mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2246 lines
66 KiB
2246 lines
66 KiB
/********************************************************************* |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright (C) 2011 The Autonomous Systems Lab (ASL), ETH Zurich, |
|
* Stefan Leutenegger, Simon Lynen and Margarita Chli. |
|
* Copyright (c) 2009, Willow Garage, Inc. |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above |
|
* copyright notice, this list of conditions and the following |
|
* disclaimer in the documentation and/or other materials provided |
|
* with the distribution. |
|
* * Neither the name of the Willow Garage nor the names of its |
|
* contributors may be used to endorse or promote products derived |
|
* from this software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
*********************************************************************/ |
|
|
|
/* |
|
BRISK - Binary Robust Invariant Scalable Keypoints |
|
Reference implementation of |
|
[1] Stefan Leutenegger,Margarita Chli and Roland Siegwart, BRISK: |
|
Binary Robust Invariant Scalable Keypoints, in Proceedings of |
|
the IEEE International Conference on Computer Vision (ICCV2011). |
|
*/ |
|
|
|
#include <opencv2/features2d.hpp> |
|
#include <opencv2/core.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <fstream> |
|
#include <stdlib.h> |
|
|
|
#include "fast_score.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
// a layer in the Brisk detector pyramid |
|
class CV_EXPORTS BriskLayer |
|
{ |
|
public: |
|
// constructor arguments |
|
struct CV_EXPORTS CommonParams |
|
{ |
|
static const int HALFSAMPLE = 0; |
|
static const int TWOTHIRDSAMPLE = 1; |
|
}; |
|
// construct a base layer |
|
BriskLayer(const cv::Mat& img, float scale = 1.0f, float offset = 0.0f); |
|
// derive a layer |
|
BriskLayer(const BriskLayer& layer, int mode); |
|
|
|
// Fast/Agast without non-max suppression |
|
void |
|
getAgastPoints(int threshold, std::vector<cv::KeyPoint>& keypoints); |
|
|
|
// get scores - attention, this is in layer coordinates, not scale=1 coordinates! |
|
inline int |
|
getAgastScore(int x, int y, int threshold) const; |
|
inline int |
|
getAgastScore_5_8(int x, int y, int threshold) const; |
|
inline int |
|
getAgastScore(float xf, float yf, int threshold, float scale = 1.0f) const; |
|
|
|
// accessors |
|
inline const cv::Mat& |
|
img() const |
|
{ |
|
return img_; |
|
} |
|
inline const cv::Mat& |
|
scores() const |
|
{ |
|
return scores_; |
|
} |
|
inline float |
|
scale() const |
|
{ |
|
return scale_; |
|
} |
|
inline float |
|
offset() const |
|
{ |
|
return offset_; |
|
} |
|
|
|
// half sampling |
|
static inline void |
|
halfsample(const cv::Mat& srcimg, cv::Mat& dstimg); |
|
// two third sampling |
|
static inline void |
|
twothirdsample(const cv::Mat& srcimg, cv::Mat& dstimg); |
|
|
|
private: |
|
// access gray values (smoothed/interpolated) |
|
inline int |
|
value(const cv::Mat& mat, float xf, float yf, float scale) const; |
|
// the image |
|
cv::Mat img_; |
|
// its Fast scores |
|
cv::Mat_<uchar> scores_; |
|
// coordinate transformation |
|
float scale_; |
|
float offset_; |
|
// agast |
|
cv::Ptr<cv::FastFeatureDetector> fast_9_16_; |
|
int pixel_5_8_[25]; |
|
int pixel_9_16_[25]; |
|
}; |
|
|
|
class CV_EXPORTS BriskScaleSpace |
|
{ |
|
public: |
|
// construct telling the octaves number: |
|
BriskScaleSpace(int _octaves = 3); |
|
~BriskScaleSpace(); |
|
|
|
// construct the image pyramids |
|
void |
|
constructPyramid(const cv::Mat& image); |
|
|
|
// get Keypoints |
|
void |
|
getKeypoints(const int _threshold, std::vector<cv::KeyPoint>& keypoints); |
|
|
|
protected: |
|
// nonmax suppression: |
|
inline bool |
|
isMax2D(const int layer, const int x_layer, const int y_layer); |
|
// 1D (scale axis) refinement: |
|
inline float |
|
refine1D(const float s_05, const float s0, const float s05, float& max) const; // around octave |
|
inline float |
|
refine1D_1(const float s_05, const float s0, const float s05, float& max) const; // around intra |
|
inline float |
|
refine1D_2(const float s_05, const float s0, const float s05, float& max) const; // around octave 0 only |
|
// 2D maximum refinement: |
|
inline float |
|
subpixel2D(const int s_0_0, const int s_0_1, const int s_0_2, const int s_1_0, const int s_1_1, const int s_1_2, |
|
const int s_2_0, const int s_2_1, const int s_2_2, float& delta_x, float& delta_y) const; |
|
// 3D maximum refinement centered around (x_layer,y_layer) |
|
inline float |
|
refine3D(const int layer, const int x_layer, const int y_layer, float& x, float& y, float& scale, bool& ismax) const; |
|
|
|
// interpolated score access with recalculation when needed: |
|
inline int |
|
getScoreAbove(const int layer, const int x_layer, const int y_layer) const; |
|
inline int |
|
getScoreBelow(const int layer, const int x_layer, const int y_layer) const; |
|
|
|
// return the maximum of score patches above or below |
|
inline float |
|
getScoreMaxAbove(const int layer, const int x_layer, const int y_layer, const int threshold, bool& ismax, |
|
float& dx, float& dy) const; |
|
inline float |
|
getScoreMaxBelow(const int layer, const int x_layer, const int y_layer, const int threshold, bool& ismax, |
|
float& dx, float& dy) const; |
|
|
|
// the image pyramids: |
|
int layers_; |
|
std::vector<BriskLayer> pyramid_; |
|
|
|
// some constant parameters: |
|
static const float safetyFactor_; |
|
static const float basicSize_; |
|
}; |
|
|
|
const float BRISK::basicSize_ = 12.0f; |
|
const unsigned int BRISK::scales_ = 64; |
|
const float BRISK::scalerange_ = 30.f; // 40->4 Octaves - else, this needs to be adjusted... |
|
const unsigned int BRISK::n_rot_ = 1024; // discretization of the rotation look-up |
|
|
|
const float BriskScaleSpace::safetyFactor_ = 1.0f; |
|
const float BriskScaleSpace::basicSize_ = 12.0f; |
|
|
|
// constructors |
|
BRISK::BRISK(int thresh, int octaves_in, float patternScale) |
|
{ |
|
threshold = thresh; |
|
octaves = octaves_in; |
|
|
|
std::vector<float> rList; |
|
std::vector<int> nList; |
|
|
|
// this is the standard pattern found to be suitable also |
|
rList.resize(5); |
|
nList.resize(5); |
|
const double f = 0.85 * patternScale; |
|
|
|
rList[0] = (float)(f * 0.); |
|
rList[1] = (float)(f * 2.9); |
|
rList[2] = (float)(f * 4.9); |
|
rList[3] = (float)(f * 7.4); |
|
rList[4] = (float)(f * 10.8); |
|
|
|
nList[0] = 1; |
|
nList[1] = 10; |
|
nList[2] = 14; |
|
nList[3] = 15; |
|
nList[4] = 20; |
|
|
|
generateKernel(rList, nList, (float)(5.85 * patternScale), (float)(8.2 * patternScale)); |
|
|
|
} |
|
BRISK::BRISK(std::vector<float> &radiusList, std::vector<int> &numberList, float dMax, float dMin, |
|
std::vector<int> indexChange) |
|
{ |
|
generateKernel(radiusList, numberList, dMax, dMin, indexChange); |
|
} |
|
|
|
void |
|
BRISK::generateKernel(std::vector<float> &radiusList, std::vector<int> &numberList, float dMax, |
|
float dMin, std::vector<int> indexChange) |
|
{ |
|
|
|
dMax_ = dMax; |
|
dMin_ = dMin; |
|
|
|
// get the total number of points |
|
const int rings = (int)radiusList.size(); |
|
CV_Assert(radiusList.size() != 0 && radiusList.size() == numberList.size()); |
|
points_ = 0; // remember the total number of points |
|
for (int ring = 0; ring < rings; ring++) |
|
{ |
|
points_ += numberList[ring]; |
|
} |
|
// set up the patterns |
|
patternPoints_ = new BriskPatternPoint[points_ * scales_ * n_rot_]; |
|
BriskPatternPoint* patternIterator = patternPoints_; |
|
|
|
// define the scale discretization: |
|
static const float lb_scale = (float)(std::log(scalerange_) / std::log(2.0)); |
|
static const float lb_scale_step = lb_scale / (scales_); |
|
|
|
scaleList_ = new float[scales_]; |
|
sizeList_ = new unsigned int[scales_]; |
|
|
|
const float sigma_scale = 1.3f; |
|
|
|
for (unsigned int scale = 0; scale < scales_; ++scale) |
|
{ |
|
scaleList_[scale] = (float)std::pow((double) 2.0, (double) (scale * lb_scale_step)); |
|
sizeList_[scale] = 0; |
|
|
|
// generate the pattern points look-up |
|
double alpha, theta; |
|
for (size_t rot = 0; rot < n_rot_; ++rot) |
|
{ |
|
theta = double(rot) * 2 * CV_PI / double(n_rot_); // this is the rotation of the feature |
|
for (int ring = 0; ring < rings; ++ring) |
|
{ |
|
for (int num = 0; num < numberList[ring]; ++num) |
|
{ |
|
// the actual coordinates on the circle |
|
alpha = (double(num)) * 2 * CV_PI / double(numberList[ring]); |
