker used for orientation
Parameters()
{
chessboard_size = cv::Size(9,6);
min_scale = 3;
max_scale = 4;
super_resolution = true;
max_points = 200;
max_tests = 50;
larger = false;
marker = false;
}
Parameters(int scale,int _max_points):
min_scale(scale),
max_scale(scale),
max_points(_max_points)
{
chessboard_size = cv::Size(9,6);
}
};
/**
* \brief Gets the 3D objects points for the chessboard assuming the
* left top corner is located at the origin.
*
* \param[in] pattern_size Number of rows and cols of the pattern
* \param[in] cell_size Size of one cell
*
* \returns Returns the object points as CV_32FC3
*/
static cv::Mat getObjectPoints(const cv::Size &pattern_size,float cell_size);
/**
* \brief Class for searching and storing chessboard corners.
*
* The search is based on a feature map having strong pixel
* values at positions where a chessboard corner is located.
*
* The board must be rectangular but supports empty cells
*
*/
class Board
{
public:
/**
* \brief Estimates the position of the next point on a line using cross ratio constrain
*
* cross ratio:
* d12/d34 = d13/d24
*
* point order on the line:
* pt1 --> pt2 --> pt3 --> pt4
*
* \param[in] pt1 First point coordinate
* \param[in] pt2 Second point coordinate
* \param[in] pt3 Third point coordinate
* \param[out] pt4 Forth point coordinate
*
*/
static bool estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2,cv::Point2f &p3);
// using 1D homography
static bool estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2,const cv::Point2f &p3, cv::Point2f &p4);
/**
* \brief Checks if all points of a row or column have a valid cross ratio constraint
*
* cross ratio:
* d12/d34 = d13/d24
*
* point order on the row/column:
* pt1 --> pt2 --> pt3 --> pt4
*
* \param[in] points THe points of the row/column
*
*/
static bool checkRowColumn(const std::vector<cv::Point2f> &points);
/**
* \brief Estimates the search area for the next point on the line using cross ratio
*
* point order on the line:
* (p0) --> p1 --> p2 --> p3 --> search area
*
* \param[in] p1 First point coordinate
* \param[in] p2 Second point coordinate
* \param[in] p3 Third point coordinate
* \param[in] p Percentage of d34 used for the search area width and height [0..1]
* \param[out] ellipse The search area
* \param[in] p0 optional point to improve accuracy
*
* \return Returns false if no search area can be calculated
*
*/
static bool estimateSearchArea(const cv::Point2f &p1,const cv::Point2f &p2,const cv::Point2f &p3,float p,
Ellipse &ellipse,const cv::Point2f *p0 =NULL);
/**
* \brief Estimates the search area for a specific point based on the given homography
*
* \param[in] H homography describing the transformation from ideal board to real one
* \param[in] row Row of the point
* \param[in] col Col of the point
* \param[in] p Percentage [0..1]
*
* \return Returns false if no search area can be calculated
*
*/
static Ellipse estimateSearchArea(cv::Mat H,int row, int col,float p,int field_size = DUMMY_FIELD_SIZE);
/**
* \brief Searches for the maximum in a given search area
*
* \param[in] map feature map
* \param[in] ellipse search area
* \param[in] min_val Minimum value of the maximum to be accepted as maximum
*
* \return Returns a negative value if all points are outside the ellipse
*
*/
static float findMaxPoint(cv::flann::Index &index,const cv::Mat &data,const Ellipse &ellipse,float white_angle,float black_angle,cv::Point2f &pt);
/**
* \brief Searches for the next point using cross ratio constrain
*
* \param[in] index flann index
* \param[in] data extended flann data
* \param[in] pt1
* \param[in] pt2
* \param[in] pt3
* \param[in] white_angle
* \param[in] black_angle
* \param[in] min_response
* \param[out] point The resulting point
*
* \return Returns false if no point could be found
*
*/
static bool findNextPoint(cv::flann::Index &index,const cv::Mat &data,
const cv::Point2f &pt1,const cv::Point2f &pt2, const cv::Point2f &pt3,
float white_angle,float black_angle,float min_response,cv::Point2f &point);
/**
* \brief Creates a new Board object
*
*/
Board(float white_angle=0,float black_angle=0);
Board(const cv::Size &size, const std::vector<cv::Point2f> &points,float white_angle=0,float black_angle=0);
Board(const Chessboard::Board &other);
virtual ~Board();
Board& operator=(const Chessboard::Board &other);
/**
* \brief Draws the corners into the given image
*
* \param[in] m The image
* \param[out] m The resulting image
