Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1468 lines
39 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#include "opencv2/core/core_c.h"
using namespace opencv_test;
using namespace testing;
using namespace cv;
namespace opencv_test {
namespace ocl {
#define UMAT_TEST_SIZES testing::Values(cv::Size(1, 1), cv::Size(1,128), cv::Size(128, 1), \
cv::Size(128, 128), cv::Size(640, 480), cv::Size(751, 373), cv::Size(1200, 1200))
/////////////////////////////// Basic Tests ////////////////////////////////
PARAM_TEST_CASE(UMatBasicTests, int, int, Size, bool)
{
Mat a;
UMat ua;
int type;
int depth;
int cn;
Size size;
bool useRoi;
Size roi_size;
Rect roi;
virtual void SetUp()
{
depth = GET_PARAM(0);
cn = GET_PARAM(1);
size = GET_PARAM(2);
useRoi = GET_PARAM(3);
type = CV_MAKE_TYPE(depth, cn);
a = randomMat(size, type, -100, 100);
a.copyTo(ua);
int roi_shift_x = randomInt(0, size.width-1);
int roi_shift_y = randomInt(0, size.height-1);
roi_size = Size(size.width - roi_shift_x, size.height - roi_shift_y);
roi = Rect(roi_shift_x, roi_shift_y, roi_size.width, roi_size.height);
}
};
TEST_P(UMatBasicTests, createUMat)
{
if(useRoi)
{
ua = UMat(ua, roi);
}
int dims = randomInt(2,6);
int _sz[CV_MAX_DIM];
for( int i = 0; i<dims; i++)
{
_sz[i] = randomInt(1,50);
}
int *sz = _sz;
int new_depth = randomInt(CV_8S, CV_64F);
int new_cn = randomInt(1,4);
ua.create(dims, sz, CV_MAKE_TYPE(new_depth, new_cn));
for(int i = 0; i<dims; i++)
{
ASSERT_EQ(ua.size[i], sz[i]);
}
ASSERT_EQ(ua.dims, dims);
ASSERT_EQ(ua.type(), CV_MAKE_TYPE(new_depth, new_cn) );
Size new_size = randomSize(1, 1000);
ua.create(new_size, CV_MAKE_TYPE(new_depth, new_cn) );
ASSERT_EQ( ua.size(), new_size);
ASSERT_EQ(ua.type(), CV_MAKE_TYPE(new_depth, new_cn) );
ASSERT_EQ( ua.dims, 2);
}
TEST_P(UMatBasicTests, swap)
{
Mat b = randomMat(size, type, -100, 100);
UMat ub;
b.copyTo(ub);
if(useRoi)
{
ua = UMat(ua,roi);
ub = UMat(ub,roi);
}
UMat uc = ua, ud = ub;
swap(ua,ub);
EXPECT_MAT_NEAR(ub,uc, 0);
EXPECT_MAT_NEAR(ud, ua, 0);
}
TEST_P(UMatBasicTests, base)
{
const int align_mask = 3;
roi.x &= ~align_mask;
roi.y &= ~align_mask;
roi.width = (roi.width + align_mask) & ~align_mask;
roi &= Rect(0, 0, ua.cols, ua.rows);
if(useRoi)
{
ua = UMat(ua,roi);
}
UMat ub = ua.clone();
EXPECT_MAT_NEAR(ub,ua,0);
ASSERT_EQ(ua.channels(), cn);
ASSERT_EQ(ua.depth(), depth);
ASSERT_EQ(ua.type(), type);
ASSERT_EQ(ua.elemSize(), a.elemSize());
ASSERT_EQ(ua.elemSize1(), a.elemSize1());
ASSERT_EQ(ub.empty(), ub.cols*ub.rows == 0);
ub.release();
ASSERT_TRUE( ub.empty() );
if(useRoi && a.size() != ua.size())
{
ASSERT_EQ(ua.isSubmatrix(), true);
}
else
{
ASSERT_EQ(ua.isSubmatrix(), false);
}
int dims = randomInt(2,6);
int sz[CV_MAX_DIM];
size_t total = 1;
for(int i = 0; i<dims; i++)
{
sz[i] = randomInt(1,45);
total *= (size_t)sz[i];
}
int new_type = CV_MAKE_TYPE(randomInt(CV_8S,CV_64F),randomInt(1,4));
ub = UMat(dims, sz, new_type);
ASSERT_EQ(ub.total(), total);
}
TEST_P(UMatBasicTests, copyTo)
{
int i;
if(useRoi)
{
UMat roi_ua;
Mat roi_a;
roi_ua = UMat(ua, roi);
roi_a = Mat(a, roi);
roi_a.copyTo(roi_ua);
EXPECT_MAT_NEAR(roi_a, roi_ua, 0);
roi_ua.copyTo(roi_a);
EXPECT_MAT_NEAR(roi_ua, roi_a, 0);
roi_ua.copyTo(ua);
EXPECT_MAT_NEAR(roi_ua, ua, 0);
ua.copyTo(a);
EXPECT_MAT_NEAR(ua, a, 0);
}
{
UMat ub;
ua.copyTo(ub);
EXPECT_MAT_NEAR(ua, ub, 0);
}
{
UMat ub;
i = randomInt(0, ua.cols-1);
a.col(i).copyTo(ub);
EXPECT_MAT_NEAR(a.col(i), ub, 0);
}
{
UMat ub;
ua.col(i).copyTo(ub);
EXPECT_MAT_NEAR(ua.col(i), ub, 0);
}
{
Mat b;
ua.col(i).copyTo(b);
EXPECT_MAT_NEAR(ua.col(i), b, 0);
}
{
UMat ub;
i = randomInt(0, a.rows-1);
ua.row(i).copyTo(ub);
EXPECT_MAT_NEAR(ua.row(i), ub, 0);
}
{
UMat ub;
a.row(i).copyTo(ub);
EXPECT_MAT_NEAR(a.row(i), ub, 0);
}
{
Mat b;
ua.row(i).copyTo(b);
EXPECT_MAT_NEAR(ua.row(i), b, 0);
}
}
TEST_P(UMatBasicTests, GetUMat)
{
if(useRoi)
{
a = Mat(a, roi);