|
patternIterator->x = (float)(scaleList_[scale] * radiusList[ring] * cos(alpha + theta)); // feature rotation plus angle of the point |
|
patternIterator->y = (float)(scaleList_[scale] * radiusList[ring] * sin(alpha + theta)); |
|
// and the gaussian kernel sigma |
|
if (ring == 0) |
|
{ |
|
patternIterator->sigma = sigma_scale * scaleList_[scale] * 0.5f; |
|
} |
|
else |
|
{ |
|
patternIterator->sigma = (float)(sigma_scale * scaleList_[scale] * (double(radiusList[ring])) |
|
* sin(CV_PI / numberList[ring])); |
|
} |
|
// adapt the sizeList if necessary |
|
const unsigned int size = cvCeil(((scaleList_[scale] * radiusList[ring]) + patternIterator->sigma)) + 1; |
|
if (sizeList_[scale] < size) |
|
{ |
|
sizeList_[scale] = size; |
|
} |
|
|
|
// increment the iterator |
|
++patternIterator; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// now also generate pairings |
|
shortPairs_ = new BriskShortPair[points_ * (points_ - 1) / 2]; |
|
longPairs_ = new BriskLongPair[points_ * (points_ - 1) / 2]; |
|
noShortPairs_ = 0; |
|
noLongPairs_ = 0; |
|
|
|
// fill indexChange with 0..n if empty |
|
unsigned int indSize = (unsigned int)indexChange.size(); |
|
if (indSize == 0) |
|
{ |
|
indexChange.resize(points_ * (points_ - 1) / 2); |
|
indSize = (unsigned int)indexChange.size(); |
|
|
|
for (unsigned int i = 0; i < indSize; i++) |
|
indexChange[i] = i; |
|
} |
|
const float dMin_sq = dMin_ * dMin_; |
|
const float dMax_sq = dMax_ * dMax_; |
|
for (unsigned int i = 1; i < points_; i++) |
|
{ |
|
for (unsigned int j = 0; j < i; j++) |
|
{ //(find all the pairs) |
|
// point pair distance: |
|
const float dx = patternPoints_[j].x - patternPoints_[i].x; |
|
const float dy = patternPoints_[j].y - patternPoints_[i].y; |
|
const float norm_sq = (dx * dx + dy * dy); |
|
if (norm_sq > dMin_sq) |
|
{ |
|
// save to long pairs |
|
BriskLongPair& longPair = longPairs_[noLongPairs_]; |
|
longPair.weighted_dx = int((dx / (norm_sq)) * 2048.0 + 0.5); |
|
longPair.weighted_dy = int((dy / (norm_sq)) * 2048.0 + 0.5); |
|
longPair.i = i; |
|
longPair.j = j; |
|
++noLongPairs_; |
|
} |
|
else if (norm_sq < dMax_sq) |
|
{ |
|
// save to short pairs |
|
CV_Assert(noShortPairs_ < indSize); |
|
// make sure the user passes something sensible |
|
BriskShortPair& shortPair = shortPairs_[indexChange[noShortPairs_]]; |
|
shortPair.j = j; |
|
shortPair.i = i; |
|
++noShortPairs_; |
|
} |
|
} |
|
} |
|
|
|
// no bits: |
|
strings_ = (int) ceil((float(noShortPairs_)) / 128.0) * 4 * 4; |
|
} |
|
|
|
// simple alternative: |
|
inline int |
|
BRISK::smoothedIntensity(const cv::Mat& image, const cv::Mat& integral, const float key_x, |
|
const float key_y, const unsigned int scale, const unsigned int rot, |
|
const unsigned int point) const |
|
{ |
|
|
|
// get the float position |
|
const BriskPatternPoint& briskPoint = patternPoints_[scale * n_rot_ * points_ + rot * points_ + point]; |
|
const float xf = briskPoint.x + key_x; |
|
const float yf = briskPoint.y + key_y; |
|
const int x = int(xf); |
|
const int y = int(yf); |
|
const int& imagecols = image.cols; |
|
|
|
// get the sigma: |
|
const float sigma_half = briskPoint.sigma; |
|
const float area = 4.0f * sigma_half * sigma_half; |
|
|
|
// calculate output: |
|
int ret_val; |
|
if (sigma_half < 0.5) |
|
{ |
|
//interpolation multipliers: |
|
const int r_x = (int)((xf - x) * 1024); |
|
const int r_y = (int)((yf - y) * 1024); |
|
const int r_x_1 = (1024 - r_x); |
|
const int r_y_1 = (1024 - r_y); |
|
const uchar* ptr = &image.at<uchar>(y, x); |
|
size_t step = image.step; |
|
// just interpolate: |
|
ret_val = r_x_1 * r_y_1 * ptr[0] + r_x * r_y_1 * ptr[1] + |
|
r_x * r_y * ptr[step] + r_x_1 * r_y * ptr[step+1]; |
|
return (ret_val + 512) / 1024; |
|
} |
|
|
|
// this is the standard case (simple, not speed optimized yet): |
|
|
|
// scaling: |
|
const int scaling = (int)(4194304.0 / area); |
|
const int scaling2 = int(float(scaling) * area / 1024.0); |
|
|
|
// the integral image is larger: |
|
const int integralcols = imagecols + 1; |
|
|
|
// calculate borders |
|
const float x_1 = xf - sigma_half; |
|
const float x1 = xf + sigma_half; |
|
const float y_1 = yf - sigma_half; |
|
const float y1 = yf + sigma_half; |
|
|
|
const int x_left = int(x_1 + 0.5); |
|
const int y_top = int(y_1 + 0.5); |
|
const int x_right = int(x1 + 0.5); |
|
const int y_bottom = int(y1 + 0.5); |
|
|
|
// overlap area - multiplication factors: |
|
const float r_x_1 = float(x_left) - x_1 + 0.5f; |
|
const float r_y_1 = float(y_top) - y_1 + 0.5f; |
|
const float r_x1 = x1 - float(x_right) + 0.5f; |
|
const float r_y1 = y1 - float(y_bottom) + 0.5f; |
|
const int dx = x_right - x_left - 1; |
|
const int dy = y_bottom - y_top - 1; |
|
const int A = (int)((r_x_1 * r_y_1) * scaling); |
|
const int B = (int)((r_x1 * r_y_1) * scaling); |
|
const int C = (int)((r_x1 * r_y1) * scaling); |
|
const int D = (int)((r_x_1 * r_y1) * scaling); |
|
const int r_x_1_i = (int)(r_x_1 * scaling); |
|
const int r_y_1_i = (int)(r_y_1 * scaling); |
|
const int r_x1_i = (int)(r_x1 * scaling); |
|
const int r_y1_i = (int)(r_y1 * scaling); |
|
|
|
if (dx + dy > 2) |
|
{ |
|
// now the calculation: |
|
uchar* ptr = image.data + x_left + imagecols * y_top; |
|
// first the corners: |
|
ret_val = A * int(*ptr); |
|
ptr += dx + 1; |
|
ret_val += B * int(*ptr); |
|
ptr += dy * imagecols + 1; |
|
ret_val += C * int(*ptr); |
|
ptr -= dx + 1; |
|
ret_val += D * int(*ptr); |
|
|
|
// next the edges: |
|
int* ptr_integral = (int*) integral.data + x_left + integralcols * y_top + 1; |
|
// find a simple path through the different surface corners |
|
const int tmp1 = (*ptr_integral); |
|
ptr_integral += dx; |
|
const int tmp2 = (*ptr_integral); |
|
ptr_integral += integralcols; |
|
const int tmp3 = (*ptr_integral); |
|
ptr_integral++; |
|
const int tmp4 = (*ptr_integral); |
|
ptr_integral += dy * integralcols; |
|
const int tmp5 = (*ptr_integral); |
|
ptr_integral--; |
|
const int tmp6 = (*ptr_integral); |
|
ptr_integral += integralcols; |
|
const int tmp7 = (*ptr_integral); |
|
ptr_integral -= dx; |
|
const int tmp8 = (*ptr_integral); |
|
ptr_integral -= integralcols; |
|
const int tmp9 = (*ptr_integral); |
|
ptr_integral--; |
|
const int tmp10 = (*ptr_integral); |
|
ptr_integral -= dy * integralcols; |
|
const int tmp11 = (*ptr_integral); |
|
ptr_integral++; |
|
const int tmp12 = (*ptr_integral); |
|
|
|
// assign the weighted surface integrals: |
|
const int upper = (tmp3 - tmp2 + tmp1 - tmp12) * r_y_1_i; |
|
const int middle = (tmp6 - tmp3 + tmp12 - tmp9) * scaling; |
|
const int left = (tmp9 - tmp12 + tmp11 - tmp10) * r_x_1_i; |
|
const int right = (tmp5 - tmp4 + tmp3 - tmp6) * r_x1_i; |
|
const int bottom = (tmp7 - tmp6 + tmp9 - tmp8) * r_y1_i; |
|
|
|
return (ret_val + upper + middle + left + right + bottom + scaling2 / 2) / scaling2; |
|
} |
|
|
|
// now the calculation: |
|
uchar* ptr = image.data + x_left + imagecols * y_top; |
|
// first row: |
|
ret_val = A * int(*ptr); |
|
ptr++; |
|
const uchar* end1 = ptr + dx; |
|
for (; ptr < end1; ptr++) |
|
{ |
|
ret_val += r_y_1_i * int(*ptr); |
|
} |
|
ret_val += B * int(*ptr); |
|
// middle ones: |
|
ptr += imagecols - dx - 1; |
|
uchar* end_j = ptr + dy * imagecols; |
|
for (; ptr < end_j; ptr += imagecols - dx - 1) |
|
{ |
|
ret_val += r_x_1_i * int(*ptr); |
|
ptr++; |
|
const uchar* end2 = ptr + dx; |
|
for (; ptr < end2; ptr++) |
|
{ |
|
ret_val += int(*ptr) * scaling; |
|
} |
|
ret_val += r_x1_i * int(*ptr); |
|
} |
|
// last row: |
|
ret_val += D * int(*ptr); |
|
ptr++; |
|
const uchar* end3 = ptr + dx; |
|
for (; ptr < end3; ptr++) |
|
{ |
|
ret_val += r_y1_i * int(*ptr); |
|
} |
|
ret_val += C * int(*ptr); |
|
|
|
return (ret_val + scaling2 / 2) / scaling2; |
|
} |
|
|
|
inline bool |
|
RoiPredicate(const float minX, const float minY, const float maxX, const float maxY, const KeyPoint& keyPt) |
|
{ |
|
const Point2f& pt = keyPt.pt; |
|
return (pt.x < minX) || (pt.x >= maxX) || (pt.y < minY) || (pt.y >= maxY); |
|
} |
|
|
|
// computes the descriptor |
|
void |
|
BRISK::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, |
|
OutputArray _descriptors, bool useProvidedKeypoints) const |
|
{ |
|
bool doOrientation=true; |
|
if (useProvidedKeypoints) |
|
doOrientation = false; |
|
|
|
// If the user specified cv::noArray(), this will yield false. Otherwise it will return true. |
|
bool doDescriptors = _descriptors.needed(); |
|
|
