mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
704 lines
27 KiB
704 lines
27 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "test_precomp.hpp" |
|
#include "opencv2/objdetect/aruco_detector.hpp" |
|
#include "opencv2/3d.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
/** |
|
* @brief Draw 2D synthetic markers and detect them |
|
*/ |
|
class CV_ArucoDetectionSimple : public cvtest::BaseTest { |
|
public: |
|
CV_ArucoDetectionSimple(); |
|
|
|
protected: |
|
void run(int); |
|
}; |
|
|
|
|
|
CV_ArucoDetectionSimple::CV_ArucoDetectionSimple() {} |
|
|
|
|
|
void CV_ArucoDetectionSimple::run(int) { |
|
aruco::ArucoDetector detector(aruco::getPredefinedDictionary(aruco::DICT_6X6_250)); |
|
|
|
// 20 images |
|
for(int i = 0; i < 20; i++) { |
|
|
|
const int markerSidePixels = 100; |
|
int imageSize = markerSidePixels * 2 + 3 * (markerSidePixels / 2); |
|
|
|
// draw synthetic image and store marker corners and ids |
|
vector<vector<Point2f> > groundTruthCorners; |
|
vector<int> groundTruthIds; |
|
Mat img = Mat(imageSize, imageSize, CV_8UC1, Scalar::all(255)); |
|
for(int y = 0; y < 2; y++) { |
|
for(int x = 0; x < 2; x++) { |
|
Mat marker; |
|
int id = i * 4 + y * 2 + x; |
|
aruco::generateImageMarker(detector.getDictionary(), id, markerSidePixels, marker); |
|
Point2f firstCorner = |
|
Point2f(markerSidePixels / 2.f + x * (1.5f * markerSidePixels), |
|
markerSidePixels / 2.f + y * (1.5f * markerSidePixels)); |
|
Mat aux = img.colRange((int)firstCorner.x, (int)firstCorner.x + markerSidePixels) |
|
.rowRange((int)firstCorner.y, (int)firstCorner.y + markerSidePixels); |
|
marker.copyTo(aux); |
|
groundTruthIds.push_back(id); |
|
groundTruthCorners.push_back(vector<Point2f>()); |
|
groundTruthCorners.back().push_back(firstCorner); |
|
groundTruthCorners.back().push_back(firstCorner + Point2f(markerSidePixels - 1, 0)); |
|
groundTruthCorners.back().push_back( |
|
firstCorner + Point2f(markerSidePixels - 1, markerSidePixels - 1)); |
|
groundTruthCorners.back().push_back(firstCorner + Point2f(0, markerSidePixels - 1)); |
|
} |
|
} |
|
if(i % 2 == 1) img.convertTo(img, CV_8UC3); |
|
|
|
// detect markers |
|
vector<vector<Point2f> > corners; |
|
vector<int> ids; |
|
|
|
detector.detectMarkers(img, corners, ids); |
|
|
|
// check detection results |
|
for(unsigned int m = 0; m < groundTruthIds.size(); m++) { |
|
int idx = -1; |
|
for(unsigned int k = 0; k < ids.size(); k++) { |
|
if(groundTruthIds[m] == ids[k]) { |
|
idx = (int)k; |
|
break; |
|
} |
|
} |
|
if(idx == -1) { |
|
ts->printf(cvtest::TS::LOG, "Marker not detected"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return; |
|
} |
|
|
|
for(int c = 0; c < 4; c++) { |
|
double dist = cv::norm(groundTruthCorners[m][c] - corners[idx][c]); // TODO cvtest |
|
if(dist > 0.001) { |
|
ts->printf(cvtest::TS::LOG, "Incorrect marker corners position"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
static double deg2rad(double deg) { return deg * CV_PI / 180.; } |