ua = UMat(ua,roi);
}
{
UMat ub;
ub = a.getUMat(ACCESS_RW);
EXPECT_MAT_NEAR(ub, ua, 0);
}
{
UMat u = a.getUMat(ACCESS_RW);
{
Mat b = u.getMat(ACCESS_RW);
EXPECT_MAT_NEAR(b, a, 0);
}
}
{
Mat b;
b = ua.getMat(ACCESS_RW);
EXPECT_MAT_NEAR(b, a, 0);
}
{
Mat m = ua.getMat(ACCESS_RW);
{
UMat ub = m.getUMat(ACCESS_RW);
EXPECT_MAT_NEAR(ub, ua, 0);
}
}
}
INSTANTIATE_TEST_CASE_P(UMat, UMatBasicTests, Combine(testing::Values(CV_8U, CV_64F), testing::Values(1, 2),
testing::Values(cv::Size(1, 1), cv::Size(1, 128), cv::Size(128, 1), cv::Size(128, 128), cv::Size(640, 480)), Bool()));
//////////////////////////////////////////////////////////////// Reshape ////////////////////////////////////////////////////////////////////////
PARAM_TEST_CASE(UMatTestReshape, int, int, Size, bool)
{
Mat a;
UMat ua, ub;
int type;
int depth;
int cn;
Size size;
bool useRoi;
Size roi_size;
virtual void SetUp()
{
depth = GET_PARAM(0);
cn = GET_PARAM(1);
size = GET_PARAM(2);
useRoi = GET_PARAM(3);
type = CV_MAKE_TYPE(depth, cn);
}
};
TEST_P(UMatTestReshape, reshape)
{
a = randomMat(size,type, -100, 100);
a.copyTo(ua);
if(useRoi)
{
int roi_shift_x = randomInt(0, size.width-1);
int roi_shift_y = randomInt(0, size.height-1);
roi_size = Size(size.width - roi_shift_x, size.height - roi_shift_y);
Rect roi(roi_shift_x, roi_shift_y, roi_size.width, roi_size.height);
ua = UMat(ua, roi).clone();
a = Mat(a, roi).clone();
}
int nChannels = randomInt(1,4);
if ((ua.cols*ua.channels()*ua.rows)%nChannels != 0)
{
EXPECT_ANY_THROW(ua.reshape(nChannels));
}
else
{
ub = ua.reshape(nChannels);
ASSERT_EQ(ub.channels(),nChannels);
ASSERT_EQ(ub.channels()*ub.cols*ub.rows, ua.channels()*ua.cols*ua.rows);
EXPECT_MAT_NEAR(ua.reshape(nChannels), a.reshape(nChannels), 0);
int new_rows = randomInt(1, INT_MAX);
if ( ((int)ua.total()*ua.channels())%(new_rows*nChannels) != 0)
{
EXPECT_ANY_THROW (ua.reshape(nChannels, new_rows) );
}
else
{
EXPECT_NO_THROW ( ub = ua.reshape(nChannels, new_rows) );
ASSERT_EQ(ub.channels(),nChannels);
ASSERT_EQ(ub.rows, new_rows);
ASSERT_EQ(ub.channels()*ub.cols*ub.rows, ua.channels()*ua.cols*ua.rows);
EXPECT_MAT_NEAR(ua.reshape(nChannels,new_rows), a.reshape(nChannels,new_rows), 0);
}
new_rows = (int)ua.total()*ua.channels()/(nChannels*randomInt(1, size.width*size.height));
if (new_rows == 0) new_rows = 1;
int new_cols = (int)ua.total()*ua.channels()/(new_rows*nChannels);
int sz[] = {new_rows, new_cols};
if( ((int)ua.total()*ua.channels()) % (new_rows*new_cols) != 0 )
{
EXPECT_ANY_THROW( ua.reshape(nChannels, ua.dims, sz) );
}
else
{
EXPECT_NO_THROW ( ub = ua.reshape(nChannels, ua.dims, sz) );
ASSERT_EQ(ub.channels(),nChannels);
ASSERT_EQ(ub.rows, new_rows);
ASSERT_EQ(ub.cols, new_cols);
ASSERT_EQ(ub.channels()*ub.cols*ub.rows, ua.channels()*ua.cols*ua.rows);
EXPECT_MAT_NEAR(ua.reshape(nChannels, ua.dims, sz), a.reshape(nChannels, a.dims, sz), 0);
}
}
}
INSTANTIATE_TEST_CASE_P(UMat, UMatTestReshape, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, UMAT_TEST_SIZES, Bool() ));
static void check_ndim_shape(const cv::UMat &mat, int cn, int ndims, const int *sizes)
{
EXPECT_EQ(mat.channels(), cn);
EXPECT_EQ(mat.dims, ndims);
if (mat.dims != ndims)
return;
for (int i = 0; i < ndims; i++)
EXPECT_EQ(mat.size[i], sizes[i]);
}
TEST(UMatTestReshape, reshape_ndims_2)
{
const cv::UMat A(8, 16, CV_8UC3);
cv::UMat B;
{
int new_sizes_mask[] = { 0, 3, 4, 4 };
int new_sizes_real[] = { 8, 3, 4, 4 };
ASSERT_NO_THROW(B = A.reshape(1, 4, new_sizes_mask));
check_ndim_shape(B, 1, 4, new_sizes_real);
}
{
int new_sizes[] = { 16, 8 };
ASSERT_NO_THROW(B = A.reshape(0, 2, new_sizes));
check_ndim_shape(B, 3, 2, new_sizes);
EXPECT_EQ(B.rows, new_sizes[0]);
EXPECT_EQ(B.cols, new_sizes[1]);
}
{
int new_sizes[] = { 2, 5, 1, 3 };
cv::UMat A_sliced = A(cv::Range::all(), cv::Range(0, 15));
ASSERT_ANY_THROW(A_sliced.reshape(4, 4, new_sizes));
}
}