* \param[in] H optional homography to calculate search area
*
*/
void draw(cv::InputArray m,cv::OutputArray out,cv::InputArray H=cv::Mat())const;
/**
* \brief Estimates the pose of the chessboard
*
*/
bool estimatePose(const cv::Size2f &real_size,cv::InputArray _K,cv::OutputArray rvec,cv::OutputArray tvec)const;
/**
* \brief Clears all internal data of the object
*
*/
void clear();
/**
* \brief Returns the angle of the black diagnonale
*
*/
float getBlackAngle()const;
/**
* \brief Returns the angle of the black diagnonale
*
*/
float getWhiteAngle()const;
/**
* \brief Initializes a 3x3 grid from 9 corner coordinates
*
* All points must be ordered:
* p0 p1 p2
* p3 p4 p5
* p6 p7 p8
*
* \param[in] points vector of points
*
* \return Returns false if the grid could not be initialized
*/
bool init(const std::vector<cv::Point2f> points);
/**
* \brief Returns true if the board is empty
*
*/
bool isEmpty() const;
/**
* \brief Returns all board corners as ordered vector
*
* The left top corner has index 0 and the bottom right
* corner rows*cols-1. All corners which only belong to
* empty cells are returned as NaN.
*/
std::vector<cv::Point2f> getCorners(bool ball=true) const;
/**
* \brief Returns all board corners as ordered vector of KeyPoints
*
* The left top corner has index 0 and the bottom right
* corner rows*cols-1.
*
* \param[in] ball if set to false only non empty points are returned
*
*/
std::vector<cv::KeyPoint> getKeyPoints(bool ball=true) const;
/**
* \brief Returns the centers of the chessboard cells
*
* The left top corner has index 0 and the bottom right
* corner (rows-1)*(cols-1)-1.
*
*/
std::vector<cv::Point2f> getCellCenters() const;
/**
* \brief Returns all cells as mats of four points each describing their corners.
*
* The left top cell has index 0
*
*/
std::vector<cv::Mat> getCells(float shrink_factor = 1.0,bool bwhite=true,bool bblack = true) const;
/**
* \brief Estimates the homography between an ideal board
* and reality based on the already recovered points
*
* \param[in] rect selecting a subset of the already recovered points
* \param[in] field_size The field size of the ideal board
*
*/
cv::Mat estimateHomography(cv::Rect rect,int field_size = DUMMY_FIELD_SIZE)const;
/**
* \brief Estimates the homography between an ideal board
* and reality based on the already recovered points
*
* \param[in] field_size The field size of the ideal board
*
*/
cv::Mat estimateHomography(int field_size = DUMMY_FIELD_SIZE)const;
/**
* \brief Warp image to match ideal checkerboard
*
*/
cv::Mat warpImage(cv::InputArray image)const;
/**
* \brief Returns the size of the board
*
*/
cv::Size getSize() const;
/**
* \brief Returns the number of cols
*
*/
size_t colCount() const;
/**
* \brief Returns the number of rows
*
*/
size_t rowCount() const;
/**
* \brief Returns the inner contour of the board including only valid corners
*
* \info the contour might be non squared if not all points of the board are defined
*
*/
std::vector<cv::Point2f> getContour()const;
/**
* \brief Masks the found board in the given image
*
*/
void maskImage(cv::InputOutputArray img,const cv::Scalar &color=cv::Scalar::all(0))const;
/**
* \brief Grows the board in all direction until no more corners are found in the feature map
*
* \param[in] data CV_32FC1 data of the flann index
* \param[in] flann_index flann index
*
* \returns the number of grows
*/
int grow(const cv::Mat &data,cv::flann::Index &flann_index);
/**
* \brief Validates all corners using guided search based on the given homography
*
* \param[in] data CV_32FC1 data of the flann index
* \param[in] flann_index flann index
* \param[in] h Homography describing the transformation from ideal board to the real one
* \param[in] min_response Min response
*
* \returns the number of valid corners
*/
int validateCorners(const cv::Mat &data,cv::flann::Index &flann_index,const cv::Mat &h,float min_response=0);
/**
* \brief check that no corner is used more than once
*
* \returns Returns false if a corner is used more than once
*/
bool checkUnique()const;
/**
* \brief Returns false if the angles of the contour are smaller than 35°
*
*/
bool validateContour()const;
/**
\brief delete left column of the board
*/
bool shrinkLeft();
/**
\brief delete right column of the board
*/
bool shrinkRight();
/**
\brief shrink first row of the board
*/
bool shrinkTop();
/**
\brief delete last row of the board
*/
bool shrinkBottom();
/**
* \brief Grows the board to the left by adding one column.