|
|
|
/** |
|
* @brief Get rvec and tvec from yaw, pitch and distance |
|
*/ |
|
static void getSyntheticRT(double yaw, double pitch, double distance, Mat &rvec, Mat &tvec) { |
|
|
|
rvec = Mat(3, 1, CV_64FC1); |
|
tvec = Mat(3, 1, CV_64FC1); |
|
|
|
// Rvec |
|
// first put the Z axis aiming to -X (like the camera axis system) |
|
Mat rotZ(3, 1, CV_64FC1); |
|
rotZ.ptr<double>(0)[0] = 0; |
|
rotZ.ptr<double>(0)[1] = 0; |
|
rotZ.ptr<double>(0)[2] = -0.5 * CV_PI; |
|
|
|
Mat rotX(3, 1, CV_64FC1); |
|
rotX.ptr<double>(0)[0] = 0.5 * CV_PI; |
|
rotX.ptr<double>(0)[1] = 0; |
|
rotX.ptr<double>(0)[2] = 0; |
|
|
|
Mat camRvec, camTvec; |
|
composeRT(rotZ, Mat(3, 1, CV_64FC1, Scalar::all(0)), rotX, Mat(3, 1, CV_64FC1, Scalar::all(0)), |
|
camRvec, camTvec); |
|
|
|
// now pitch and yaw angles |
|
Mat rotPitch(3, 1, CV_64FC1); |
|
rotPitch.ptr<double>(0)[0] = 0; |
|
rotPitch.ptr<double>(0)[1] = pitch; |
|
rotPitch.ptr<double>(0)[2] = 0; |
|
|
|
Mat rotYaw(3, 1, CV_64FC1); |
|
rotYaw.ptr<double>(0)[0] = yaw; |
|
rotYaw.ptr<double>(0)[1] = 0; |
|
rotYaw.ptr<double>(0)[2] = 0; |
|
|
|
composeRT(rotPitch, Mat(3, 1, CV_64FC1, Scalar::all(0)), rotYaw, |
|
Mat(3, 1, CV_64FC1, Scalar::all(0)), rvec, tvec); |
|
|
|
// compose both rotations |
|
composeRT(camRvec, Mat(3, 1, CV_64FC1, Scalar::all(0)), rvec, |
|
Mat(3, 1, CV_64FC1, Scalar::all(0)), rvec, tvec); |
|
|
|
// Tvec, just move in z (camera) direction the specific distance |
|
tvec.ptr<double>(0)[0] = 0.; |
|
tvec.ptr<double>(0)[1] = 0.; |
|
tvec.ptr<double>(0)[2] = distance; |
|
} |
|
|
|
/** |
|
* @brief Create a synthetic image of a marker with perspective |
|
*/ |
|
static Mat projectMarker(const aruco::Dictionary &dictionary, int id, Mat cameraMatrix, double yaw, |
|
double pitch, double distance, Size imageSize, int markerBorder, |
|
vector<Point2f> &corners, int encloseMarker=0) { |
|
|
|
// canonical image |
|
Mat marker, markerImg; |
|
const int markerSizePixels = 100; |
|
|
|
aruco::generateImageMarker(dictionary, id, markerSizePixels, marker, markerBorder); |
|
marker.copyTo(markerImg); |
|
|
|
if(encloseMarker){ //to enclose the marker |
|
int enclose = int(marker.rows/4); |
|
markerImg = Mat::zeros(marker.rows+(2*enclose), marker.cols+(enclose*2), CV_8UC1); |
|
|
|
Mat field= markerImg.rowRange(int(enclose), int(markerImg.rows-enclose)) |
|
.colRange(int(0), int(markerImg.cols)); |
|
field.setTo(255); |
|
field= markerImg.rowRange(int(0), int(markerImg.rows)) |
|
.colRange(int(enclose), int(markerImg.cols-enclose)); |
|
field.setTo(255); |
|
|
|
field = markerImg(Rect(enclose,enclose,marker.rows,marker.cols)); |
|
marker.copyTo(field); |
|
} |
|
|
|
// get rvec and tvec for the perspective |
|
Mat rvec, tvec; |
|
getSyntheticRT(yaw, pitch, distance, rvec, tvec); |
|
|
|
const float markerLength = 0.05f; |
|
vector<Point3f> markerObjPoints; |
|
markerObjPoints.push_back(Point3f(-markerLength / 2.f, +markerLength / 2.f, 0)); |