TEST(UMatTestReshape, reshape_ndims_4)
{
const int sizes[] = { 2, 6, 4, 12 };
const cv::UMat A(4, sizes, CV_8UC3);
cv::UMat B;
{
int new_sizes_mask[] = { 0, 864 };
int new_sizes_real[] = { 2, 864 };
ASSERT_NO_THROW(B = A.reshape(1, 2, new_sizes_mask));
check_ndim_shape(B, 1, 2, new_sizes_real);
EXPECT_EQ(B.rows, new_sizes_real[0]);
EXPECT_EQ(B.cols, new_sizes_real[1]);
}
{
int new_sizes_mask[] = { 4, 0, 0, 2, 3 };
int new_sizes_real[] = { 4, 6, 4, 2, 3 };
ASSERT_NO_THROW(B = A.reshape(0, 5, new_sizes_mask));
check_ndim_shape(B, 3, 5, new_sizes_real);
}
{
int new_sizes_mask[] = { 1, 1 };
ASSERT_ANY_THROW(A.reshape(0, 2, new_sizes_mask));
}
{
int new_sizes_mask[] = { 4, 6, 3, 3, 0 };
ASSERT_ANY_THROW(A.reshape(0, 5, new_sizes_mask));
}
}
////////////////////////////////////////////////////////////////// ROI testing ///////////////////////////////////////////////////////////////
PARAM_TEST_CASE(UMatTestRoi, int, int, Size)
{
Mat a, roi_a;
UMat ua, roi_ua;
int type;
int depth;
int cn;
Size size;
Size roi_size;
virtual void SetUp()
{
depth = GET_PARAM(0);
cn = GET_PARAM(1);
size = GET_PARAM(2);
type = CV_MAKE_TYPE(depth, cn);
}
};
TEST_P(UMatTestRoi, createRoi)
{
int roi_shift_x = randomInt(0, size.width-1);
int roi_shift_y = randomInt(0, size.height-1);
roi_size = Size(size.width - roi_shift_x, size.height - roi_shift_y);
a = randomMat(size, type, -100, 100);
Rect roi(roi_shift_x, roi_shift_y, roi_size.width, roi_size.height);
roi_a = Mat(a, roi);
a.copyTo(ua);
roi_ua = UMat(ua, roi);
EXPECT_MAT_NEAR(roi_a, roi_ua, 0);
}
TEST_P(UMatTestRoi, locateRoi)
{
int roi_shift_x = randomInt(0, size.width-1);
int roi_shift_y = randomInt(0, size.height-1);
roi_size = Size(size.width - roi_shift_x, size.height - roi_shift_y);
a = randomMat(size, type, -100, 100);
Rect roi(roi_shift_x, roi_shift_y, roi_size.width, roi_size.height);
roi_a = Mat(a, roi);
a.copyTo(ua);
roi_ua = UMat(ua,roi);
Size sz, usz;
Point p, up;
roi_a.locateROI(sz, p);
roi_ua.locateROI(usz, up);
ASSERT_EQ(sz, usz);
ASSERT_EQ(p, up);
}
TEST_P(UMatTestRoi, adjustRoi)
{
int roi_shift_x = randomInt(0, size.width-1);
int roi_shift_y = randomInt(0, size.height-1);
roi_size = Size(size.width - roi_shift_x, size.height - roi_shift_y);
a = randomMat(size, type, -100, 100);
Rect roi(roi_shift_x, roi_shift_y, roi_size.width, roi_size.height);
a.copyTo(ua);
roi_ua = UMat( ua, roi);
int adjLeft = randomInt(-(roi_ua.cols/2), (size.width-1)/2);
int adjRight = randomInt(-(roi_ua.cols/2), (size.width-1)/2);
int adjTop = randomInt(-(roi_ua.rows/2), (size.height-1)/2);
int adjBot = randomInt(-(roi_ua.rows/2), (size.height-1)/2);
roi_ua.adjustROI(adjTop, adjBot, adjLeft, adjRight);
roi_shift_x = std::max(0, roi.x-adjLeft);
roi_shift_y = std::max(0, roi.y-adjTop);
Rect new_roi( roi_shift_x, roi_shift_y, std::min(roi.width+adjRight+adjLeft, size.width-roi_shift_x), std::min(roi.height+adjBot+adjTop, size.height-roi_shift_y) );
UMat test_roi = UMat(ua, new_roi);
EXPECT_MAT_NEAR(roi_ua, test_roi, 0);
}
INSTANTIATE_TEST_CASE_P(UMat, UMatTestRoi, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, UMAT_TEST_SIZES ));
TEST(UMatTestRoi, adjustRoiOverflow)
{
UMat m(15, 10, CV_32S);
UMat roi(m, cv::Range(2, 10), cv::Range(3,6));
int rowsInROI = roi.rows;
roi.adjustROI(1, 0, 0, 0);
ASSERT_EQ(roi.rows, rowsInROI + 1);
roi.adjustROI(-m.rows, -m.rows, 0, 0);
ASSERT_EQ(roi.rows, m.rows);
}
/////////////////////////////////////////////////////////////// Size ////////////////////////////////////////////////////////////////////
PARAM_TEST_CASE(UMatTestSizeOperations, int, int, Size, bool)
{
Mat a, b, roi_a, roi_b;
UMat ua, ub, roi_ua, roi_ub;
int type;
int depth;
int cn;
Size size;
Size roi_size;
bool useRoi;
virtual void SetUp()
{
depth = GET_PARAM(0);
cn = GET_PARAM(1);
size = GET_PARAM(2);
useRoi = GET_PARAM(3);
type = CV_MAKE_TYPE(depth, cn);
}
};
