mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
276 lines
9.5 KiB
276 lines
9.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/photo.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
//#include "opencv2/highgui.hpp" |
|
#include "hdr_common.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
class CalibrateDebevecImpl : public CalibrateDebevec |
|
{ |
|
public: |
|
CalibrateDebevecImpl(int _samples, float _lambda, bool _random) : |
|
name("CalibrateDebevec"), |
|
samples(_samples), |
|
lambda(_lambda), |
|
random(_random), |
|
w(tringleWeights()) |
|
{ |
|
} |
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray _times) |
|
{ |
|
std::vector<Mat> images; |
|
src.getMatVector(images); |
|
Mat times = _times.getMat(); |
|
|
|
CV_Assert(images.size() == times.total()); |
|
checkImageDimensions(images); |
|
CV_Assert(images[0].depth() == CV_8U); |
|
|
|
int channels = images[0].channels(); |
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels); |
|
|
|
dst.create(LDR_SIZE, 1, CV_32FCC); |
|
Mat result = dst.getMat(); |
|
|
|
std::vector<Point> sample_points; |
|
if(random) { |
|
for(int i = 0; i < samples; i++) { |
|
sample_points.push_back(Point(rand() % images[0].cols, rand() % images[0].rows)); |
|
} |
|
} else { |
|
int x_points = static_cast<int>(sqrt(static_cast<double>(samples) * images[0].cols / images[0].rows)); |
|
int y_points = samples / x_points; |
|
int step_x = images[0].cols / x_points; |
|
int step_y = images[0].rows / y_points; |
|
|
|
for(int i = 0, x = step_x / 2; i < x_points; i++, x += step_x) { |
|
for(int j = 0, y = step_y; j < y_points; j++, y += step_y) { |
|
sample_points.push_back(Point(x, y)); |
|
} |
|
} |
|
} |
|
|
|
std::vector<Mat> result_split(channels); |
|
for(int channel = 0; channel < channels; channel++) { |
|
Mat A = Mat::zeros((int)sample_points.size() * (int)images.size() + LDR_SIZE + 1, LDR_SIZE + (int)sample_points.size(), CV_32F); |
|
Mat B = Mat::zeros(A.rows, 1, CV_32F); |
|
|
|
int eq = 0; |
|
for(size_t i = 0; i < sample_points.size(); i++) { |
|
for(size_t j = 0; j < images.size(); j++) { |
|
|
|
int val = images[j].ptr()[3*(sample_points[i].y * images[j].cols + sample_points[j].x) + channel]; |
|
A.at<float>(eq, val) = w.at<float>(val); |
|
A.at<float>(eq, LDR_SIZE + (int)i) = -w.at<float>(val); |
|
B.at<float>(eq, 0) = w.at<float>(val) * log(times.at<float>((int)j)); |
|
eq++; |
|
} |
|
} |
|
A.at<float>(eq, LDR_SIZE / 2) = 1; |
|
eq++; |
|
|
|
for(int i = 0; i < 254; i++) { |
|
A.at<float>(eq, i) = lambda * w.at<float>(i + 1); |
|
A.at<float>(eq, i + 1) = -2 * lambda * w.at<float>(i + 1); |
|
A.at<float>(eq, i + 2) = lambda * w.at<float>(i + 1); |
|
eq++; |
|
} |
|
Mat solution; |
|
solve(A, B, solution, DECOMP_SVD); |
|
solution.rowRange(0, LDR_SIZE).copyTo(result_split[channel]); |
|
} |
|
merge(result_split, result); |
|
exp(result, result); |
|
} |
|
|
|
int getSamples() const { return samples; } |
|
void setSamples(int val) { samples = val; } |
|
|
|
float getLambda() const { return lambda; } |
|
void setLambda(float val) { lambda = val; } |
|
|
|
bool getRandom() const { return random; } |
|
void setRandom(bool val) { random = val; } |
|
|
|
void write(FileStorage& fs) const |
|
{ |
|
fs << "name" << name |
|
<< "samples" << samples |
|
<< "lambda" << lambda |
|
<< "random" << static_cast<int>(random); |
|
} |
|
|
|
void read(const FileNode& fn) |
|
{ |
|
FileNode n = fn["name"]; |
|
CV_Assert(n.isString() && String(n) == name); |
