Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
6.9 KiB
187 lines
6.9 KiB
//#include <cvaux.h> |
|
#include <highgui.h> |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/calib3d/calib3d.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include "opencv2/features2d/features2d.hpp" |
|
#include <iostream> |
|
|
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
inline Point2f applyHomography( const Mat_<double>& H, const Point2f& pt ) |
|
{ |
|
double z = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2); |
|
if( z ) |
|
{ |
|
double w = 1./z; |
|
return Point2f( (H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w, (H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w ); |
|
} |
|
return Point2f( numeric_limits<double>::max(), numeric_limits<double>::max() ); |
|
} |
|
|
|
void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG* rng ) |
|
{ |
|
H.create(3, 3, CV_32FC1); |
|
H.at<float>(0,0) = rng->uniform( 0.8f, 1.2f); |
|
H.at<float>(0,1) = rng->uniform(-0.1f, 0.1f); |
|
H.at<float>(0,2) = rng->uniform(-0.1f, 0.1f)*src.cols; |
|
H.at<float>(1,0) = rng->uniform(-0.1f, 0.1f); |
|
H.at<float>(1,1) = rng->uniform( 0.8f, 1.2f); |
|
H.at<float>(1,2) = rng->uniform(-0.1f, 0.1f)*src.rows; |
|
H.at<float>(2,0) = rng->uniform( -1e-4f, 1e-4f); |
|
H.at<float>(2,1) = rng->uniform( -1e-4f, 1e-4f); |
|
H.at<float>(2,2) = rng->uniform( 0.8f, 1.2f); |
|
|
|
warpPerspective( src, dst, H, src.size() ); |
|
} |
|
|
|
const string winName = "correspondences"; |
|
|
|
void doIteration( const Mat& img1, Mat& img2, bool isWarpPerspective, |
|
const vector<KeyPoint>& keypoints1, const Mat& descriptors1, |
|
Ptr<FeatureDetector>& detector, Ptr<DescriptorExtractor>& descriptorExtractor, |
|
Ptr<DescriptorMatcher>& descriptorMatcher, |
|
double ransacReprojThreshold = -1, RNG* rng = 0 ) |
|
{ |
|
assert( !img1.empty() ); |
|
Mat H12; |
|
if( isWarpPerspective ) |
|
{ |
|
assert( rng ); |
|
warpPerspectiveRand(img1, img2, H12, rng); |
|
} |
|
else |
|
assert( !img2.empty()/* && img2.cols==img1.cols && img2.rows==img1.rows*/ ); |
|
|
|
cout << endl << "< Extracting keypoints from second image..." << endl; |
|
vector<KeyPoint> keypoints2; |
|
detector->detect( img2, keypoints2 ); |
|
cout << keypoints2.size() << " >" << endl; |
|
|
|
cout << "< Computing descriptors for keypoints from second image..." << endl; |
|
Mat descriptors2; |
|
descriptorExtractor->compute( img2, keypoints2, descriptors2 ); |
|
cout << " >" << endl; |
|
|
|
cout << "< Matching descriptors..." << endl; |
|
vector<int> matches; |
|
descriptorMatcher->clear(); |
|
descriptorMatcher->add( descriptors2 ); |
|
descriptorMatcher->match( descriptors1, matches ); |
|
cout << ">" << endl; |
|
|
|
if( !isWarpPerspective && ransacReprojThreshold >= 0 ) |
|
{ |
|
cout << "< Computing homography (RANSAC)..." << endl; |
|
vector<Point2f> points1(matches.size()), points2(matches.size()); |
|
for( size_t i = 0; i < matches.size(); i++ ) |
|
{ |
|
points1[i] = keypoints1[i].pt; |
|
points2[i] = keypoints2[matches[i]].pt; |
|
} |
|
H12 = findHomography( Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold ); |
|
cout << ">" << endl; |
|
} |
|
|
|
Mat drawImg; |
|
if( !H12.empty() ) |
|
{ |
|
vector<char> mask( matches.size(), 0 ); |
|
vector<int>::const_iterator mit = matches.begin(); |
|
for( size_t i1 = 0; mit != matches.end(); ++mit, i1++ ) |
|
{ |
|
Point2f pt1 = keypoints1[i1].pt, |
|
pt2 = keypoints2[*mit].pt; |
|