TEST_P(UMatTestSizeOperations, copySize)
{
Size s = randomSize(1,300);
a = randomMat(size, type, -100, 100);
b = randomMat(s, type, -100, 100);
a.copyTo(ua);
b.copyTo(ub);
if(useRoi)
{
int roi_shift_x = randomInt(0, size.width-1);
int roi_shift_y = randomInt(0, size.height-1);
roi_size = Size(size.width - roi_shift_x, size.height - roi_shift_y);
Rect roi(roi_shift_x, roi_shift_y, roi_size.width, roi_size.height);
ua = UMat(ua,roi);
roi_shift_x = randomInt(0, s.width-1);
roi_shift_y = randomInt(0, s.height-1);
roi_size = Size(s.width - roi_shift_x, s.height - roi_shift_y);
roi = Rect(roi_shift_x, roi_shift_y, roi_size.width, roi_size.height);
ub = UMat(ub, roi);
}
ua.copySize(ub);
ASSERT_EQ(ua.size, ub.size);
}
INSTANTIATE_TEST_CASE_P(UMat, UMatTestSizeOperations, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, UMAT_TEST_SIZES, Bool() ));
///////////////////////////////////////////////////////////////// UMat operations ////////////////////////////////////////////////////////////////////////////
PARAM_TEST_CASE(UMatTestUMatOperations, int, int, Size, bool)
{
Mat a, b;
UMat ua, ub;
int type;
int depth;
int cn;
Size size;
Size roi_size;
bool useRoi;
virtual void SetUp()
{
depth = GET_PARAM(0);
cn = GET_PARAM(1);
size = GET_PARAM(2);
useRoi = GET_PARAM(3);
type = CV_MAKE_TYPE(depth, cn);
}
};
TEST_P(UMatTestUMatOperations, diag)
{
a = randomMat(size, type, -100, 100);
a.copyTo(ua);
Mat new_diag;
if(useRoi)
{
int roi_shift_x = randomInt(0, size.width-1);
int roi_shift_y = randomInt(0, size.height-1);
roi_size = Size(size.width - roi_shift_x, size.height - roi_shift_y);
Rect roi(roi_shift_x, roi_shift_y, roi_size.width, roi_size.height);
ua = UMat(ua,roi);
a = Mat(a, roi);
}
int n = randomInt(0, ua.cols-1);
ub = ua.diag(n);
b = a.diag(n);
EXPECT_MAT_NEAR(b, ub, 0);
new_diag = randomMat(Size(ua.rows, 1), type, -100, 100);
new_diag.copyTo(ub);
ua = cv::UMat::diag(ub);
EXPECT_MAT_NEAR(ua.diag(), new_diag.t(), 0);
}
INSTANTIATE_TEST_CASE_P(UMat, UMatTestUMatOperations, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, UMAT_TEST_SIZES, Bool()));
/////////////////////////////////////////////////////////////// getUMat -> GetMat ///////////////////////////////////////////////////////////////////
PARAM_TEST_CASE(getUMat, int, int, Size, bool)
{
int type;
Size size;
virtual void SetUp()
{
int depth = GET_PARAM(0);
int cn = GET_PARAM(1);
size = GET_PARAM(2);
useOpenCL = GET_PARAM(3);
type = CV_MAKE_TYPE(depth, cn);
isOpenCL_enabled = cv::ocl::useOpenCL();
cv::ocl::setUseOpenCL(useOpenCL);
}
virtual void TearDown()
{
cv::ocl::setUseOpenCL(isOpenCL_enabled);
}
// UMat created from user allocated host memory (USE_HOST_PTR)
void custom_ptr_test(size_t align_base, size_t align_offset)
{
void* pData_allocated = new unsigned char [size.area() * CV_ELEM_SIZE(type) + (align_base + align_offset)];
void* pData = (char*)alignPtr(pData_allocated, (int)align_base) + align_offset;
size_t step = size.width * CV_ELEM_SIZE(type);
{
Mat m = Mat(size, type, pData, step);
m.setTo(cv::Scalar::all(2));
UMat u = m.getUMat(ACCESS_RW);
cv::add(u, cv::Scalar::all(2), u);
Mat d = u.getMat(ACCESS_READ);
Mat expected(m.size(), m.type(), cv::Scalar::all(4));
double norm = cvtest::norm(d, expected, NORM_INF);
EXPECT_EQ(0, norm);
}
delete[] (unsigned char*)pData_allocated;
}
private:
bool useOpenCL;
bool isOpenCL_enabled;
};
TEST_P(getUMat, custom_ptr_align_4Kb)
{
custom_ptr_test(4096, 0);
}
TEST_P(getUMat, custom_ptr_align_64b)
{
custom_ptr_test(4096, 64);
}
TEST_P(getUMat, custom_ptr_align_none)
{
custom_ptr_test(4096, cv::alignSize(CV_ELEM_SIZE(type), 4));
}
TEST_P(getUMat, self_allocated)
{
Mat m = Mat(size, type);
m.setTo(cv::Scalar::all(2));
UMat u = m.getUMat(ACCESS_RW);
cv::add(u, cv::Scalar::all(2), u);
Mat d = u.getMat(ACCESS_READ);
Mat expected(m.size(), m.type(), cv::Scalar::all(4));
double norm = cvtest::norm(d, expected, NORM_INF);