|
samples = fn["samples"]; |
|
lambda = fn["lambda"]; |
|
int random_val = fn["random"]; |
|
random = (random_val != 0); |
|
} |
|
|
|
protected: |
|
String name; |
|
int samples; |
|
float lambda; |
|
bool random; |
|
Mat w; |
|
}; |
|
|
|
Ptr<CalibrateDebevec> createCalibrateDebevec(int samples, float lambda, bool random) |
|
{ |
|
return makePtr<CalibrateDebevecImpl>(samples, lambda, random); |
|
} |
|
|
|
class CalibrateRobertsonImpl : public CalibrateRobertson |
|
{ |
|
public: |
|
CalibrateRobertsonImpl(int _max_iter, float _threshold) : |
|
name("CalibrateRobertson"), |
|
max_iter(_max_iter), |
|
threshold(_threshold), |
|
weight(RobertsonWeights()) |
|
{ |
|
} |
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArray _times) |
|
{ |
|
std::vector<Mat> images; |
|
src.getMatVector(images); |
|
Mat times = _times.getMat(); |
|
|
|
CV_Assert(images.size() == times.total()); |
|
checkImageDimensions(images); |
|
CV_Assert(images[0].depth() == CV_8U); |
|
|
|
int channels = images[0].channels(); |
|
int CV_32FCC = CV_MAKETYPE(CV_32F, channels); |
|
|
|
dst.create(LDR_SIZE, 1, CV_32FCC); |
|
Mat response = dst.getMat(); |
|
response = linearResponse(3) / (LDR_SIZE / 2.0f); |
|
|
|
Mat card = Mat::zeros(LDR_SIZE, 1, CV_32FCC); |
|
for(size_t i = 0; i < images.size(); i++) { |
|
uchar *ptr = images[i].ptr(); |
|
for(size_t pos = 0; pos < images[i].total(); pos++) { |
|
for(int c = 0; c < channels; c++, ptr++) { |
|
card.at<Vec3f>(*ptr)[c] += 1; |
|
} |
|
} |
|
} |
|
card = 1.0 / card; |
|
|
|
Ptr<MergeRobertson> merge = createMergeRobertson(); |
|
for(int iter = 0; iter < max_iter; iter++) { |
|
|
|
radiance = Mat::zeros(images[0].size(), CV_32FCC); |
|
merge->process(images, radiance, times, response); |
|
|
|
Mat new_response = Mat::zeros(LDR_SIZE, 1, CV_32FC3); |
|
for(size_t i = 0; i < images.size(); i++) { |
|
uchar *ptr = images[i].ptr(); |
|
float* rad_ptr = radiance.ptr<float>(); |
|
for(size_t pos = 0; pos < images[i].total(); pos++) { |
|
for(int c = 0; c < channels; c++, ptr++, rad_ptr++) { |
|
new_response.at<Vec3f>(*ptr)[c] += times.at<float>((int)i) * *rad_ptr; |
|
} |
|
} |
|
} |
|
new_response = new_response.mul(card); |
|
for(int c = 0; c < 3; c++) { |
|
float middle = new_response.at<Vec3f>(LDR_SIZE / 2)[c]; |
|
for(int i = 0; i < LDR_SIZE; i++) { |
|
new_response.at<Vec3f>(i)[c] /= middle; |
|
} |
|
} |
|
float diff = static_cast<float>(sum(sum(abs(new_response - response)))[0] / channels); |
|
new_response.copyTo(response); |
|
if(diff < threshold) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
int getMaxIter() const { return max_iter; } |
|
void setMaxIter(int val) { max_iter = val; } |
|
|
|
float getThreshold() const { return threshold; } |
|
void setThreshold(float val) { threshold = val; } |
|
|
|
Mat getRadiance() const { return radiance; } |
|
|
|
void write(FileStorage& fs) const |
|
{ |
|
fs << "name" << name |
|
<< "max_iter" << max_iter |
|
<< "threshold" << threshold; |
|
} |
|
|
|
void read(const FileNode& fn) |
|
{ |
|
FileNode n = fn["name"]; |
|
CV_Assert(n.isString() && String(n) == name); |
|
max_iter = fn["max_iter"]; |
|
threshold = fn["threshold"]; |
|
} |
|
|
|
protected: |
|
String name; |
|
int max_iter; |
|
float threshold; |
|
Mat weight, radiance; |
|
}; |
|
|
|
Ptr<CalibrateRobertson> createCalibrateRobertson(int max_iter, float threshold) |
|
{ |
|
return makePtr<CalibrateRobertsonImpl>(max_iter, threshold); |
|
} |
|
|
|
}
|
|
|