|
computeDescriptorsAndOrOrientation(_image, _mask, keypoints, _descriptors, doDescriptors, doOrientation, |
|
useProvidedKeypoints); |
|
} |
|
|
|
void |
|
BRISK::computeDescriptorsAndOrOrientation(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, |
|
OutputArray _descriptors, bool doDescriptors, bool doOrientation, |
|
bool useProvidedKeypoints) const |
|
{ |
|
Mat image = _image.getMat(), mask = _mask.getMat(); |
|
if( image.type() != CV_8UC1 ) |
|
cvtColor(image, image, COLOR_BGR2GRAY); |
|
|
|
if (!useProvidedKeypoints) |
|
{ |
|
doOrientation = true; |
|
computeKeypointsNoOrientation(_image, _mask, keypoints); |
|
} |
|
|
|
//Remove keypoints very close to the border |
|
size_t ksize = keypoints.size(); |
|
std::vector<int> kscales; // remember the scale per keypoint |
|
kscales.resize(ksize); |
|
static const float log2 = 0.693147180559945f; |
|
static const float lb_scalerange = (float)(std::log(scalerange_) / (log2)); |
|
std::vector<cv::KeyPoint>::iterator beginning = keypoints.begin(); |
|
std::vector<int>::iterator beginningkscales = kscales.begin(); |
|
static const float basicSize06 = basicSize_ * 0.6f; |
|
for (size_t k = 0; k < ksize; k++) |
|
{ |
|
unsigned int scale; |
|
scale = std::max((int) (scales_ / lb_scalerange * (std::log(keypoints[k].size / (basicSize06)) / log2) + 0.5), 0); |
|
// saturate |
|
if (scale >= scales_) |
|
scale = scales_ - 1; |
|
kscales[k] = scale; |
|
const int border = sizeList_[scale]; |
|
const int border_x = image.cols - border; |
|
const int border_y = image.rows - border; |
|
if (RoiPredicate((float)border, (float)border, (float)border_x, (float)border_y, keypoints[k])) |
|
{ |
|
keypoints.erase(beginning + k); |
|
kscales.erase(beginningkscales + k); |
|
if (k == 0) |
|
{ |
|
beginning = keypoints.begin(); |
|
beginningkscales = kscales.begin(); |
|
} |
|
ksize--; |
|
k--; |
|
} |
|
} |
|
|
|
// first, calculate the integral image over the whole image: |
|
// current integral image |
|
cv::Mat _integral; // the integral image |
|
cv::integral(image, _integral); |
|
|
|
int* _values = new int[points_]; // for temporary use |
|
|
|
// resize the descriptors: |
|
cv::Mat descriptors; |
|
if (doDescriptors) |
|
{ |
|
_descriptors.create((int)ksize, strings_, CV_8U); |
|
descriptors = _descriptors.getMat(); |
|
descriptors.setTo(0); |
|
} |
|
|
|
// now do the extraction for all keypoints: |
|
|
|
// temporary variables containing gray values at sample points: |
|
int t1; |
|
int t2; |
|
|
|
// the feature orientation |
|
uchar* ptr = descriptors.data; |
|
for (size_t k = 0; k < ksize; k++) |
|
{ |
|
cv::KeyPoint& kp = keypoints[k]; |
|
const int& scale = kscales[k]; |
|
int* pvalues = _values; |
|
const float& x = kp.pt.x; |
|
const float& y = kp.pt.y; |
|
|
|
if (doOrientation) |
|
{ |
|
// get the gray values in the unrotated pattern |
|
for (unsigned int i = 0; i < points_; i++) |
|
{ |
|
*(pvalues++) = smoothedIntensity(image, _integral, x, y, scale, 0, i); |
|
} |
|
|
|
int direction0 = 0; |
|
int direction1 = 0; |
|
// now iterate through the long pairings |
|
const BriskLongPair* max = longPairs_ + noLongPairs_; |
|
for (BriskLongPair* iter = longPairs_; iter < max; ++iter) |
|
{ |
|
t1 = *(_values + iter->i); |
|
t2 = *(_values + iter->j); |
|
const int delta_t = (t1 - t2); |
|
// update the direction: |
|
const int tmp0 = delta_t * (iter->weighted_dx) / 1024; |
|
const int tmp1 = delta_t * (iter->weighted_dy) / 1024; |
|
direction0 += tmp0; |
|
direction1 += tmp1; |
|
} |
|
kp.angle = (float)(atan2((float) direction1, (float) direction0) / CV_PI * 180.0); |
|
if (kp.angle < 0) |
|
kp.angle += 360.f; |
|
} |
|
|
|
if (!doDescriptors) |
|
continue; |
|
|
|
int theta; |
|
if (kp.angle==-1) |
|
{ |
|
// don't compute the gradient direction, just assign a rotation of 0° |
|
theta = 0; |
|
} |
|
else |
|
{ |
|
theta = (int) (n_rot_ * (kp.angle / (360.0)) + 0.5); |
|
if (theta < 0) |
|
theta += n_rot_; |
|
if (theta >= int(n_rot_)) |
|
theta -= n_rot_; |
|
} |
|
|
|
// now also extract the stuff for the actual direction: |
|
// let us compute the smoothed values |
|
int shifter = 0; |
|
|
|
//unsigned int mean=0; |
|
pvalues = _values; |
|
// get the gray values in the rotated pattern |
|
for (unsigned int i = 0; i < points_; i++) |
|
{ |
|
*(pvalues++) = smoothedIntensity(image, _integral, x, y, scale, theta, i); |
|
} |
|
|
|
// now iterate through all the pairings |
|
unsigned int* ptr2 = (unsigned int*) ptr; |
|
const BriskShortPair* max = shortPairs_ + noShortPairs_; |
|
for (BriskShortPair* iter = shortPairs_; iter < max; ++iter) |
|
{ |
|
t1 = *(_values + iter->i); |
|
t2 = *(_values + iter->j); |
|
if (t1 > t2) |
|
{ |
|
*ptr2 |= ((1) << shifter); |
|
|
|
} // else already initialized with zero |
|
// take care of the iterators: |
|
++shifter; |
|
if (shifter == 32) |
|
{ |
|
shifter = 0; |
|
++ptr2; |
|
} |
|
} |
|
|
|
ptr += strings_; |
|
} |
|
|
|
// clean-up |
|
delete[] _values; |
|
} |
|
|
|
int |
|
BRISK::descriptorSize() const |
|
{ |
|
return strings_; |
|
} |
|
|
|
int |
|
BRISK::descriptorType() const |
|
{ |
|
return CV_8U; |
|
} |
|
|
|
int |
|
BRISK::defaultNorm() const |
|
{ |
|
return NORM_HAMMING; |
|
} |
|
|
|
BRISK::~BRISK() |
|
{ |
|
delete[] patternPoints_; |
|
delete[] shortPairs_; |
|
delete[] longPairs_; |
|
delete[] scaleList_; |
|
delete[] sizeList_; |
|
} |
|
|
|
void |
|
BRISK::operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const |
|
{ |
|
computeKeypointsNoOrientation(image, mask, keypoints); |
|
computeDescriptorsAndOrOrientation(image, mask, keypoints, cv::noArray(), false, true, true); |
|
} |
|
|
|
void |
|
BRISK::computeKeypointsNoOrientation(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints) const |
|
{ |
|
Mat image = _image.getMat(), mask = _mask.getMat(); |
|
if( image.type() != CV_8UC1 ) |
|
cvtColor(_image, image, COLOR_BGR2GRAY); |
|
|
|
BriskScaleSpace briskScaleSpace(octaves); |
|
briskScaleSpace.constructPyramid(image); |
|
briskScaleSpace.getKeypoints(threshold, keypoints); |
|
|
|
// remove invalid points |
|
removeInvalidPoints(mask, keypoints); |
|
} |
|
|
|
|
|
void |
|
BRISK::detectImpl( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const |
|
{ |
|
(*this)(image.getMat(), mask.getMat(), keypoints); |
|
} |
|
|
|
void |
|
BRISK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const |
|
{ |
|
(*this)(image, Mat(), keypoints, descriptors, true); |
|
} |
|
|
|
// construct telling the octaves number: |
|
BriskScaleSpace::BriskScaleSpace(int _octaves) |
|
{ |
|
if (_octaves == 0) |
|
layers_ = 1; |
|
else |
|
layers_ = 2 * _octaves; |
|
} |
|
BriskScaleSpace::~BriskScaleSpace() |
|
{ |
|
|
|
} |
|
// construct the image pyramids |
|
void |
|
BriskScaleSpace::constructPyramid(const cv::Mat& image) |
|
{ |
|
|
|
// set correct size: |
|
pyramid_.clear(); |
|
|
|
// fill the pyramid: |
|
pyramid_.push_back(BriskLayer(image.clone())); |
|
if (layers_ > 1) |
|
{ |
|
pyramid_.push_back(BriskLayer(pyramid_.back(), BriskLayer::CommonParams::TWOTHIRDSAMPLE)); |
|
} |
|
const int octaves2 = layers_; |
|
|
|
for (uchar i = 2; i < octaves2; i += 2) |
|
{ |
|
pyramid_.push_back(BriskLayer(pyramid_[i - 2], BriskLayer::CommonParams::HALFSAMPLE)); |
|
pyramid_.push_back(BriskLayer(pyramid_[i - 1], BriskLayer::CommonParams::HALFSAMPLE)); |
|
} |
|
} |
|
|
|
void |
|
BriskScaleSpace::getKeypoints(const int threshold_, std::vector<cv::KeyPoint>& keypoints) |
|
{ |
|
// make sure keypoints is empty |
|
keypoints.resize(0); |
|
keypoints.reserve(2000); |
|
|
|
// assign thresholds |
|
int safeThreshold_ = (int)(threshold_ * safetyFactor_); |
|
std::vector<std::vector<cv::KeyPoint> > agastPoints; |
|
agastPoints.resize(layers_); |
|
|
|
// go through the octaves and intra layers and calculate fast corner scores: |
|
for (int i = 0; i < layers_; i++) |
|
{ |
|
// call OAST16_9 without nms |
|
BriskLayer& l = pyramid_[i]; |
|
l.getAgastPoints(safeThreshold_, agastPoints[i]); |
|
} |
|
|
|
if (layers_ == 1) |
|
{ |
|
// just do a simple 2d subpixel refinement... |
|
const size_t num = agastPoints[0].size(); |
|
for (size_t n = 0; n < num; n++) |
|
{ |
|
const cv::Point2f& point = agastPoints.at(0)[n].pt; |
|
// first check if it is a maximum: |
|
if (!isMax2D(0, (int)point.x, (int)point.y)) |
|
continue; |
|
|
|
// let's do the subpixel and float scale refinement: |
|
BriskLayer& l = pyramid_[0]; |
|
int s_0_0 = l.getAgastScore(point.x - 1, point.y - 1, 1); |