EXPECT_EQ(0, norm);
}
INSTANTIATE_TEST_CASE_P(UMat, getUMat, Combine(
Values(CV_8U, CV_64F), // depth
Values(1, 3), // channels
Values(cv::Size(1, 1), cv::Size(255, 255), cv::Size(256, 256)), // Size
Bool() // useOpenCL
));
///////////////////////////////////////////////////////////////// OpenCL ////////////////////////////////////////////////////////////////////////////
#ifdef HAVE_OPENCL
TEST(UMat, BufferPoolGrowing)
{
#ifdef _DEBUG
const int ITERATIONS = 100;
#else
const int ITERATIONS = 200;
#endif
const Size sz(1920, 1080);
BufferPoolController* c = cv::ocl::getOpenCLAllocator()->getBufferPoolController();
if (c)
{
size_t oldMaxReservedSize = c->getMaxReservedSize();
c->freeAllReservedBuffers();
c->setMaxReservedSize(sz.area() * 10);
for (int i = 0; i < ITERATIONS; i++)
{
UMat um(Size(sz.width + i, sz.height + i), CV_8UC1);
UMat um2(Size(sz.width + 2 * i, sz.height + 2 * i), CV_8UC1);
}
c->setMaxReservedSize(oldMaxReservedSize);
c->freeAllReservedBuffers();
}
else
std::cout << "Skipped, no OpenCL" << std::endl;
}
#endif
class CV_UMatTest :
public cvtest::BaseTest
{
public:
CV_UMatTest() {}
~CV_UMatTest() {}
protected:
void run(int);
struct test_excep
{
test_excep(const string& _s=string("")) : s(_s) { }
string s;
};
bool TestUMat();
void checkDiff(const Mat& m1, const Mat& m2, const string& s)
{
if (cvtest::norm(m1, m2, NORM_INF) != 0)
throw test_excep(s);
}
void checkDiffF(const Mat& m1, const Mat& m2, const string& s)
{
if (cvtest::norm(m1, m2, NORM_INF) > 1e-5)
throw test_excep(s);
}
};
#define STR(a) STR2(a)
#define STR2(a) #a
#define CHECK_DIFF(a, b) checkDiff(a, b, "(" #a ") != (" #b ") at l." STR(__LINE__))
#define CHECK_DIFF_FLT(a, b) checkDiffF(a, b, "(" #a ") !=(eps) (" #b ") at l." STR(__LINE__))
bool CV_UMatTest::TestUMat()
{
try
{
Mat a(100, 100, CV_16SC2), b, c;
randu(a, Scalar::all(-100), Scalar::all(100));
Rect roi(1, 3, 5, 4);
Mat ra(a, roi), rb, rc, rc0;
UMat ua, ura, ub, urb, uc, urc;
a.copyTo(ua);
ua.copyTo(b);
CHECK_DIFF(a, b);
ura = ua(roi);
ura.copyTo(rb);
CHECK_DIFF(ra, rb);
ra += Scalar::all(1.f);
{
Mat temp = ura.getMat(ACCESS_RW);
temp += Scalar::all(1.f);
}
ra.copyTo(rb);
CHECK_DIFF(ra, rb);
b = a.clone();
ra = a(roi);
rb = b(roi);
randu(b, Scalar::all(-100), Scalar::all(100));
b.copyTo(ub);
urb = ub(roi);
/*std::cout << "==============================================\nbefore op (CPU):\n";
std::cout << "ra: " << ra << std::endl;
std::cout << "rb: " << rb << std::endl;*/
ra.copyTo(ura);
rb.copyTo(urb);
ra.release();
rb.release();
ura.copyTo(ra);
urb.copyTo(rb);
/*std::cout << "==============================================\nbefore op (GPU):\n";
std::cout << "ra: " << ra << std::endl;
std::cout << "rb: " << rb << std::endl;*/
cv::max(ra, rb, rc);
cv::max(ura, urb, urc);
urc.copyTo(rc0);
/*std::cout << "==============================================\nafter op:\n";
std::cout << "rc: " << rc << std::endl;
std::cout << "rc0: " << rc0 << std::endl;*/
CHECK_DIFF(rc0, rc);
{
UMat tmp = rc0.getUMat(ACCESS_WRITE);
cv::max(ura, urb, tmp);
}
CHECK_DIFF(rc0, rc);
ura.copyTo(urc);
cv::max(urc, urb, urc);
urc.copyTo(rc0);
CHECK_DIFF(rc0, rc);
rc = ra ^ rb;
cv::bitwise_xor(ura, urb, urc);
urc.copyTo(rc0);
/*std::cout << "==============================================\nafter op:\n";
std::cout << "ra: " << rc0 << std::endl;
std::cout << "rc: " << rc << std::endl;*/
CHECK_DIFF(rc0, rc);
rc = ra + rb;
cv::add(ura, urb, urc);
urc.copyTo(rc0);
CHECK_DIFF(rc0, rc);
cv::subtract(ra, Scalar::all(5), rc);
cv::subtract(ura, Scalar::all(5), urc);
urc.copyTo(rc0);
CHECK_DIFF(rc0, rc);
}
catch (const test_excep& e)
{
ts->printf(cvtest::TS::LOG, "%s\n", e.s.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return false;
}
return true;
}
void CV_UMatTest::run( int /* start_from */)
{
printf("Use OpenCL: %s\nHave OpenCL: %s\n",
cv::ocl::useOpenCL() ? "TRUE" : "FALSE",
