Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

198 lines
6.1 KiB

.. _Basic_Linear_Transform:
Changing the contrast and brightness of an image!
***************************************************
Goal
=====
In this tutorial you will learn how to:
* Access pixel values
* Initialize a matrix with zeros
* Learn what :saturate_cast:`saturate_cast <>` does and why it is useful
* Get some cool info about pixel transformations
Cool Theory
=================
.. note::
The explanation below belongs to the book `Computer Vision: Algorithms and Applications <http://szeliski.org/Book/>`_ by Richard Szeliski
Image Processing
--------------------
* A general image processing operator is a function that takes one or more input images and produces an output image.
* Image transforms can be seen as:
* Point operators (pixel transforms)
* Neighborhood (area-based) operators
Pixel Transforms
^^^^^^^^^^^^^^^^^
* In this kind of image processing transform, each output pixel's value depends on only the corresponding input pixel value (plus, potentially, some globally collected information or parameters).
* Examples of such operators include *brightness and contrast adjustments* as well as color correction and transformations.
Brightness and contrast adjustments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Two commonly used point processes are *multiplication* and *addition* with a constant:
.. math::
g(x) = \alpha f(x) + \beta
* The parameters :math:`\alpha > 0` and :math:`\beta` are often called the *gain* and *bias* parameters; sometimes these parameters are said to control *contrast* and *brightness* respectively.
* You can think of :math:`f(x)` as the source image pixels and :math:`g(x)` as the output image pixels. Then, more conveniently we can write the expression as:
.. math::
g(i,j) = \alpha \cdot f(i,j) + \beta
where :math:`i` and :math:`j` indicates that the pixel is located in the *i-th* row and *j-th* column.
Code
=====
* The following code performs the operation :math:`g(i,j) = \alpha \cdot f(i,j) + \beta`
* Here it is:
.. code-block:: cpp
#include <cv.h>
#include <highgui.h>
#include <iostream>
using namespace cv;
double alpha; /**< Simple contrast control */
int beta; /**< Simple brightness control */
int main( int argc, char** argv )
{
/// Read image given by user
Mat image = imread( argv[1] );
Mat new_image = Mat::zeros( image.size(), image.type() );
/// Initialize values
std::cout<<" Basic Linear Transforms "<<std::endl;
std::cout<<"-------------------------"<<std::endl;
std::cout<<"* Enter the alpha value [1.0-3.0]: ";std::cin>>alpha;
std::cout<<"* Enter the beta value [0-100]: "; std::cin>>beta;
/// Do the operation new_image(i,j) = alpha*image(i,j) + beta
for( int y = 0; y < image.rows; y++ )
{ for( int x = 0; x < image.cols; x++ )
{ for( int c = 0; c < 3; c++ )
{
new_image.at<Vec3b>(y,x)[c] = saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta );
}
}
}
/// Create Windows
namedWindow("Original Image", 1);
namedWindow("New Image", 1);
/// Show stuff
imshow("Original Image", image);
imshow("New Image", new_image);
/// Wait until user press some key
waitKey();
return 0;
}
Explanation
============
#. We begin by creating parameters to save :math:`\alpha` and :math:`\beta` to be entered by the user:
.. code-block:: cpp
double alpha;
int beta;
#. We load an image using :imread:`imread <>` and save it in a Mat object:
.. code-block:: cpp
Mat image = imread( argv[1] );
#. Now, since we will make some transformations to this image, we need a new Mat object to store it. Also, we want this to have the following features:
* Initial pixel values equal to zero
* Same size and type as the original image
.. code-block:: cpp
Mat new_image = Mat::zeros( image.size(), image.type() );
We observe that :mat_zeros:`Mat::zeros <>` returns a Matlab-style zero initializer based on *image.size()* and *image.type()*
#. Now, to perform the operation :math:`g(i,j) = \alpha \cdot f(i,j) + \beta` we will access to each pixel in image. Since we are operating with RGB images, we will have three values per pixel (R, G and B), so we will also access them separately. Here is the piece of code:
.. code-block:: cpp
for( int y = 0; y < image.rows; y++ )
{ for( int x = 0; x < image.cols; x++ )
{ for( int c = 0; c < 3; c++ )
{ new_image.at<Vec3b>(y,x)[c] = saturate_cast<uchar>( alpha*( image.at<Vec3b>(y,x)[c] ) + beta ); }
}
}
Notice the following:
* To access each pixel in the images we are using this syntax: *image.at<Vec3b>(y,x)[c]* where *y* is the row, *x* is the column and *c* is R, G or B (0, 1 or 2).
* Since the operation :math:`\alpha \cdot p(i,j) + \beta` can give values out of range or not integers (if :math:`\alpha` is float), we use :saturate_cast:`saturate_cast <>` to make sure the values are valid.
#. Finally, we create windows and show the images, the usual way.
.. code-block:: cpp
namedWindow("Original Image", 1);
namedWindow("New Image", 1);
imshow("Original Image", image);
imshow("New Image", new_image);
waitKey(0);
.. note::
Instead of using the **for** loops to access each pixel, we could have simply used this command:
.. code-block:: cpp
image.convertTo(new_image, -1, alpha, beta);
where :convert_to:`convertTo <>` would effectively perform *new_image = a*image + beta*. However, we wanted to show you how to access each pixel. In any case, both methods give the same result.
Result
=======
* Running our code and using :math:`\alpha = 2.2` and :math:`\beta = 50`
.. code-block:: bash
$ ./BasicLinearTransforms lena.png
Basic Linear Transforms
-------------------------
* Enter the alpha value [1.0-3.0]: 2.2
* Enter the beta value [0-100]: 50
* We get this:
.. image:: images/Basic_Linear_Transform_Tutorial_Result_0.png
:height: 400px
:alt: Basic Linear Transform - Final Result
:align: center