if( norm(pt2 - applyHomography(H12, pt1)) < 4 ) // inlier |
|
mask[i1] = 1; |
|
} |
|
// draw inliers |
|
drawMatches( img1, img2, keypoints1, keypoints2, matches, mask, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255) ); |
|
// draw outliers |
|
/*for( size_t i1 = 0; i1 < mask.size(); i1++ ) |
|
mask[i1] = !mask[i1]; |
|
drawMatches( img1, img2, keypoints1, keypoints2, matches, mask, drawImg, CV_RGB(0, 0, 255), CV_RGB(255, 0, 0), |
|
DrawMatchesFlags::DRAW_OVER_OUTIMG | DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );*/ |
|
} |
|
else |
|
{ |
|
drawMatches( img1, img2, keypoints1, keypoints2, matches, vector<char>(), drawImg, CV_RGB(0, 255, 0) ); |
|
} |
|
|
|
imshow( winName, drawImg ); |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
if( argc != 4 && argc != 6 ) |
|
{ |
|
cout << "Format:" << endl; |
|
cout << "case1: second image is obtained from the first (given) image using random generated homography matrix" << endl; |
|
cout << argv[0] << " [detectorType] [descriptorType] [image1]" << endl; |
|
cout << "case2: both images are given. If ransacReprojThreshold>=0 then homography matrix are calculated" << endl; |
|
cout << argv[0] << " [detectorType] [descriptorType] [image1] [image2] [ransacReprojThreshold]" << endl; |
|
cout << endl << "Mathes are filtered using homography matrix in case1 and case2 (if ransacReprojThreshold>=0)" << endl; |
|
return -1; |
|
} |
|
bool isWarpPerspective = argc == 4; |
|
double ransacReprojThreshold = -1; |
|
if( !isWarpPerspective ) |
|
ransacReprojThreshold = atof(argv[5]); |
|
|
|
cout << "< Creating detector, descriptor extractor and descriptor matcher ..." << endl; |
|
Ptr<FeatureDetector> detector = createDetector( argv[1] ); |
|
Ptr<DescriptorExtractor> descriptorExtractor = createDescriptorExtractor( argv[2] ); |
|
Ptr<DescriptorMatcher> descriptorMatcher = createDescriptorMatcher( "BruteForce" ); |
|
cout << ">" << endl; |
|
if( detector.empty() || descriptorExtractor.empty() || descriptorMatcher.empty() ) |
|
{ |
|
cout << "Can not create detector or descriptor exstractor or descriptor matcher of given types" << endl; |
|
return -1; |
|
} |
|
|
|
cout << "< Reading the images..." << endl; |
|
Mat img1 = imread( argv[3], CV_LOAD_IMAGE_GRAYSCALE), img2; |
|
if( !isWarpPerspective ) |
|
img2 = imread( argv[4], CV_LOAD_IMAGE_GRAYSCALE); |
|
cout << ">" << endl; |
|
if( img1.empty() || (!isWarpPerspective && img2.empty()) ) |
|
{ |
|
cout << "Can not read images" << endl; |
|
return -1; |
|
} |
|
|
|
cout << endl << "< Extracting keypoints from first image..." << endl; |
|
vector<KeyPoint> keypoints1; |
|
detector->detect( img1, keypoints1 ); |
|
cout << keypoints1.size() << " >" << endl; |
|
|
|
cout << "< Computing descriptors for keypoints from first image..." << endl; |
|
Mat descriptors1; |
|
descriptorExtractor->compute( img1, keypoints1, descriptors1 ); |
|
cout << " >" << endl; |
|
|
|
namedWindow(winName, 1); |
|
RNG rng; |
|
doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, |
|
detector, descriptorExtractor, descriptorMatcher, |
|
ransacReprojThreshold, &rng ); |
|
for(;;) |
|
{ |
|
char c = (char)cvWaitKey(0); |
|
if( c == '\x1b' ) // esc |
|
{ |
|
cout << "Exiting ..." << endl; |
|
return 0; |
|
} |
|
else if( isWarpPerspective ) |
|
{ |
|
doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, |
|
detector, descriptorExtractor, descriptorMatcher, |
|
ransacReprojThreshold, &rng ); |
|
} |
|
} |
|
waitKey(0); |
|
return 0; |
|
}
|
|
|