cv::ocl::haveOpenCL() ? "TRUE" : "FALSE" );
if (!TestUMat())
return;
ts->set_failed_test_info(cvtest::TS::OK);
}
TEST(Core_UMat, base) { CV_UMatTest test; test.safe_run(); }
TEST(Core_UMat, getUMat)
{
{
int a[3] = { 1, 2, 3 };
Mat m = Mat(1, 1, CV_32SC3, a);
UMat u = m.getUMat(ACCESS_READ);
EXPECT_NE((void*)NULL, u.u);
}
{
Mat m(10, 10, CV_8UC1), ref;
for (int y = 0; y < m.rows; ++y)
{
uchar * const ptr = m.ptr<uchar>(y);
for (int x = 0; x < m.cols; ++x)
ptr[x] = (uchar)(x + y * 2);
}
ref = m.clone();
Rect r(1, 1, 8, 8);
ref(r).setTo(17);
{
UMat um = m(r).getUMat(ACCESS_WRITE);
um.setTo(17);
}
double err = cvtest::norm(m, ref, NORM_INF);
if (err > 0)
{
std::cout << "m: " << std::endl << m << std::endl;
std::cout << "ref: " << std::endl << ref << std::endl;
}
EXPECT_EQ(0., err);
}
}
TEST(UMat, Sync)
{
UMat um(10, 10, CV_8UC1);
{
Mat m = um.getMat(ACCESS_WRITE);
m.setTo(cv::Scalar::all(17));
}
um.setTo(cv::Scalar::all(19));
EXPECT_EQ(0, cvtest::norm(um.getMat(ACCESS_READ), cv::Mat(um.size(), um.type(), 19), NORM_INF));
}
TEST(UMat, SyncTemp)
{
Mat m(10, 10, CV_8UC1);
{
UMat um = m.getUMat(ACCESS_WRITE);
{
Mat m2 = um.getMat(ACCESS_WRITE);
m2.setTo(cv::Scalar::all(17));
}
um.setTo(cv::Scalar::all(19));
EXPECT_EQ(0, cvtest::norm(um.getMat(ACCESS_READ), cv::Mat(um.size(), um.type(), 19), NORM_INF));
}
}
TEST(UMat, CopyToIfDeviceCopyIsObsolete)
{
UMat um(7, 2, CV_8UC1);
Mat m(um.size(), um.type());
m.setTo(Scalar::all(0));
{
// make obsolete device copy of UMat
Mat temp = um.getMat(ACCESS_WRITE);
temp.setTo(Scalar::all(10));
}
m.copyTo(um);
um.setTo(Scalar::all(17));
EXPECT_EQ(0, cvtest::norm(um.getMat(ACCESS_READ), Mat(um.size(), um.type(), 17), NORM_INF));
}
TEST(UMat, setOpenCL)
{
#ifndef HAVE_OPENCL
return; // test skipped
#else
// save the current state
bool useOCL = cv::ocl::useOpenCL();
Mat m = (Mat_<uchar>(3,3)<<0,1,2,3,4,5,6,7,8);
cv::ocl::setUseOpenCL(true);
UMat um1;
m.copyTo(um1);
cv::ocl::setUseOpenCL(false);
UMat um2;
m.copyTo(um2);
cv::ocl::setUseOpenCL(true);
countNonZero(um1);
countNonZero(um2);
um1.copyTo(um2);
EXPECT_MAT_NEAR(um1, um2, 0);
EXPECT_MAT_NEAR(um1, m, 0);
um2.copyTo(um1);
EXPECT_MAT_NEAR(um1, m, 0);
EXPECT_MAT_NEAR(um1, um2, 0);
cv::ocl::setUseOpenCL(false);
countNonZero(um1);
countNonZero(um2);
um1.copyTo(um2);
EXPECT_MAT_NEAR(um1, um2, 0);
EXPECT_MAT_NEAR(um1, m, 0);
um2.copyTo(um1);
EXPECT_MAT_NEAR(um1, um2, 0);
EXPECT_MAT_NEAR(um1, m, 0);
// reset state to the previous one
cv::ocl::setUseOpenCL(useOCL);
#endif
}
TEST(UMat, ReadBufferRect)
{
UMat m(1, 10000, CV_32FC2, Scalar::all(-1));
Mat t(1, 9000, CV_32FC2, Scalar::all(-200)), t2(1, 9000, CV_32FC2, Scalar::all(-1));
m.colRange(0, 9000).copyTo(t);
EXPECT_MAT_NEAR(t, t2, 0);
}
// Use iGPU or OPENCV_OPENCL_DEVICE=:CPU: to catch problem
TEST(UMat, synchronization_map_unmap)
{
class TestParallelLoopBody : public cv::ParallelLoopBody
{
UMat u_;
public:
TestParallelLoopBody(const UMat& u) : u_(u) { }
void operator() (const cv::Range& range) const
{
printf("range: %d, %d -- begin\n", range.start, range.end);
for (int i = 0; i < 10; i++)
{
printf("%d: %d map...\n", range.start, i);
Mat m = u_.getMat(cv::ACCESS_READ);
printf("%d: %d unmap...\n", range.start, i);
m.release();
}
printf("range: %d, %d -- end\n", range.start, range.end);
}
};
try
{
UMat u(1000, 1000, CV_32FC1, Scalar::all(0));
parallel_for_(cv::Range(0, 2), TestParallelLoopBody(u));
}
catch (const cv::Exception& e)
{
FAIL() << "Exception: " << e.what();
ADD_FAILURE();
}
catch (...)
{
FAIL() << "Exception!";
}
}
TEST(UMat, async_unmap)
{
for (int i = 0; i < 20; i++)
{
try
{
Mat m = Mat(1000, 1000, CV_8UC1, Scalar::all(0));
UMat u = m.getUMat(ACCESS_READ);
UMat dst;
cv::add(u, Scalar::all(0), dst); // start async operation
u.release();
m.release();
}
catch (const cv::Exception& e)
{
printf("i = %d... %s\n", i, e.what());
ADD_FAILURE();
}
catch (...)