|
int s_1_0 = l.getAgastScore(point.x, point.y - 1, 1); |
|
int s_2_0 = l.getAgastScore(point.x + 1, point.y - 1, 1); |
|
int s_2_1 = l.getAgastScore(point.x + 1, point.y, 1); |
|
int s_1_1 = l.getAgastScore(point.x, point.y, 1); |
|
int s_0_1 = l.getAgastScore(point.x - 1, point.y, 1); |
|
int s_0_2 = l.getAgastScore(point.x - 1, point.y + 1, 1); |
|
int s_1_2 = l.getAgastScore(point.x, point.y + 1, 1); |
|
int s_2_2 = l.getAgastScore(point.x + 1, point.y + 1, 1); |
|
float delta_x, delta_y; |
|
float max = subpixel2D(s_0_0, s_0_1, s_0_2, s_1_0, s_1_1, s_1_2, s_2_0, s_2_1, s_2_2, delta_x, delta_y); |
|
|
|
// store: |
|
keypoints.push_back(cv::KeyPoint(float(point.x) + delta_x, float(point.y) + delta_y, basicSize_, -1, max, 0)); |
|
|
|
} |
|
|
|
return; |
|
} |
|
|
|
float x, y, scale, score; |
|
for (int i = 0; i < layers_; i++) |
|
{ |
|
BriskLayer& l = pyramid_[i]; |
|
const size_t num = agastPoints[i].size(); |
|
if (i == layers_ - 1) |
|
{ |
|
for (size_t n = 0; n < num; n++) |
|
{ |
|
const cv::Point2f& point = agastPoints.at(i)[n].pt; |
|
// consider only 2D maxima... |
|
if (!isMax2D(i, (int)point.x, (int)point.y)) |
|
continue; |
|
|
|
bool ismax; |
|
float dx, dy; |
|
getScoreMaxBelow(i, (int)point.x, (int)point.y, l.getAgastScore(point.x, point.y, safeThreshold_), ismax, dx, dy); |
|
if (!ismax) |
|
continue; |
|
|
|
// get the patch on this layer: |
|
int s_0_0 = l.getAgastScore(point.x - 1, point.y - 1, 1); |
|
int s_1_0 = l.getAgastScore(point.x, point.y - 1, 1); |
|
int s_2_0 = l.getAgastScore(point.x + 1, point.y - 1, 1); |
|
int s_2_1 = l.getAgastScore(point.x + 1, point.y, 1); |
|
int s_1_1 = l.getAgastScore(point.x, point.y, 1); |
|
int s_0_1 = l.getAgastScore(point.x - 1, point.y, 1); |
|
int s_0_2 = l.getAgastScore(point.x - 1, point.y + 1, 1); |
|
int s_1_2 = l.getAgastScore(point.x, point.y + 1, 1); |
|
int s_2_2 = l.getAgastScore(point.x + 1, point.y + 1, 1); |
|
float delta_x, delta_y; |
|
float max = subpixel2D(s_0_0, s_0_1, s_0_2, s_1_0, s_1_1, s_1_2, s_2_0, s_2_1, s_2_2, delta_x, delta_y); |
|
|
|
// store: |
|
keypoints.push_back( |
|
cv::KeyPoint((float(point.x) + delta_x) * l.scale() + l.offset(), |
|
(float(point.y) + delta_y) * l.scale() + l.offset(), basicSize_ * l.scale(), -1, max, i)); |
|
} |
|
} |
|
else |
|
{ |
|
// not the last layer: |
|
for (size_t n = 0; n < num; n++) |
|
{ |
|
const cv::Point2f& point = agastPoints.at(i)[n].pt; |
|
|
|
// first check if it is a maximum: |
|
if (!isMax2D(i, (int)point.x, (int)point.y)) |
|
continue; |
|
|
|
// let's do the subpixel and float scale refinement: |
|
bool ismax=false; |
|
score = refine3D(i, (int)point.x, (int)point.y, x, y, scale, ismax); |
|
if (!ismax) |
|
{ |
|
continue; |
|
} |
|
|
|
// finally store the detected keypoint: |
|
if (score > float(threshold_)) |
|
{ |
|
keypoints.push_back(cv::KeyPoint(x, y, basicSize_ * scale, -1, score, i)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// interpolated score access with recalculation when needed: |
|
inline int |
|
BriskScaleSpace::getScoreAbove(const int layer, const int x_layer, const int y_layer) const |
|
{ |
|
CV_Assert(layer < layers_-1); |
|
const BriskLayer& l = pyramid_[layer + 1]; |
|
if (layer % 2 == 0) |
|
{ // octave |
|
const int sixths_x = 4 * x_layer - 1; |
|
const int x_above = sixths_x / 6; |
|
const int sixths_y = 4 * y_layer - 1; |
|
const int y_above = sixths_y / 6; |
|
const int r_x = (sixths_x % 6); |
|
const int r_x_1 = 6 - r_x; |
|
const int r_y = (sixths_y % 6); |
|
const int r_y_1 = 6 - r_y; |
|
uchar score = 0xFF |
|
& ((r_x_1 * r_y_1 * l.getAgastScore(x_above, y_above, 1) + r_x * r_y_1 |
|
* l.getAgastScore(x_above + 1, y_above, 1) |
|
+ r_x_1 * r_y * l.getAgastScore(x_above, y_above + 1, 1) |
|
+ r_x * r_y * l.getAgastScore(x_above + 1, y_above + 1, 1) + 18) |
|
/ 36); |
|
|
|
return score; |
|
} |
|
else |
|
{ // intra |
|
const int eighths_x = 6 * x_layer - 1; |
|
const int x_above = eighths_x / 8; |
|
const int eighths_y = 6 * y_layer - 1; |
|
const int y_above = eighths_y / 8; |
|
const int r_x = (eighths_x % 8); |
|
const int r_x_1 = 8 - r_x; |
|
const int r_y = (eighths_y % 8); |
|
const int r_y_1 = 8 - r_y; |
|
uchar score = 0xFF |
|
& ((r_x_1 * r_y_1 * l.getAgastScore(x_above, y_above, 1) + r_x * r_y_1 |
|
* l.getAgastScore(x_above + 1, y_above, 1) |
|
+ r_x_1 * r_y * l.getAgastScore(x_above, y_above + 1, 1) |
|
+ r_x * r_y * l.getAgastScore(x_above + 1, y_above + 1, 1) + 32) |
|
/ 64); |
|
return score; |
|
} |
|
} |
|
inline int |
|
BriskScaleSpace::getScoreBelow(const int layer, const int x_layer, const int y_layer) const |
|
{ |
|
CV_Assert(layer); |
|
const BriskLayer& l = pyramid_[layer - 1]; |
|
int sixth_x; |
|
int quarter_x; |
|
float xf; |
|
int sixth_y; |
|
int quarter_y; |
|
float yf; |
|
|
|
// scaling: |
|
float offs; |
|
float area; |
|
int scaling; |
|
int scaling2; |
|
|
|
if (layer % 2 == 0) |
|
{ // octave |
|
sixth_x = 8 * x_layer + 1; |
|
xf = float(sixth_x) / 6.0f; |
|
sixth_y = 8 * y_layer + 1; |
|
yf = float(sixth_y) / 6.0f; |
|
|
|
// scaling: |
|
offs = 2.0f / 3.0f; |
|
area = 4.0f * offs * offs; |
|
scaling = (int)(4194304.0 / area); |
|
scaling2 = (int)(float(scaling) * area); |
|
} |
|
else |
|
{ |
|
quarter_x = 6 * x_layer + 1; |
|
xf = float(quarter_x) / 4.0f; |
|
quarter_y = 6 * y_layer + 1; |
|
yf = float(quarter_y) / 4.0f; |
|
|
|
// scaling: |
|
offs = 3.0f / 4.0f; |
|
area = 4.0f * offs * offs; |
|
scaling = (int)(4194304.0 / area); |
|
scaling2 = (int)(float(scaling) * area); |
|
} |
|
|
|
// calculate borders |
|
const float x_1 = xf - offs; |
|
const float x1 = xf + offs; |
|
const float y_1 = yf - offs; |
|
const float y1 = yf + offs; |
|
|
|
const int x_left = int(x_1 + 0.5); |
|
const int y_top = int(y_1 + 0.5); |
|
const int x_right = int(x1 + 0.5); |
|
const int y_bottom = int(y1 + 0.5); |
|
|
|
// overlap area - multiplication factors: |
|
const float r_x_1 = float(x_left) - x_1 + 0.5f; |
|
const float r_y_1 = float(y_top) - y_1 + 0.5f; |
|
const float r_x1 = x1 - float(x_right) + 0.5f; |
|
const float r_y1 = y1 - float(y_bottom) + 0.5f; |
|
const int dx = x_right - x_left - 1; |
|
const int dy = y_bottom - y_top - 1; |
|
const int A = (int)((r_x_1 * r_y_1) * scaling); |
|
const int B = (int)((r_x1 * r_y_1) * scaling); |
|
const int C = (int)((r_x1 * r_y1) * scaling); |
|
const int D = (int)((r_x_1 * r_y1) * scaling); |
|
const int r_x_1_i = (int)(r_x_1 * scaling); |
|
const int r_y_1_i = (int)(r_y_1 * scaling); |
|
const int r_x1_i = (int)(r_x1 * scaling); |
|
const int r_y1_i = (int)(r_y1 * scaling); |
|
|
|
// first row: |
|
int ret_val = A * int(l.getAgastScore(x_left, y_top, 1)); |
|
for (int X = 1; X <= dx; X++) |
|
{ |
|
ret_val += r_y_1_i * int(l.getAgastScore(x_left + X, y_top, 1)); |
|
} |
|
ret_val += B * int(l.getAgastScore(x_left + dx + 1, y_top, 1)); |
|
// middle ones: |
|
for (int Y = 1; Y <= dy; Y++) |
|
{ |
|
ret_val += r_x_1_i * int(l.getAgastScore(x_left, y_top + Y, 1)); |
|
|
|
for (int X = 1; X <= dx; X++) |
|
{ |
|
ret_val += int(l.getAgastScore(x_left + X, y_top + Y, 1)) * scaling; |
|
} |
|
ret_val += r_x1_i * int(l.getAgastScore(x_left + dx + 1, y_top + Y, 1)); |
|
} |
|
// last row: |
|
ret_val += D * int(l.getAgastScore(x_left, y_top + dy + 1, 1)); |
|
for (int X = 1; X <= dx; X++) |
|
{ |
|
ret_val += r_y1_i * int(l.getAgastScore(x_left + X, y_top + dy + 1, 1)); |
|
} |
|
ret_val += C * int(l.getAgastScore(x_left + dx + 1, y_top + dy + 1, 1)); |
|
|
|
return ((ret_val + scaling2 / 2) / scaling2); |
|
} |
|
|
|
inline bool |
|
BriskScaleSpace::isMax2D(const int layer, const int x_layer, const int y_layer) |
|
{ |
|
const cv::Mat& scores = pyramid_[layer].scores(); |
|
const int scorescols = scores.cols; |
|
uchar* data = scores.data + y_layer * scorescols + x_layer; |
|
// decision tree: |
|
const uchar center = (*data); |
|
data--; |
|
const uchar s_10 = *data; |
|
if (center < s_10) |
|
return false; |
|
data += 2; |
|
const uchar s10 = *data; |
|
if (center < s10) |
|
return false; |
|
data -= (scorescols + 1); |
|
const uchar s0_1 = *data; |
|
if (center < s0_1) |
|
return false; |
|
data += 2 * scorescols; |
|
const uchar s01 = *data; |
|
if (center < s01) |
|
return false; |
|
data--; |
|
const uchar s_11 = *data; |
|
if (center < s_11) |
|
return false; |
|
data += 2; |
|
const uchar s11 = *data; |
|
if (center < s11) |
|
return false; |
|
data -= 2 * scorescols; |
|