*
* \param[in] map CV_32FC1 feature map
*
* \returns Returns false if the feature map has no maxima at the requested positions
*/
bool growLeft(const cv::Mat &map,cv::flann::Index &flann_index);
void growLeft();
/**
* \brief Grows the board to the top by adding one row.
*
* \param[in] map CV_32FC1 feature map
*
* \returns Returns false if the feature map has no maxima at the requested positions
*/
bool growTop(const cv::Mat &map,cv::flann::Index &flann_index);
void growTop();
/**
* \brief Grows the board to the right by adding one column.
*
* \param[in] map CV_32FC1 feature map
*
* \returns Returns false if the feature map has no maxima at the requested positions
*/
bool growRight(const cv::Mat &map,cv::flann::Index &flann_index);
void growRight();
/**
* \brief Grows the board to the bottom by adding one row.
*
* \param[in] map CV_32FC1 feature map
*
* \returns Returns false if the feature map has no maxima at the requested positions
*/
bool growBottom(const cv::Mat &map,cv::flann::Index &flann_index);
void growBottom();
/**
* \brief Adds one column on the left side
*
* \param[in] points The corner coordinates
*
*/
void addColumnLeft(const std::vector<cv::Point2f> &points);
/**
* \brief Adds one column at the top
*
* \param[in] points The corner coordinates
*
*/
void addRowTop(const std::vector<cv::Point2f> &points);
/**
* \brief Adds one column on the right side
*
* \param[in] points The corner coordinates
*
*/
void addColumnRight(const std::vector<cv::Point2f> &points);
/**
* \brief Adds one row at the bottom
*
* \param[in] points The corner coordinates
*
*/
void addRowBottom(const std::vector<cv::Point2f> &points);
/**
* \brief Rotates the board 90° degrees to the left
*/
void rotateLeft();
/**
* \brief Rotates the board 90° degrees to the right
*/
void rotateRight();
/**
* \brief Flips the board along its local x(width) coordinate direction
*/
void flipVertical();
/**
* \brief Flips the board along its local y(height) coordinate direction
*/
void flipHorizontal();
/**
* \brief Flips and rotates the board so that the angle of
* either the black or white diagonal is bigger than the x
* and y axis of the board and from a right handed
* coordinate system
*/
void normalizeOrientation(bool bblack=true);
/**
* \brief Flips and rotates the board so that the marker
* is normalized
*/
bool normalizeMarkerOrientation();
/**
* \brief Exchanges the stored board with the board stored in other
*/
void swap(Chessboard::Board &other);
bool operator==(const Chessboard::Board& other) const {return rows*cols == other.rows*other.cols;};
bool operator< (const Chessboard::Board& other) const {return rows*cols < other.rows*other.cols;};
bool operator> (const Chessboard::Board& other) const {return rows*cols > other.rows*other.cols;};
bool operator>= (const cv::Size& size)const { return rows*cols >= size.width*size.height; };
/**
* \brief Returns a specific corner
*
* \info raises runtime_error if row col does not exists
*/
cv::Point2f& getCorner(int row,int col);
/**
* \brief Returns true if the cell is empty meaning at least one corner is NaN
*/
bool isCellEmpty(int row,int col);
/**
* \brief Returns the mapping from all corners idx to only valid corners idx
*/
std::map<int,int> getMapping()const;
/**
* \brief Returns true if the cell is black
*
*/
bool isCellBlack(int row,int col)const;
/**
* \brief Returns true if the cell has a round marker at its
* center
*
*/
bool hasCellMarker(int row,int col);
/**
* \brief Detects round markers in the chessboard fields based
* on the given image and the already recoverd board corners
*
* \returns Returns the number of found markes
*
*/
int detectMarkers(cv::InputArray image);
/**
* \brief Calculates the average edge sharpness for the chessboard
*
* \param[in] image The image where the chessboard was detected
* \param[in] rise_distante Rise distance 0.8 means 10% ... 90%