{
printf("i = %d...\n", i);
ADD_FAILURE();
}
}
}
TEST(UMat, unmap_in_class)
{
class Logic
{
public:
Logic() {}
void processData(InputArray input)
{
Mat m = input.getMat();
{
Mat dst;
m.convertTo(dst, CV_32FC1);
// some additional CPU-based per-pixel processing into dst
intermediateResult = dst.getUMat(ACCESS_READ); // this violates lifetime of base(dst) / derived (intermediateResult) objects. Use copyTo?
std::cout << "data processed..." << std::endl;
} // problem is here: dst::~Mat()
std::cout << "leave ProcessData()" << std::endl;
}
UMat getResult() const { return intermediateResult; }
protected:
UMat intermediateResult;
};
try
{
Mat m = Mat(1000, 1000, CV_8UC1, Scalar::all(0));
Logic l;
l.processData(m);
UMat result = l.getResult();
}
catch (const cv::Exception& e)
{
printf("exception... %s\n", e.what());
ADD_FAILURE();
}
catch (...)
{
printf("exception... \n");
ADD_FAILURE();
}
}
TEST(UMat, map_unmap_counting)
{
if (!cv::ocl::useOpenCL())
{
std::cout << "OpenCL is not enabled. Skip test" << std::endl;
return;
}
std::cout << "Host memory: " << cv::ocl::Device::getDefault().hostUnifiedMemory() << std::endl;
Mat m(Size(10, 10), CV_8UC1, Scalar::all(0));
UMat um = m.getUMat(ACCESS_RW);
{
Mat d1 = um.getMat(ACCESS_RW);
Mat d2 = um.getMat(ACCESS_RW);
d1.release();
}
void* h = NULL;
EXPECT_NO_THROW(h = um.handle(ACCESS_RW));
std::cout << "Handle: " << h << std::endl;
}
static void process_with_async_cleanup(Mat& frame)
{
UMat blurResult;
{
UMat umat_buffer = frame.getUMat(ACCESS_READ);
cv::blur(umat_buffer, blurResult, Size(3, 3)); // UMat doesn't support inplace, this call is not synchronized
}
Mat result;
blurResult.copyTo(result);
swap(result, frame);
// umat_buffer cleanup is done asynchronously, silence warning about original 'frame' cleanup here (through 'result')
// - release input 'frame' (as 'result')
// - release 'umat_buffer' asynchronously and silence warning about "parent" buffer (in debug builds)
}
TEST(UMat, async_cleanup_without_call_chain_warning)
{
Mat frame(Size(640, 480), CV_8UC1, Scalar::all(128));
for (int i = 0; i < 10; i++)
{
process_with_async_cleanup(frame);
}
}
///////////// oclCleanupCallback threadsafe check (#5062) /////////////////////
// Case 1: reuse of old src Mat in OCL pipe. Hard to catch!
OCL_TEST(UMat, DISABLED_OCL_ThreadSafe_CleanupCallback_1_VeryLongTest)
{
if (!cv::ocl::useOpenCL())
{
std::cout << "OpenCL is not enabled. Skip test" << std::endl;
return;
}
for (int j = 0; j < 100; j++)
{
const Size srcSize(320, 240);
const int type = CV_8UC1;
const int dtype = CV_16UC1;
Mat src(srcSize, type, Scalar::all(0));
Mat dst_ref(srcSize, dtype);
// Generate reference data as additional check
OCL_OFF(src.convertTo(dst_ref, dtype));
cv::ocl::setUseOpenCL(true); // restore OpenCL state
UMat dst(srcSize, dtype);
// Use multiple iterations to increase chance of data race catching
for(int k = 0; k < 10000; k++)
{
UMat tmpUMat = src.getUMat(ACCESS_RW);
tmpUMat.convertTo(dst, dtype);
::cv::ocl::finish(); // force kernel to complete to start cleanup sooner
}
EXPECT_MAT_NEAR(dst_ref, dst, 1);
printf(".\n"); fflush(stdout);
}
}
// Case 2: concurrent deallocation of UMatData between UMat and Mat deallocators. Hard to catch!
OCL_TEST(UMat, DISABLED_OCL_ThreadSafe_CleanupCallback_2_VeryLongTest)
{
if (!cv::ocl::useOpenCL())
{
std::cout << "OpenCL is not enabled. Skip test" << std::endl;
return;
}
for (int j = 0; j < 100; j++)
{
const Size srcSize(320, 240);
const int type = CV_8UC1;
const int dtype = CV_16UC1;
// This test is only relevant for OCL
UMat dst(srcSize, dtype);
// Use multiple iterations to increase chance of data race catching
for(int k = 0; k < 10000; k++)
{
Mat src(srcSize, type, Scalar::all(0)); // Declare src inside loop now to catch its destruction on stack
{
UMat tmpUMat = src.getUMat(ACCESS_RW);
tmpUMat.convertTo(dst, dtype);
}
::cv::ocl::finish(); // force kernel to complete to start cleanup sooner
}
printf(".\n"); fflush(stdout);
}
}
TEST(UMat, DISABLED_Test_same_behaviour_read_and_read)
{
bool exceptionDetected = false;
try
{
UMat u(Size(10, 10), CV_8UC1, Scalar::all(0));
Mat m = u.getMat(ACCESS_READ);
UMat dst;
cv::add(u, Scalar::all(1), dst);
}
catch (...)
{
exceptionDetected = true;
}
ASSERT_FALSE(exceptionDetected); // no data race, 2+ reads are valid
}
// VP: this test (and probably others from same_behaviour series) is not valid in my opinion.
TEST(UMat, DISABLED_Test_same_behaviour_read_and_write)
{
bool exceptionDetected = false;
try
{
UMat u(Size(10, 10), CV_8UC1, Scalar::all(0));
Mat m = u.getMat(ACCESS_READ);
cv::add(u, Scalar::all(1), u);
}
catch (...)