const uchar s1_1 = *data; |
|
if (center < s1_1) |
|
return false; |
|
data -= 2; |
|
const uchar s_1_1 = *data; |
|
if (center < s_1_1) |
|
return false; |
|
|
|
// reject neighbor maxima |
|
std::vector<int> delta; |
|
// put together a list of 2d-offsets to where the maximum is also reached |
|
if (center == s_1_1) |
|
{ |
|
delta.push_back(-1); |
|
delta.push_back(-1); |
|
} |
|
if (center == s0_1) |
|
{ |
|
delta.push_back(0); |
|
delta.push_back(-1); |
|
} |
|
if (center == s1_1) |
|
{ |
|
delta.push_back(1); |
|
delta.push_back(-1); |
|
} |
|
if (center == s_10) |
|
{ |
|
delta.push_back(-1); |
|
delta.push_back(0); |
|
} |
|
if (center == s10) |
|
{ |
|
delta.push_back(1); |
|
delta.push_back(0); |
|
} |
|
if (center == s_11) |
|
{ |
|
delta.push_back(-1); |
|
delta.push_back(1); |
|
} |
|
if (center == s01) |
|
{ |
|
delta.push_back(0); |
|
delta.push_back(1); |
|
} |
|
if (center == s11) |
|
{ |
|
delta.push_back(1); |
|
delta.push_back(1); |
|
} |
|
const unsigned int deltasize = (unsigned int)delta.size(); |
|
if (deltasize != 0) |
|
{ |
|
// in this case, we have to analyze the situation more carefully: |
|
// the values are gaussian blurred and then we really decide |
|
data = scores.data + y_layer * scorescols + x_layer; |
|
int smoothedcenter = 4 * center + 2 * (s_10 + s10 + s0_1 + s01) + s_1_1 + s1_1 + s_11 + s11; |
|
for (unsigned int i = 0; i < deltasize; i += 2) |
|
{ |
|
data = scores.data + (y_layer - 1 + delta[i + 1]) * scorescols + x_layer + delta[i] - 1; |
|
int othercenter = *data; |
|
data++; |
|
othercenter += 2 * (*data); |
|
data++; |
|
othercenter += *data; |
|
data += scorescols; |
|
othercenter += 2 * (*data); |
|
data--; |
|
othercenter += 4 * (*data); |
|
data--; |
|
othercenter += 2 * (*data); |
|
data += scorescols; |
|
othercenter += *data; |
|
data++; |
|
othercenter += 2 * (*data); |
|
data++; |
|
othercenter += *data; |
|
if (othercenter > smoothedcenter) |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
// 3D maximum refinement centered around (x_layer,y_layer) |
|
inline float |
|
BriskScaleSpace::refine3D(const int layer, const int x_layer, const int y_layer, float& x, float& y, float& scale, |
|
bool& ismax) const |
|
{ |
|
ismax = true; |
|
const BriskLayer& thisLayer = pyramid_[layer]; |
|
const int center = thisLayer.getAgastScore(x_layer, y_layer, 1); |
|
|
|
// check and get above maximum: |
|
float delta_x_above = 0, delta_y_above = 0; |
|
float max_above = getScoreMaxAbove(layer, x_layer, y_layer, center, ismax, delta_x_above, delta_y_above); |
|
|
|
if (!ismax) |
|
return 0.0f; |
|
|
|
float max; // to be returned |
|
|
|
if (layer % 2 == 0) |
|
{ // on octave |
|
// treat the patch below: |
|
float delta_x_below, delta_y_below; |
|
float max_below_float; |
|
int max_below = 0; |
|
if (layer == 0) |
|
{ |
|
// guess the lower intra octave... |
|
const BriskLayer& l = pyramid_[0]; |
|
int s_0_0 = l.getAgastScore_5_8(x_layer - 1, y_layer - 1, 1); |
|
max_below = s_0_0; |
|
int s_1_0 = l.getAgastScore_5_8(x_layer, y_layer - 1, 1); |
|
max_below = std::max(s_1_0, max_below); |
|
int s_2_0 = l.getAgastScore_5_8(x_layer + 1, y_layer - 1, 1); |
|
max_below = std::max(s_2_0, max_below); |
|
int s_2_1 = l.getAgastScore_5_8(x_layer + 1, y_layer, 1); |
|
max_below = std::max(s_2_1, max_below); |
|
int s_1_1 = l.getAgastScore_5_8(x_layer, y_layer, 1); |
|
max_below = std::max(s_1_1, max_below); |
|
int s_0_1 = l.getAgastScore_5_8(x_layer - 1, y_layer, 1); |
|
max_below = std::max(s_0_1, max_below); |
|
int s_0_2 = l.getAgastScore_5_8(x_layer - 1, y_layer + 1, 1); |
|
max_below = std::max(s_0_2, max_below); |
|
int s_1_2 = l.getAgastScore_5_8(x_layer, y_layer + 1, 1); |
|
max_below = std::max(s_1_2, max_below); |
|
int s_2_2 = l.getAgastScore_5_8(x_layer + 1, y_layer + 1, 1); |
|
max_below = std::max(s_2_2, max_below); |
|
|
|
max_below_float = subpixel2D(s_0_0, s_0_1, s_0_2, s_1_0, s_1_1, s_1_2, s_2_0, s_2_1, s_2_2, delta_x_below, |
|
delta_y_below); |
|
max_below_float = (float)max_below; |
|
} |
|
else |
|
{ |
|
max_below_float = getScoreMaxBelow(layer, x_layer, y_layer, center, ismax, delta_x_below, delta_y_below); |
|
if (!ismax) |
|
return 0; |
|
} |
|
|
|
// get the patch on this layer: |
|
int s_0_0 = thisLayer.getAgastScore(x_layer - 1, y_layer - 1, 1); |
|
int s_1_0 = thisLayer.getAgastScore(x_layer, y_layer - 1, 1); |
|
int s_2_0 = thisLayer.getAgastScore(x_layer + 1, y_layer - 1, 1); |
|
int s_2_1 = thisLayer.getAgastScore(x_layer + 1, y_layer, 1); |
|
int s_1_1 = thisLayer.getAgastScore(x_layer, y_layer, 1); |
|
int s_0_1 = thisLayer.getAgastScore(x_layer - 1, y_layer, 1); |
|
int s_0_2 = thisLayer.getAgastScore(x_layer - 1, y_layer + 1, 1); |
|
int s_1_2 = thisLayer.getAgastScore(x_layer, y_layer + 1, 1); |
|
int s_2_2 = thisLayer.getAgastScore(x_layer + 1, y_layer + 1, 1); |
|
float delta_x_layer, delta_y_layer; |
|
float max_layer = subpixel2D(s_0_0, s_0_1, s_0_2, s_1_0, s_1_1, s_1_2, s_2_0, s_2_1, s_2_2, delta_x_layer, |
|
delta_y_layer); |
|
|
|
// calculate the relative scale (1D maximum): |
|
if (layer == 0) |
|
{ |
|
scale = refine1D_2(max_below_float, std::max(float(center), max_layer), max_above, max); |
|
} |
|
else |
|
scale = refine1D(max_below_float, std::max(float(center), max_layer), max_above, max); |
|
|
|
if (scale > 1.0) |
|
{ |
|
// interpolate the position: |
|
const float r0 = (1.5f - scale) / .5f; |
|
const float r1 = 1.0f - r0; |
|
x = (r0 * delta_x_layer + r1 * delta_x_above + float(x_layer)) * thisLayer.scale() + thisLayer.offset(); |
|
y = (r0 * delta_y_layer + r1 * delta_y_above + float(y_layer)) * thisLayer.scale() + thisLayer.offset(); |
|
} |
|
else |
|
{ |
|
if (layer == 0) |
|
{ |
|
// interpolate the position: |
|
const float r0 = (scale - 0.5f) / 0.5f; |
|
const float r_1 = 1.0f - r0; |
|
x = r0 * delta_x_layer + r_1 * delta_x_below + float(x_layer); |
|
y = r0 * delta_y_layer + r_1 * delta_y_below + float(y_layer); |
|
} |
|
else |
|
{ |
|
// interpolate the position: |
|
const float r0 = (scale - 0.75f) / 0.25f; |
|
const float r_1 = 1.0f - r0; |
|
x = (r0 * delta_x_layer + r_1 * delta_x_below + float(x_layer)) * thisLayer.scale() + thisLayer.offset(); |
|
y = (r0 * delta_y_layer + r_1 * delta_y_below + float(y_layer)) * thisLayer.scale() + thisLayer.offset(); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
// on intra |
|
// check the patch below: |
|
float delta_x_below, delta_y_below; |
|
float max_below = getScoreMaxBelow(layer, x_layer, y_layer, center, ismax, delta_x_below, delta_y_below); |
|
if (!ismax) |
|
return 0.0f; |
|
|
|
// get the patch on this layer: |
|
int s_0_0 = thisLayer.getAgastScore(x_layer - 1, y_layer - 1, 1); |
|
int s_1_0 = thisLayer.getAgastScore(x_layer, y_layer - 1, 1); |
|
int s_2_0 = thisLayer.getAgastScore(x_layer + 1, y_layer - 1, 1); |
|
int s_2_1 = thisLayer.getAgastScore(x_layer + 1, y_layer, 1); |
|
int s_1_1 = thisLayer.getAgastScore(x_layer, y_layer, 1); |
|
int s_0_1 = thisLayer.getAgastScore(x_layer - 1, y_layer, 1); |
|
int s_0_2 = thisLayer.getAgastScore(x_layer - 1, y_layer + 1, 1); |
|
int s_1_2 = thisLayer.getAgastScore(x_layer, y_layer + 1, 1); |
|
int s_2_2 = thisLayer.getAgastScore(x_layer + 1, y_layer + 1, 1); |
|
float delta_x_layer, delta_y_layer; |
|
float max_layer = subpixel2D(s_0_0, s_0_1, s_0_2, s_1_0, s_1_1, s_1_2, s_2_0, s_2_1, s_2_2, delta_x_layer, |
|
delta_y_layer); |
|
|
|
// calculate the relative scale (1D maximum): |
|
scale = refine1D_1(max_below, std::max(float(center), max_layer), max_above, max); |
|
if (scale > 1.0) |
|
{ |
|
// interpolate the position: |
|
const float r0 = 4.0f - scale * 3.0f; |
|
const float r1 = 1.0f - r0; |
|
x = (r0 * delta_x_layer + r1 * delta_x_above + float(x_layer)) * thisLayer.scale() + thisLayer.offset(); |
|
y = (r0 * delta_y_layer + r1 * delta_y_above + float(y_layer)) * thisLayer.scale() + thisLayer.offset(); |
|
} |
|
else |
|
{ |
|
// interpolate the position: |
|
const float r0 = scale * 3.0f - 2.0f; |
|
const float r_1 = 1.0f - r0; |
|
x = (r0 * delta_x_layer + r_1 * delta_x_below + float(x_layer)) * thisLayer.scale() + thisLayer.offset(); |
|
y = (r0 * delta_y_layer + r_1 * delta_y_below + float(y_layer)) * thisLayer.scale() + thisLayer.offset(); |
|
} |
|
} |
|
|
|
// calculate the absolute scale: |
|
scale *= thisLayer.scale(); |
|
|
|
// that's it, return the refined maximum: |
|
return max; |
|
} |
|
|
|
// return the maximum of score patches above or below |