|
markerObjPoints.push_back(markerObjPoints[0] + Point3f(markerLength, 0, 0)); |
|
markerObjPoints.push_back(markerObjPoints[0] + Point3f(markerLength, -markerLength, 0)); |
|
markerObjPoints.push_back(markerObjPoints[0] + Point3f(0, -markerLength, 0)); |
|
|
|
// project markers and draw them |
|
Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0)); |
|
projectPoints(markerObjPoints, rvec, tvec, cameraMatrix, distCoeffs, corners); |
|
|
|
vector<Point2f> originalCorners; |
|
originalCorners.push_back(Point2f(0+float(encloseMarker*markerSizePixels/4), 0+float(encloseMarker*markerSizePixels/4))); |
|
originalCorners.push_back(originalCorners[0]+Point2f((float)markerSizePixels, 0)); |
|
originalCorners.push_back(originalCorners[0]+Point2f((float)markerSizePixels, (float)markerSizePixels)); |
|
originalCorners.push_back(originalCorners[0]+Point2f(0, (float)markerSizePixels)); |
|
|
|
Mat transformation = getPerspectiveTransform(originalCorners, corners); |
|
|
|
Mat img(imageSize, CV_8UC1, Scalar::all(255)); |
|
Mat aux; |
|
const char borderValue = 127; |
|
warpPerspective(markerImg, aux, transformation, imageSize, INTER_NEAREST, BORDER_CONSTANT, |
|
Scalar::all(borderValue)); |
|
|
|
// copy only not-border pixels |
|
for(int y = 0; y < aux.rows; y++) { |
|
for(int x = 0; x < aux.cols; x++) { |
|
if(aux.at<unsigned char>(y, x) == borderValue) continue; |
|
img.at<unsigned char>(y, x) = aux.at<unsigned char>(y, x); |
|
} |
|
} |
|
|
|
return img; |
|
} |
|
|
|
enum class ArucoAlgParams |
|
{ |
|
USE_DEFAULT = 0, |
|
USE_APRILTAG=1, /// Detect marker candidates :: using AprilTag |
|
DETECT_INVERTED_MARKER, /// Check if there is a white marker |
|
USE_ARUCO3 /// Check if aruco3 should be used |
|
}; |
|
|
|
|
|
/** |
|
* @brief Draws markers in perspective and detect them |
|
*/ |
|
class CV_ArucoDetectionPerspective : public cvtest::BaseTest { |
|
public: |
|
CV_ArucoDetectionPerspective(ArucoAlgParams arucoAlgParam) : arucoAlgParams(arucoAlgParam) {} |
|
|
|
protected: |
|
void run(int); |
|
ArucoAlgParams arucoAlgParams; |
|
}; |
|
|
|
|
|
void CV_ArucoDetectionPerspective::run(int) { |
|
|
|
int iter = 0; |
|
int szEnclosed = 0; |
|
Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1); |
|
Size imgSize(500, 500); |
|
cameraMatrix.at<double>(0, 0) = cameraMatrix.at<double>(1, 1) = 650; |
|
cameraMatrix.at<double>(0, 2) = imgSize.width / 2; |
|
cameraMatrix.at<double>(1, 2) = imgSize.height / 2; |
|
aruco::DetectorParameters params; |
|
params.minDistanceToBorder = 1; |
|
aruco::ArucoDetector detector(aruco::getPredefinedDictionary(aruco::DICT_6X6_250), params); |
|
|
|
// detect from different positions |
|
for(double distance : {0.1, 0.3, 0.5, 0.7}) { |
|
for(int pitch = 0; pitch < 360; pitch += (distance == 0.1? 60:180)) { |
|
for(int yaw = 70; yaw <= 120; yaw += 40){ |
|
int currentId = iter % 250; |
|
int markerBorder = iter % 2 + 1; |
|
iter++; |
|
vector<Point2f> groundTruthCorners; |