{
exceptionDetected = true;
}
ASSERT_TRUE(exceptionDetected); // data race
}
TEST(UMat, DISABLED_Test_same_behaviour_write_and_read)
{
bool exceptionDetected = false;
try
{
UMat u(Size(10, 10), CV_8UC1, Scalar::all(0));
Mat m = u.getMat(ACCESS_WRITE);
UMat dst;
cv::add(u, Scalar::all(1), dst);
}
catch (...)
{
exceptionDetected = true;
}
ASSERT_TRUE(exceptionDetected); // data race
}
TEST(UMat, DISABLED_Test_same_behaviour_write_and_write)
{
bool exceptionDetected = false;
try
{
UMat u(Size(10, 10), CV_8UC1, Scalar::all(0));
Mat m = u.getMat(ACCESS_WRITE);
cv::add(u, Scalar::all(1), u);
}
catch (...)
{
exceptionDetected = true;
}
ASSERT_TRUE(exceptionDetected); // data race
}
TEST(UMat, mat_umat_sync)
{
UMat u(10, 10, CV_8UC1, Scalar(1));
{
Mat m = u.getMat(ACCESS_RW).reshape(1);
m.setTo(Scalar(255));
}
UMat uDiff;
cv::compare(u, 255, uDiff, CMP_NE);
ASSERT_EQ(0, countNonZero(uDiff));
}
TEST(UMat, testTempObjects_UMat)
{
UMat u(10, 10, CV_8UC1, Scalar(1));
{
UMat u2 = u.getMat(ACCESS_RW).getUMat(ACCESS_RW);
u2.setTo(Scalar(255));
}
UMat uDiff;
cv::compare(u, 255, uDiff, CMP_NE);
ASSERT_EQ(0, countNonZero(uDiff));
}
TEST(UMat, testTempObjects_Mat)
{
Mat m(10, 10, CV_8UC1, Scalar(1));
{
Mat m2;
ASSERT_ANY_THROW({
// Below is unwrapped version of this invalid expression:
// m2 = m.getUMat(ACCESS_RW).getMat(ACCESS_RW)
UMat u = m.getUMat(ACCESS_RW);
m2 = u.getMat(ACCESS_RW);
u.release();
});
}
}
TEST(UMat, testWrongLifetime_UMat)
{
UMat u(10, 10, CV_8UC1, Scalar(1));
{
UMat u2 = u.getMat(ACCESS_RW).getUMat(ACCESS_RW);
u.release(); // base object
u2.release(); // derived object, should show warning message
}
}
TEST(UMat, testWrongLifetime_Mat)
{
Mat m(10, 10, CV_8UC1, Scalar(1));
{
UMat u = m.getUMat(ACCESS_RW);
Mat m2 = u.getMat(ACCESS_RW);
m.release(); // base object
m2.release(); // map of derived object
u.release(); // derived object, should show warning message
}
}
TEST(UMat, DISABLED_regression_5991)
{
int sz[] = {2,3,2};
UMat mat(3, sz, CV_32F, Scalar(1));
ASSERT_NO_THROW(mat.convertTo(mat, CV_8U));
EXPECT_EQ(sz[0], mat.size[0]);
EXPECT_EQ(sz[1], mat.size[1]);
EXPECT_EQ(sz[2], mat.size[2]);
EXPECT_EQ(0, cvtest::norm(mat.getMat(ACCESS_READ), Mat(3, sz, CV_8U, Scalar(1)), NORM_INF));
}
TEST(UMat, testTempObjects_Mat_issue_8693)
{
UMat srcUMat(3, 4, CV_32FC1);
Mat srcMat;
randu(srcUMat, -1.f, 1.f);
srcUMat.copyTo(srcMat);
reduce(srcUMat, srcUMat, 0, REDUCE_SUM);
reduce(srcMat, srcMat, 0, REDUCE_SUM);
srcUMat.convertTo(srcUMat, CV_64FC1);
srcMat.convertTo(srcMat, CV_64FC1);
EXPECT_EQ(0, cvtest::norm(srcUMat.getMat(ACCESS_READ), srcMat, NORM_INF));
}
TEST(UMat, resize_Mat_issue_13577)
{
// save the current state
bool useOCL = cv::ocl::useOpenCL();
cv::ocl::setUseOpenCL(false);
UMat foo(10, 10, CV_32FC1);
cv::resize(foo, foo, cv::Size(), .5, .5);
cv::ocl::setUseOpenCL(useOCL); // restore state
}
TEST(UMat, exceptions_refcounts_issue_20594)
{
if (!cv::ocl::useOpenCL())
{
// skip test, difficult to create exception scenario without OpenCL
std::cout << "OpenCL is not enabled. Skip test" << std::endl;
return;
}
UMat umat1(10, 10, CV_8UC1);
EXPECT_EQ(0, umat1.u->refcount);
// cause exception in underlying allocator
void* const original_handle = umat1.u->handle;
umat1.u->handle = NULL;
try
{
Mat mat1 = umat1.getMat(ACCESS_RW);
}
catch (...)
{
// nothing
}
// check for correct refcount, and no change of intentional bad handle
EXPECT_EQ(0, umat1.u->refcount);
EXPECT_EQ(NULL, umat1.u->handle);
// reset UMat to good state
umat1.u->refcount = 0;
umat1.u->handle = original_handle;
}
TEST(UMat, copy_scalar)
{
Mat m(0, nullptr, CV_32F), m2;
m.at<float>(0) = 5;
UMat um;
m.copyTo(um);
um.copyTo(m2);
EXPECT_EQ(0, m2.dims);
EXPECT_EQ(1, m2.cols);
EXPECT_EQ(5.f, m2.at<float>(0));
}
} } // namespace opencv_test::ocl