|
inline float |
|
BriskScaleSpace::getScoreMaxAbove(const int layer, const int x_layer, const int y_layer, const int threshold, |
|
bool& ismax, float& dx, float& dy) const |
|
{ |
|
|
|
ismax = false; |
|
// relevant floating point coordinates |
|
float x_1; |
|
float x1; |
|
float y_1; |
|
float y1; |
|
|
|
// the layer above |
|
CV_Assert(layer + 1 < layers_); |
|
const BriskLayer& layerAbove = pyramid_[layer + 1]; |
|
|
|
if (layer % 2 == 0) |
|
{ |
|
// octave |
|
x_1 = float(4 * (x_layer) - 1 - 2) / 6.0f; |
|
x1 = float(4 * (x_layer) - 1 + 2) / 6.0f; |
|
y_1 = float(4 * (y_layer) - 1 - 2) / 6.0f; |
|
y1 = float(4 * (y_layer) - 1 + 2) / 6.0f; |
|
} |
|
else |
|
{ |
|
// intra |
|
x_1 = float(6 * (x_layer) - 1 - 3) / 8.0f; |
|
x1 = float(6 * (x_layer) - 1 + 3) / 8.0f; |
|
y_1 = float(6 * (y_layer) - 1 - 3) / 8.0f; |
|
y1 = float(6 * (y_layer) - 1 + 3) / 8.0f; |
|
} |
|
|
|
// check the first row |
|
int max_x = (int)x_1 + 1; |
|
int max_y = (int)y_1 + 1; |
|
float tmp_max; |
|
float maxval = (float)layerAbove.getAgastScore(x_1, y_1, 1); |
|
if (maxval > threshold) |
|
return 0; |
|
for (int x = (int)x_1 + 1; x <= int(x1); x++) |
|
{ |
|
tmp_max = (float)layerAbove.getAgastScore(float(x), y_1, 1); |
|
if (tmp_max > threshold) |
|
return 0; |
|
if (tmp_max > maxval) |
|
{ |
|
maxval = tmp_max; |
|
max_x = x; |
|
} |
|
} |
|
tmp_max = (float)layerAbove.getAgastScore(x1, y_1, 1); |
|
if (tmp_max > threshold) |
|
return 0; |
|
if (tmp_max > maxval) |
|
{ |
|
maxval = tmp_max; |
|
max_x = int(x1); |
|
} |
|
|
|
// middle rows |
|
for (int y = (int)y_1 + 1; y <= int(y1); y++) |
|
{ |
|
tmp_max = (float)layerAbove.getAgastScore(x_1, float(y), 1); |
|
if (tmp_max > threshold) |
|
return 0; |
|
if (tmp_max > maxval) |
|
{ |
|
maxval = tmp_max; |
|
max_x = int(x_1 + 1); |
|
max_y = y; |
|
} |
|
for (int x = (int)x_1 + 1; x <= int(x1); x++) |
|
{ |
|
tmp_max = (float)layerAbove.getAgastScore(x, y, 1); |
|
if (tmp_max > threshold) |
|
return 0; |
|
if (tmp_max > maxval) |
|
{ |
|
maxval = tmp_max; |
|
max_x = x; |
|
max_y = y; |
|
} |
|
} |
|
tmp_max = (float)layerAbove.getAgastScore(x1, float(y), 1); |
|
if (tmp_max > threshold) |
|
return 0; |
|
if (tmp_max > maxval) |
|
{ |
|
maxval = tmp_max; |
|
max_x = int(x1); |
|
max_y = y; |
|
} |
|
} |
|
|
|
// bottom row |
|
tmp_max = (float)layerAbove.getAgastScore(x_1, y1, 1); |
|
if (tmp_max > maxval) |
|
{ |
|
maxval = tmp_max; |
|
max_x = int(x_1 + 1); |
|
max_y = int(y1); |
|
} |
|
for (int x = (int)x_1 + 1; x <= int(x1); x++) |
|
{ |
|
tmp_max = (float)layerAbove.getAgastScore(float(x), y1, 1); |
|
if (tmp_max > maxval) |
|
{ |
|
maxval = tmp_max; |
|
max_x = x; |
|
max_y = int(y1); |
|
} |
|
} |
|
tmp_max = (float)layerAbove.getAgastScore(x1, y1, 1); |
|
if (tmp_max > maxval) |
|
{ |
|
maxval = tmp_max; |
|
max_x = int(x1); |
|
max_y = int(y1); |
|
} |
|
|
|
//find dx/dy: |
|
int s_0_0 = layerAbove.getAgastScore(max_x - 1, max_y - 1, 1); |
|
int s_1_0 = layerAbove.getAgastScore(max_x, max_y - 1, 1); |
|
int s_2_0 = layerAbove.getAgastScore(max_x + 1, max_y - 1, 1); |
|
int s_2_1 = layerAbove.getAgastScore(max_x + 1, max_y, 1); |
|
int s_1_1 = layerAbove.getAgastScore(max_x, max_y, 1); |
|
int s_0_1 = layerAbove.getAgastScore(max_x - 1, max_y, 1); |
|
int s_0_2 = layerAbove.getAgastScore(max_x - 1, max_y + 1, 1); |
|
int s_1_2 = layerAbove.getAgastScore(max_x, max_y + 1, 1); |
|
int s_2_2 = layerAbove.getAgastScore(max_x + 1, max_y + 1, 1); |
|
float dx_1, dy_1; |
|
float refined_max = subpixel2D(s_0_0, s_0_1, s_0_2, s_1_0, s_1_1, s_1_2, s_2_0, s_2_1, s_2_2, dx_1, dy_1); |
|
|
|
// calculate dx/dy in above coordinates |
|
float real_x = float(max_x) + dx_1; |
|
float real_y = float(max_y) + dy_1; |
|
bool returnrefined = true; |
|
if (layer % 2 == 0) |
|
{ |
|
dx = (real_x * 6.0f + 1.0f) / 4.0f - float(x_layer); |
|
dy = (real_y * 6.0f + 1.0f) / 4.0f - float(y_layer); |
|
} |
|
else |
|
{ |
|
dx = (real_x * 8.0f + 1.0f) / 6.0f - float(x_layer); |
|
dy = (real_y * 8.0f + 1.0f) / 6.0f - float(y_layer); |
|
} |
|
|
|
// saturate |
|
if (dx > 1.0f) |
|
{ |
|
dx = 1.0f; |
|
returnrefined = false; |
|
} |
|
if (dx < -1.0f) |
|
{ |
|
dx = -1.0f; |
|
returnrefined = false; |
|
} |
|
if (dy > 1.0f) |
|
{ |
|
dy = 1.0f; |
|
returnrefined = false; |
|
} |
|
if (dy < -1.0f) |
|
{ |
|
dy = -1.0f; |
|
returnrefined = false; |
|
} |
|
|
|
// done and ok. |
|
ismax = true; |
|
if (returnrefined) |
|
{ |
|
return std::max(refined_max, maxval); |
|
} |
|
return maxval; |
|
} |
|
|
|
inline float |
|
BriskScaleSpace::getScoreMaxBelow(const int layer, const int x_layer, const int y_layer, const int threshold, |
|
bool& ismax, float& dx, float& dy) const |
|
{ |
|
ismax = false; |
|
|
|
// relevant floating point coordinates |
|
float x_1; |
|
float x1; |
|
float y_1; |
|
float y1; |
|
|
|
if (layer % 2 == 0) |
|
{ |
|
// octave |
|
x_1 = float(8 * (x_layer) + 1 - 4) / 6.0f; |
|
x1 = float(8 * (x_layer) + 1 + 4) / 6.0f; |
|
y_1 = float(8 * (y_layer) + 1 - 4) / 6.0f; |
|
y1 = float(8 * (y_layer) + 1 + 4) / 6.0f; |
|
} |
|
else |
|
{ |
|
x_1 = float(6 * (x_layer) + 1 - 3) / 4.0f; |
|
x1 = float(6 * (x_layer) + 1 + 3) / 4.0f; |
|
y_1 = float(6 * (y_layer) + 1 - 3) / 4.0f; |
|
y1 = float(6 * (y_layer) + 1 + 3) / 4.0f; |
|
} |
|
|
|
// the layer below |
|
CV_Assert(layer > 0); |
|
const BriskLayer& layerBelow = pyramid_[layer - 1]; |
|
|
|
// check the first row |
|
int max_x = (int)x_1 + 1; |
|
int max_y = (int)y_1 + 1; |
|
float tmp_max; |
|
float max = (float)layerBelow.getAgastScore(x_1, y_1, 1); |
|
if (max > threshold) |
|
return 0; |
|
for (int x = (int)x_1 + 1; x <= int(x1); x++) |
|
{ |
|
tmp_max = (float)layerBelow.getAgastScore(float(x), y_1, 1); |
|
if (tmp_max > threshold) |
|
return 0; |
|
if (tmp_max > max) |
|
{ |
|
max = tmp_max; |
|
max_x = x; |
|
} |
|
} |
|
tmp_max = (float)layerBelow.getAgastScore(x1, y_1, 1); |
|
if (tmp_max > threshold) |
|
return 0; |
|
if (tmp_max > max) |
|
{ |
|
max = tmp_max; |
|
max_x = int(x1); |
|
} |
|
|
|
// middle rows |
|
for (int y = (int)y_1 + 1; y <= int(y1); y++) |
|
{ |
|
tmp_max = (float)layerBelow.getAgastScore(x_1, float(y), 1); |
|
if (tmp_max > threshold) |
|
return 0; |
|
if (tmp_max > max) |
|
{ |
|
max = tmp_max; |
|
max_x = int(x_1 + 1); |
|
max_y = y; |
|
} |
|
for (int x = (int)x_1 + 1; x <= int(x1); x++) |
|
{ |
|
tmp_max = (float)layerBelow.getAgastScore(x, y, 1); |
|
if (tmp_max > threshold) |
|
return 0; |
|
if (tmp_max == max) |
|
{ |
|
const int t1 = 2 |
|
* (layerBelow.getAgastScore(x - 1, y, 1) + layerBelow.getAgastScore(x + 1, y, 1) |
|
+ layerBelow.getAgastScore(x, y + 1, 1) + layerBelow.getAgastScore(x, y - 1, 1)) |
|
+ (layerBelow.getAgastScore(x + 1, y + 1, 1) + layerBelow.getAgastScore(x - 1, y + 1, 1) |
|
+ layerBelow.getAgastScore(x + 1, y - 1, 1) + layerBelow.getAgastScore(x - 1, y - 1, 1)); |
|
const int t2 = 2 |
|
* (layerBelow.getAgastScore(max_x - 1, max_y, 1) + layerBelow.getAgastScore(max_x + 1, max_y, 1) |
|
+ layerBelow.getAgastScore(max_x, max_y + 1, 1) + layerBelow.getAgastScore(max_x, max_y - 1, 1)) |
|
+ (layerBelow.getAgastScore(max_x + 1, max_y + 1, 1) + layerBelow.getAgastScore(max_x - 1, |
|
max_y + 1, 1) |
|
+ layerBelow.getAgastScore(max_x + 1, max_y - 1, 1) |
|
+ layerBelow.getAgastScore(max_x - 1, max_y - 1, 1)); |
|
if (t1 > t2) |
|
{ |
|
max_x = x; |
|
max_y = y; |
|
} |
|
} |
|
if (tmp_max > max) |
|
{ |
|
max = tmp_max; |
|
max_x = x; |
|
max_y = y; |
|
} |
|
} |
|
tmp_max = (float)layerBelow.getAgastScore(x1, float(y), 1); |
|
if (tmp_max > threshold) |
|
return 0; |
|
if (tmp_max > max) |
|
{ |
|
max = tmp_max; |
|
max_x = int(x1); |
|
max_y = y; |
|
} |
|
} |
|
|
|
// bottom row |
|
tmp_max = (float)layerBelow.getAgastScore(x_1, y1, 1); |
|
if (tmp_max > max) |
|
{ |
|
max = tmp_max; |
|
max_x = int(x_1 + 1); |
|
max_y = int(y1); |
|
} |
|
for (int x = (int)x_1 + 1; x <= int(x1); x++) |
|
{ |
|
tmp_max = (float)layerBelow.getAgastScore(float(x), y1, 1); |
|
if (tmp_max > max) |
|
{ |
|
max = tmp_max; |
|
max_x = x; |
|
max_y = int(y1); |
|
} |
|
} |
|
tmp_max = (float)layerBelow.getAgastScore(x1, y1, 1); |
|
if (tmp_max > max) |
|
{ |
|
max = tmp_max; |
|
max_x = int(x1); |
|
max_y = int(y1); |
|
} |
|
|
|
//find dx/dy: |
|
int s_0_0 = layerBelow.getAgastScore(max_x - 1, max_y - 1, 1); |
|
int s_1_0 = layerBelow.getAgastScore(max_x, max_y - 1, 1); |
|
int s_2_0 = layerBelow.getAgastScore(max_x + 1, max_y - 1, 1); |