* \param[in] vertical by default only edge response for horiontal lines are calculated
*
* \returns Scalar(sharpness, average min_val, average max_val)
*
* \author aduda@krakenrobotik.de
*/
cv::Scalar calcEdgeSharpness(cv::InputArray image,float rise_distance=0.8,bool vertical=false,cv::OutputArray sharpness=cv::noArray());
/**
* \brief Gets the 3D objects points for the chessboard
* assuming the left top corner is located at the origin. In
* case the board as a marker, the white marker cell is at position zero
*
* \param[in] cell_size Size of one cell
*
* \returns Returns the object points as CV_32FC3
*/
cv::Mat getObjectPoints(float cell_size)const;
/**
* \brief Returns the angle the board is rotated agains the x-axis of the image plane
* \returns Returns the object points as CV_32FC3
*/
float getAngle()const;
/**
* \brief Returns true if the main direction of the board is close to the image x-axis than y-axis
*/
bool isHorizontal()const;
/**
* \brief Updates the search angles
*/
void setAngles(float white,float black);
private:
// stores one cell
// in general a cell is initialized by the Board so that:
// * all corners are always pointing to a valid cv::Point2f
// * depending on the position left,top,right and bottom might be set to NaN
// * A cell is empty if at least one corner is NaN
struct Cell
{
cv::Point2f *top_left,*top_right,*bottom_right,*bottom_left; // corners
Cell *left,*top,*right,*bottom; // neighbouring cells
bool black; // set to true if cell is black
bool marker; // set to true if cell has a round marker in its center
Cell();
bool empty()const; // indicates if the cell is empty (one of its corners has NaN)
int getRow()const;
int getCol()const;
cv::Point2f getCenter()const;
bool isInside(const cv::Point2f &pt)const; // check if point is inside the cell
};
// corners
enum CornerIndex
{
TOP_LEFT,
TOP_RIGHT,
BOTTOM_RIGHT,
BOTTOM_LEFT
};
Cell* getCell(int row,int column); // returns a specific cell
const Cell* getCell(int row,int column)const; // returns a specific cell
void drawEllipses(const std::vector<Ellipse> &ellipses);
// Iterator for iterating over board corners
class PointIter
{
public:
PointIter(Cell *cell,CornerIndex corner_index);
PointIter(const PointIter &other);
void operator=(const PointIter &other);
bool valid() const; // returns if the pointer is pointing to a cell
bool left(bool check_empty=false); // moves one corner to the left or returns false
bool right(bool check_empty=false); // moves one corner to the right or returns false
bool bottom(bool check_empty=false); // moves one corner to the bottom or returns false
bool top(bool check_empty=false); // moves one corner to the top or returns false
bool checkCorner()const; // returns true if the current corner belongs to at least one
// none empty cell
bool isNaN()const; // returns true if the current corner is NaN
const cv::Point2f* operator*() const; // current corner coordinate
cv::Point2f* operator*(); // current corner coordinate
const cv::Point2f* operator->() const; // current corner coordinate
cv::Point2f* operator->(); // current corner coordinate
Cell *getCell(); // current cell
private:
CornerIndex corner_index;
Cell *cell;
};
std::vector<Cell*> cells; // storage for all board cells
std::vector<cv::Point2f*> corners; // storage for all corners
Cell *top_left; // pointer to the top left corner of the board in its local coordinate system
int rows; // number of inner pattern rows
int cols; // number of inner pattern cols
float white_angle,black_angle;
};
public:
/**
* \brief Creates a chessboard corner detectors
*
* \param[in] config Configuration used to detect chessboard corners
*
*/
Chessboard(const Parameters &config = Parameters());
virtual ~Chessboard();
void reconfigure(const Parameters &config = Parameters());
Parameters getPara()const;
/*
* \brief Detects chessboard corners in the given image.