|
int s_2_1 = layerBelow.getAgastScore(max_x + 1, max_y, 1); |
|
int s_1_1 = layerBelow.getAgastScore(max_x, max_y, 1); |
|
int s_0_1 = layerBelow.getAgastScore(max_x - 1, max_y, 1); |
|
int s_0_2 = layerBelow.getAgastScore(max_x - 1, max_y + 1, 1); |
|
int s_1_2 = layerBelow.getAgastScore(max_x, max_y + 1, 1); |
|
int s_2_2 = layerBelow.getAgastScore(max_x + 1, max_y + 1, 1); |
|
float dx_1, dy_1; |
|
float refined_max = subpixel2D(s_0_0, s_0_1, s_0_2, s_1_0, s_1_1, s_1_2, s_2_0, s_2_1, s_2_2, dx_1, dy_1); |
|
|
|
// calculate dx/dy in above coordinates |
|
float real_x = float(max_x) + dx_1; |
|
float real_y = float(max_y) + dy_1; |
|
bool returnrefined = true; |
|
if (layer % 2 == 0) |
|
{ |
|
dx = (float)((real_x * 6.0 + 1.0) / 8.0) - float(x_layer); |
|
dy = (float)((real_y * 6.0 + 1.0) / 8.0) - float(y_layer); |
|
} |
|
else |
|
{ |
|
dx = (float)((real_x * 4.0 - 1.0) / 6.0) - float(x_layer); |
|
dy = (float)((real_y * 4.0 - 1.0) / 6.0) - float(y_layer); |
|
} |
|
|
|
// saturate |
|
if (dx > 1.0) |
|
{ |
|
dx = 1.0f; |
|
returnrefined = false; |
|
} |
|
if (dx < -1.0f) |
|
{ |
|
dx = -1.0f; |
|
returnrefined = false; |
|
} |
|
if (dy > 1.0f) |
|
{ |
|
dy = 1.0f; |
|
returnrefined = false; |
|
} |
|
if (dy < -1.0f) |
|
{ |
|
dy = -1.0f; |
|
returnrefined = false; |
|
} |
|
|
|
// done and ok. |
|
ismax = true; |
|
if (returnrefined) |
|
{ |
|
return std::max(refined_max, max); |
|
} |
|
return max; |
|
} |
|
|
|
inline float |
|
BriskScaleSpace::refine1D(const float s_05, const float s0, const float s05, float& max) const |
|
{ |
|
int i_05 = int(1024.0 * s_05 + 0.5); |
|
int i0 = int(1024.0 * s0 + 0.5); |
|
int i05 = int(1024.0 * s05 + 0.5); |
|
|
|
// 16.0000 -24.0000 8.0000 |
|
// -40.0000 54.0000 -14.0000 |
|
// 24.0000 -27.0000 6.0000 |
|
|
|
int three_a = 16 * i_05 - 24 * i0 + 8 * i05; |
|
// second derivative must be negative: |
|
if (three_a >= 0) |
|
{ |
|
if (s0 >= s_05 && s0 >= s05) |
|
{ |
|
max = s0; |
|
return 1.0f; |
|
} |
|
if (s_05 >= s0 && s_05 >= s05) |
|
{ |
|
max = s_05; |
|
return 0.75f; |
|
} |
|
if (s05 >= s0 && s05 >= s_05) |
|
{ |
|
max = s05; |
|
return 1.5f; |
|
} |
|
} |
|
|
|
int three_b = -40 * i_05 + 54 * i0 - 14 * i05; |
|
// calculate max location: |
|
float ret_val = -float(three_b) / float(2 * three_a); |
|
// saturate and return |
|
if (ret_val < 0.75) |
|
ret_val = 0.75; |
|
else if (ret_val > 1.5) |
|
ret_val = 1.5; // allow to be slightly off bounds ...? |
|
int three_c = +24 * i_05 - 27 * i0 + 6 * i05; |
|
max = float(three_c) + float(three_a) * ret_val * ret_val + float(three_b) * ret_val; |
|
max /= 3072.0f; |
|
return ret_val; |
|
} |
|
|
|
inline float |
|
BriskScaleSpace::refine1D_1(const float s_05, const float s0, const float s05, float& max) const |
|
{ |
|
int i_05 = int(1024.0 * s_05 + 0.5); |
|
int i0 = int(1024.0 * s0 + 0.5); |
|
int i05 = int(1024.0 * s05 + 0.5); |
|
|
|
// 4.5000 -9.0000 4.5000 |
|
//-10.5000 18.0000 -7.5000 |
|
// 6.0000 -8.0000 3.0000 |
|
|
|
int two_a = 9 * i_05 - 18 * i0 + 9 * i05; |
|
// second derivative must be negative: |
|
if (two_a >= 0) |
|
{ |
|
if (s0 >= s_05 && s0 >= s05) |
|
{ |
|
max = s0; |
|
return 1.0f; |
|
} |
|
if (s_05 >= s0 && s_05 >= s05) |
|
{ |
|
max = s_05; |
|
return 0.6666666666666666666666666667f; |
|
} |
|
if (s05 >= s0 && s05 >= s_05) |
|
{ |
|
max = s05; |
|
return 1.3333333333333333333333333333f; |
|
} |
|
} |
|
|
|
int two_b = -21 * i_05 + 36 * i0 - 15 * i05; |
|
// calculate max location: |
|
float ret_val = -float(two_b) / float(2 * two_a); |
|
// saturate and return |
|
if (ret_val < 0.6666666666666666666666666667f) |
|
ret_val = 0.666666666666666666666666667f; |
|
else if (ret_val > 1.33333333333333333333333333f) |
|
ret_val = 1.333333333333333333333333333f; |
|
int two_c = +12 * i_05 - 16 * i0 + 6 * i05; |
|
max = float(two_c) + float(two_a) * ret_val * ret_val + float(two_b) * ret_val; |
|
max /= 2048.0f; |
|
return ret_val; |
|
} |
|
|
|
inline float |
|
BriskScaleSpace::refine1D_2(const float s_05, const float s0, const float s05, float& max) const |
|
{ |
|
int i_05 = int(1024.0 * s_05 + 0.5); |
|
int i0 = int(1024.0 * s0 + 0.5); |
|
int i05 = int(1024.0 * s05 + 0.5); |
|
|
|
// 18.0000 -30.0000 12.0000 |
|
// -45.0000 65.0000 -20.0000 |
|
// 27.0000 -30.0000 8.0000 |
|
|
|
int a = 2 * i_05 - 4 * i0 + 2 * i05; |
|
// second derivative must be negative: |
|
if (a >= 0) |
|
{ |
|
if (s0 >= s_05 && s0 >= s05) |
|
{ |
|
max = s0; |
|
return 1.0f; |
|
} |
|
if (s_05 >= s0 && s_05 >= s05) |
|
{ |
|
max = s_05; |
|
return 0.7f; |
|
} |
|
if (s05 >= s0 && s05 >= s_05) |
|
{ |
|
max = s05; |
|
return 1.5f; |
|
} |
|
} |
|
|
|
int b = -5 * i_05 + 8 * i0 - 3 * i05; |
|
// calculate max location: |
|
float ret_val = -float(b) / float(2 * a); |
|
// saturate and return |
|
if (ret_val < 0.7f) |
|
ret_val = 0.7f; |
|
else if (ret_val > 1.5f) |
|
ret_val = 1.5f; // allow to be slightly off bounds ...? |
|
int c = +3 * i_05 - 3 * i0 + 1 * i05; |
|
max = float(c) + float(a) * ret_val * ret_val + float(b) * ret_val; |
|
max /= 1024; |
|
return ret_val; |
|
} |
|
|
|
inline float |
|
BriskScaleSpace::subpixel2D(const int s_0_0, const int s_0_1, const int s_0_2, const int s_1_0, const int s_1_1, |
|
const int s_1_2, const int s_2_0, const int s_2_1, const int s_2_2, float& delta_x, |
|
float& delta_y) const |
|
{ |
|
|
|
// the coefficients of the 2d quadratic function least-squares fit: |
|
int tmp1 = s_0_0 + s_0_2 - 2 * s_1_1 + s_2_0 + s_2_2; |
|
int coeff1 = 3 * (tmp1 + s_0_1 - ((s_1_0 + s_1_2) << 1) + s_2_1); |
|
int coeff2 = 3 * (tmp1 - ((s_0_1 + s_2_1) << 1) + s_1_0 + s_1_2); |
|
int tmp2 = s_0_2 - s_2_0; |
|
int tmp3 = (s_0_0 + tmp2 - s_2_2); |
|
int tmp4 = tmp3 - 2 * tmp2; |
|
int coeff3 = -3 * (tmp3 + s_0_1 - s_2_1); |
|
int coeff4 = -3 * (tmp4 + s_1_0 - s_1_2); |
|
int coeff5 = (s_0_0 - s_0_2 - s_2_0 + s_2_2) << 2; |
|
int coeff6 = -(s_0_0 + s_0_2 - ((s_1_0 + s_0_1 + s_1_2 + s_2_1) << 1) - 5 * s_1_1 + s_2_0 + s_2_2) << 1; |
|
|
|
// 2nd derivative test: |
|
int H_det = 4 * coeff1 * coeff2 - coeff5 * coeff5; |
|
|
|
if (H_det == 0) |
|
{ |
|
delta_x = 0.0f; |
|
delta_y = 0.0f; |
|
return float(coeff6) / 18.0f; |
|
} |
|
|
|
if (!(H_det > 0 && coeff1 < 0)) |
|
{ |
|
// The maximum must be at the one of the 4 patch corners. |
|
int tmp_max = coeff3 + coeff4 + coeff5; |
|
delta_x = 1.0f; |
|
delta_y = 1.0f; |
|
|
|
int tmp = -coeff3 + coeff4 - coeff5; |
|
if (tmp > tmp_max) |
|
{ |
|
tmp_max = tmp; |
|
delta_x = -1.0f; |
|
delta_y = 1.0f; |
|
} |
|
tmp = coeff3 - coeff4 - coeff5; |
|
if (tmp > tmp_max) |
|
{ |
|
tmp_max = tmp; |
|
delta_x = 1.0f; |
|
delta_y = -1.0f; |
|
} |
|
tmp = -coeff3 - coeff4 + coeff5; |
|
if (tmp > tmp_max) |
|
{ |
|
tmp_max = tmp; |
|
delta_x = -1.0f; |
|
delta_y = -1.0f; |
|
} |
|
return float(tmp_max + coeff1 + coeff2 + coeff6) / 18.0f; |
|
} |
|
|
|
// this is hopefully the normal outcome of the Hessian test |
|
delta_x = float(2 * coeff2 * coeff3 - coeff4 * coeff5) / float(-H_det); |
|
delta_y = float(2 * coeff1 * coeff4 - coeff3 * coeff5) / float(-H_det); |
|
// TODO: this is not correct, but easy, so perform a real boundary maximum search: |
|
bool tx = false; |
|
bool tx_ = false; |
|
bool ty = false; |
|
bool ty_ = false; |
|
if (delta_x > 1.0) |
|
tx = true; |
|
else if (delta_x < -1.0) |
|
tx_ = true; |
|
if (delta_y > 1.0) |
|
ty = true; |
|
if (delta_y < -1.0) |
|
ty_ = true; |
|
|
|
if (tx || tx_ || ty || ty_) |
|
{ |
|
// get two candidates: |
|
float delta_x1 = 0.0f, delta_x2 = 0.0f, delta_y1 = 0.0f, delta_y2 = 0.0f; |
|
if (tx) |
|
{ |
|
delta_x1 = 1.0f; |
|
delta_y1 = -float(coeff4 + coeff5) / float(2 * coeff2); |
|
if (delta_y1 > 1.0f) |
|
delta_y1 = 1.0f; |
|
else if (delta_y1 < -1.0f) |
|
delta_y1 = -1.0f; |
|
} |
|
else if (tx_) |
|
{ |
|
delta_x1 = -1.0f; |
|
delta_y1 = -float(coeff4 - coeff5) / float(2 * coeff2); |
|
if (delta_y1 > 1.0f) |
|
delta_y1 = 1.0f; |
|
else if (delta_y1 < -1.0) |
|
delta_y1 = -1.0f; |
|
} |
|
if (ty) |
|
{ |
|
delta_y2 = 1.0f; |
|
delta_x2 = -float(coeff3 + coeff5) / float(2 * coeff1); |
|
if (delta_x2 > 1.0f) |
|
delta_x2 = 1.0f; |
|
else if (delta_x2 < -1.0f) |
|
delta_x2 = -1.0f; |
|
} |
|
else if (ty_) |
|
{ |
|
delta_y2 = -1.0f; |
|
delta_x2 = -float(coeff3 - coeff5) / float(2 * coeff1); |
|
if (delta_x2 > 1.0f) |
|
delta_x2 = 1.0f; |
|
else if (delta_x2 < -1.0f) |
|
delta_x2 = -1.0f; |
|
} |
|
// insert both options for evaluation which to pick |
|
float max1 = (coeff1 * delta_x1 * delta_x1 + coeff2 * delta_y1 * delta_y1 + coeff3 * delta_x1 + coeff4 * delta_y1 |
|
+ coeff5 * delta_x1 * delta_y1 + coeff6) |
|
/ 18.0f; |
|
float max2 = (coeff1 * delta_x2 * delta_x2 + coeff2 * delta_y2 * delta_y2 + coeff3 * delta_x2 + coeff4 * delta_y2 |
|
+ coeff5 * delta_x2 * delta_y2 + coeff6) |
|
/ 18.0f; |
|
if (max1 > max2) |
|
{ |
|
delta_x = delta_x1; |
|
delta_y = delta_x1; |
|
return max1; |
|
} |
|
else |
|
{ |
|
delta_x = delta_x2; |
|
delta_y = delta_x2; |
|
return max2; |
|
} |
|
} |
|
|
|
// this is the case of the maximum inside the boundaries: |
|
return (coeff1 * delta_x * delta_x + coeff2 * delta_y * delta_y + coeff3 * delta_x + coeff4 * delta_y |
|
+ coeff5 * delta_x * delta_y + coeff6) |
|
/ 18.0f; |
|
} |
|
|
|
// construct a layer |
|
BriskLayer::BriskLayer(const cv::Mat& img_in, float scale_in, float offset_in) |
|
{ |
|
img_ = img_in; |
|
scores_ = cv::Mat_<uchar>::zeros(img_in.rows, img_in.cols); |
|
// attention: this means that the passed image reference must point to persistent memory |
|
scale_ = scale_in; |
|
offset_ = offset_in; |
|
// create an agast detector |
|
fast_9_16_ = makePtr<FastFeatureDetector>(1, true, FastFeatureDetector::TYPE_9_16); |
|
makeOffsets(pixel_5_8_, (int)img_.step, 8); |
|
makeOffsets(pixel_9_16_, (int)img_.step, 16); |
|
} |
|
// derive a layer |
|
BriskLayer::BriskLayer(const BriskLayer& layer, int mode) |
|
{ |
|
if (mode == CommonParams::HALFSAMPLE) |
|
{ |
|
img_.create(layer.img().rows / 2, layer.img().cols / 2, CV_8U); |
|
halfsample(layer.img(), img_); |
|
scale_ = layer.scale() * 2; |
|
offset_ = 0.5f * scale_ - 0.5f; |
|
} |
|
else |
|
{ |
|
img_.create(2 * (layer.img().rows / 3), 2 * (layer.img().cols / 3), CV_8U); |
|
twothirdsample(layer.img(), img_); |
|
scale_ = layer.scale() * 1.5f; |
|
offset_ = 0.5f * scale_ - 0.5f; |
|
} |
|
scores_ = cv::Mat::zeros(img_.rows, img_.cols, CV_8U); |
|
fast_9_16_ = makePtr<FastFeatureDetector>(1, false, FastFeatureDetector::TYPE_9_16); |
|
makeOffsets(pixel_5_8_, (int)img_.step, 8); |
|
makeOffsets(pixel_9_16_, (int)img_.step, 16); |
|
} |
|
|
|
// Fast/Agast |
|
// wraps the agast class |
|
void |
|
BriskLayer::getAgastPoints(int threshold, std::vector<KeyPoint>& keypoints) |
|
{ |
|
fast_9_16_->set("threshold", threshold); |
|
fast_9_16_->detect(img_, keypoints); |
|
|
|
// also write scores |
|
const size_t num = keypoints.size(); |
|
|
|
for (size_t i = 0; i < num; i++) |
|
scores_((int)keypoints[i].pt.y, (int)keypoints[i].pt.x) = saturate_cast<uchar>(keypoints[i].response); |
|
} |
|
|
|
inline int |
|
BriskLayer::getAgastScore(int x, int y, int threshold) const |
|
{ |
|
if (x < 3 || y < 3) |
|
return 0; |
|
if (x >= img_.cols - 3 || y >= img_.rows - 3) |
|
return 0; |
|
uchar& score = (uchar&)scores_(y, x); |
|
if (score > 2) |
|
{ |
|
return score; |
|
} |
|
score = (uchar)cornerScore<16>(&img_.at<uchar>(y, x), pixel_9_16_, threshold - 1); |
|
if (score < threshold) |
|
score = 0; |
|
return score; |
|
} |
|
|
|
inline int |
|
BriskLayer::getAgastScore_5_8(int x, int y, int threshold) const |
|
{ |
|
if (x < 2 || y < 2) |
|
return 0; |
|
if (x >= img_.cols - 2 || y >= img_.rows - 2) |
|
return 0; |
|
int score = cornerScore<8>(&img_.at<uchar>(y, x), pixel_5_8_, threshold - 1); |
|
if (score < threshold) |
|
score = 0; |
|
return score; |
|
} |
|
|
|
inline int |
|
BriskLayer::getAgastScore(float xf, float yf, int threshold_in, float scale_in) const |
|
{ |
|
if (scale_in <= 1.0f) |
|
{ |
|
// just do an interpolation inside the layer |
|
const int x = int(xf); |
|
const float rx1 = xf - float(x); |
|
const float rx = 1.0f - rx1; |
|
const int y = int(yf); |
|
const float ry1 = yf - float(y); |
|
const float ry = 1.0f - ry1; |
|
|
|
return (uchar)(rx * ry * getAgastScore(x, y, threshold_in) + rx1 * ry * getAgastScore(x + 1, y, threshold_in) |
|
+ rx * ry1 * getAgastScore(x, y + 1, threshold_in) + rx1 * ry1 * getAgastScore(x + 1, y + 1, threshold_in)); |
|
} |
|
else |
|
{ |
|
// this means we overlap area smoothing |
|
const float halfscale = scale_in / 2.0f; |
|
// get the scores first: |
|
for (int x = int(xf - halfscale); x <= int(xf + halfscale + 1.0f); x++) |
|
{ |
|
for (int y = int(yf - halfscale); y <= int(yf + halfscale + 1.0f); y++) |
|
{ |
|
getAgastScore(x, y, threshold_in); |
|
} |
|
} |
|
// get the smoothed value |
|
return value(scores_, xf, yf, scale_in); |
|
} |
|
} |
|
|
|
// access gray values (smoothed/interpolated) |
|
inline int |
|
BriskLayer::value(const cv::Mat& mat, float xf, float yf, float scale_in) const |
|
{ |
|
CV_Assert(!mat.empty()); |
|
// get the position |
|
const int x = cvFloor(xf); |
|
const int y = cvFloor(yf); |
|
const cv::Mat& image = mat; |
|
const int& imagecols = image.cols; |
|
|
|
// get the sigma_half: |
|
const float sigma_half = scale_in / 2; |
|
const float area = 4.0f * sigma_half * sigma_half; |
|
// calculate output: |
|
int ret_val; |
|
if (sigma_half < 0.5) |
|
{ |
|
//interpolation multipliers: |
|
const int r_x = (int)((xf - x) * 1024); |
|
const int r_y = (int)((yf - y) * 1024); |
|
const int r_x_1 = (1024 - r_x); |
|
const int r_y_1 = (1024 - r_y); |
|
uchar* ptr = image.data + x + y * imagecols; |
|
// just interpolate: |
|
ret_val = (r_x_1 * r_y_1 * int(*ptr)); |
|
ptr++; |
|
ret_val += (r_x * r_y_1 * int(*ptr)); |
|
ptr += imagecols; |
|
ret_val += (r_x * r_y * int(*ptr)); |
|
ptr--; |
|
ret_val += (r_x_1 * r_y * int(*ptr)); |
|
return 0xFF & ((ret_val + 512) / 1024 / 1024); |
|
} |
|
|
|
// this is the standard case (simple, not speed optimized yet): |
|
|
|
// scaling: |
|
const int scaling = (int)(4194304.0f / area); |
|
const int scaling2 = (int)(float(scaling) * area / 1024.0f); |
|
|
|
// calculate borders |
|
const float x_1 = xf - sigma_half; |
|
const float x1 = xf + sigma_half; |
|
const float y_1 = yf - sigma_half; |
|
const float y1 = yf + sigma_half; |
|
|
|
const int x_left = int(x_1 + 0.5); |
|
const int y_top = int(y_1 + 0.5); |
|
const int x_right = int(x1 + 0.5); |
|
const int y_bottom = int(y1 + 0.5); |
|
|
|
// overlap area - multiplication factors: |
|
const float r_x_1 = float(x_left) - x_1 + 0.5f; |
|
const float r_y_1 = float(y_top) - y_1 + 0.5f; |
|
const float r_x1 = x1 - float(x_right) + 0.5f; |
|
const float r_y1 = y1 - float(y_bottom) + 0.5f; |
|
const int dx = x_right - x_left - 1; |
|
const int dy = y_bottom - y_top - 1; |
|
const int A = (int)((r_x_1 * r_y_1) * scaling); |
|
const int B = (int)((r_x1 * r_y_1) * scaling); |
|
const int C = (int)((r_x1 * r_y1) * scaling); |
|
const int D = (int)((r_x_1 * r_y1) * scaling); |
|
const int r_x_1_i = (int)(r_x_1 * scaling); |
|
const int r_y_1_i = (int)(r_y_1 * scaling); |
|
const int r_x1_i = (int)(r_x1 * scaling); |
|
const int r_y1_i = (int)(r_y1 * scaling); |
|
|
|
// now the calculation: |
|
uchar* ptr = image.data + x_left + imagecols * y_top; |
|
// first row: |
|
ret_val = A * int(*ptr); |
|
ptr++; |
|
const uchar* end1 = ptr + dx; |
|
for (; ptr < end1; ptr++) |
|
{ |
|
ret_val += r_y_1_i * int(*ptr); |
|
} |
|
ret_val += B * int(*ptr); |
|
// middle ones: |
|
ptr += imagecols - dx - 1; |
|
uchar* end_j = ptr + dy * imagecols; |
|
for (; ptr < end_j; ptr += imagecols - dx - 1) |
|
{ |
|
ret_val += r_x_1_i * int(*ptr); |
|
ptr++; |
|
const uchar* end2 = ptr + dx; |
|
for (; ptr < end2; ptr++) |
|
{ |
|
ret_val += int(*ptr) * scaling; |
|
} |
|
ret_val += r_x1_i * int(*ptr); |
|
} |
|
// last row: |
|
ret_val += D * int(*ptr); |
|
ptr++; |
|
const uchar* end3 = ptr + dx; |
|
for (; ptr < end3; ptr++) |
|
{ |
|
ret_val += r_y1_i * int(*ptr); |
|
} |
|
ret_val += C * int(*ptr); |
|
|
|
return 0xFF & ((ret_val + scaling2 / 2) / scaling2 / 1024); |
|
} |
|
|
|
// half sampling |
|
inline void |
|
BriskLayer::halfsample(const cv::Mat& srcimg, cv::Mat& dstimg) |
|
{ |
|
// make sure the destination image is of the right size: |
|
CV_Assert(srcimg.cols / 2 == dstimg.cols); |
|
CV_Assert(srcimg.rows / 2 == dstimg.rows); |
|
|
|
// handle non-SSE case |
|
resize(srcimg, dstimg, dstimg.size(), 0, 0, INTER_AREA); |
|
} |
|
|
|
inline void |
|
BriskLayer::twothirdsample(const cv::Mat& srcimg, cv::Mat& dstimg) |
|
{ |
|
// make sure the destination image is of the right size: |
|
CV_Assert((srcimg.cols / 3) * 2 == dstimg.cols); |
|
CV_Assert((srcimg.rows / 3) * 2 == dstimg.rows); |
|
|
|
resize(srcimg, dstimg, dstimg.size(), 0, 0, INTER_AREA); |
|
} |
|
|
|
}
|
|
|