*
* The detectors tries to find all chessboard corners of an imaged
* chessboard and returns them as an ordered vector of KeyPoints.
* Thereby, the left top corner has index 0 and the bottom right
* corner n*m-1.
*
* \param[in] image The image
* \param[out] keypoints The detected corners as a vector of ordered KeyPoints
* \param[in] mask Currently not supported
*
*/
void detect(cv::InputArray image,std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::Mat())override
{cv::Feature2D::detect(image.getMat(),keypoints,mask.getMat());}
virtual void detectAndCompute(cv::InputArray image,cv::InputArray mask, std::vector<cv::KeyPoint>& keypoints,cv::OutputArray descriptors,
bool useProvidedKeyPoints = false)override;
/*
* \brief Detects chessboard corners in the given image.
*
* The detectors tries to find all chessboard corners of an imaged
* chessboard and returns them as an ordered vector of KeyPoints.
* Thereby, the left top corner has index 0 and the bottom right
* corner n*m-1.
*
* \param[in] image The image
* \param[out] keypoints The detected corners as a vector of ordered KeyPoints
* \param[out] feature_maps The feature map generated by LRJT and used to find the corners
* \param[in] mask Currently not supported
*
*/
void detectImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints,std::vector<cv::Mat> &feature_maps,const cv::Mat& mask)const;
Chessboard::Board detectImpl(const cv::Mat& image,std::vector<cv::Mat> &feature_maps,const cv::Mat& mask)const;
// define pure virtual methods
virtual int descriptorSize()const override{return 0;};
virtual int descriptorType()const override{return 0;};
virtual void operator()( cv::InputArray image, cv::InputArray mask, std::vector<cv::KeyPoint>& keypoints, cv::OutputArray descriptors, bool useProvidedKeypoints=false )const
{
descriptors.clear();
detectImpl(image.getMat(),keypoints,mask);
if(!useProvidedKeypoints) // suppress compiler warning
return;
return;
}
protected:
virtual void computeImpl( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors)const
{
descriptors = cv::Mat();
detectImpl(image,keypoints);
}
// indicates why a board could not be initialized for a certain keypoint
enum BState
{
MISSING_POINTS = 0, // at least 5 points are needed
MISSING_PAIRS = 1, // at least two pairs are needed
WRONG_PAIR_ANGLE = 2, // angle between pairs is too small
WRONG_CONFIGURATION = 3, // point configuration is wrong and does not belong to a board
FOUND_BOARD = 4 // board was found
};
void findKeyPoints(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints,std::vector<cv::Mat> &feature_maps,
std::vector<std::vector<float> > &angles ,const cv::Mat& mask)const;
cv::Mat buildData(const std::vector<cv::KeyPoint>& keypoints)const;
std::vector<cv::KeyPoint> getInitialPoints(cv::flann::Index &flann_index,const cv::Mat &data,const cv::KeyPoint &center,float white_angle,float black_angle, float min_response = 0)const;
BState generateBoards(cv::flann::Index &flann_index,const cv::Mat &data, const cv::KeyPoint &center,
float white_angle,float black_angle,float min_response,const cv::Mat &img,
std::vector<Chessboard::Board> &boards)const;
private:
void detectImpl(const cv::Mat&,std::vector<cv::KeyPoint>&, const cv::Mat& mast =cv::Mat())const;
virtual void detectImpl(cv::InputArray image, std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::noArray())const;
private:
Parameters parameters; // storing the configuration of the detector
};
}} // end namespace details and cv
#endif