|
aruco::DetectorParameters detectorParameters = params; |
|
detectorParameters.markerBorderBits = markerBorder; |
|
|
|
/// create synthetic image |
|
Mat img= |
|
projectMarker(detector.getDictionary(), currentId, cameraMatrix, deg2rad(yaw), deg2rad(pitch), |
|
distance, imgSize, markerBorder, groundTruthCorners, szEnclosed); |
|
// marker :: Inverted |
|
if(ArucoAlgParams::DETECT_INVERTED_MARKER == arucoAlgParams){ |
|
img = ~img; |
|
detectorParameters.detectInvertedMarker = true; |
|
} |
|
|
|
if(ArucoAlgParams::USE_APRILTAG == arucoAlgParams){ |
|
detectorParameters.cornerRefinementMethod = (int)aruco::CORNER_REFINE_APRILTAG; |
|
} |
|
|
|
if (ArucoAlgParams::USE_ARUCO3 == arucoAlgParams) { |
|
detectorParameters.useAruco3Detection = true; |
|
detectorParameters.cornerRefinementMethod = (int)aruco::CORNER_REFINE_SUBPIX; |
|
} |
|
detector.setDetectorParameters(detectorParameters); |
|
|
|
// detect markers |
|
vector<vector<Point2f> > corners; |
|
vector<int> ids; |
|
detector.detectMarkers(img, corners, ids); |
|
|
|
// check results |
|
if(ids.size() != 1 || (ids.size() == 1 && ids[0] != currentId)) { |
|
if(ids.size() != 1) |
|
ts->printf(cvtest::TS::LOG, "Incorrect number of detected markers"); |
|
else |
|
ts->printf(cvtest::TS::LOG, "Incorrect marker id"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); |
|
return; |
|
} |
|
for(int c = 0; c < 4; c++) { |
|
double dist = cv::norm(groundTruthCorners[c] - corners[0][c]); // TODO cvtest |
|
if(dist > 5) { |
|
ts->printf(cvtest::TS::LOG, "Incorrect marker corners position"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
// change the state :: to detect an enclosed inverted marker |
|
if(ArucoAlgParams::DETECT_INVERTED_MARKER == arucoAlgParams && distance == 0.1){ |
|
distance -= 0.1; |
|
szEnclosed++; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* @brief Check max and min size in marker detection parameters |
|
*/ |
|
class CV_ArucoDetectionMarkerSize : public cvtest::BaseTest { |
|
public: |
|
CV_ArucoDetectionMarkerSize(); |
|
|
|
protected: |
|
void run(int); |
|
}; |
|
|
|
|
|
CV_ArucoDetectionMarkerSize::CV_ArucoDetectionMarkerSize() {} |
|
|
|
|
|
void CV_ArucoDetectionMarkerSize::run(int) { |
|
aruco::DetectorParameters params; |
|
aruco::ArucoDetector detector(aruco::getPredefinedDictionary(aruco::DICT_6X6_250), params); |
|
int markerSide = 20; |
|
int imageSize = 200; |
|
|
|
// 10 cases |
|
for(int i = 0; i < 10; i++) { |
|
Mat marker; |
|
int id = 10 + i * 20; |
|
|
|
// create synthetic image |
|
Mat img = Mat(imageSize, imageSize, CV_8UC1, Scalar::all(255)); |
|
aruco::generateImageMarker(detector.getDictionary(), id, markerSide, marker); |
|
Mat aux = img.colRange(30, 30 + markerSide).rowRange(50, 50 + markerSide); |
|
marker.copyTo(aux); |
|
|
|
vector<vector<Point2f> > corners; |
|
vector<int> ids; |
|
|
|
// set a invalid minMarkerPerimeterRate |
|
aruco::DetectorParameters detectorParameters = params; |
|
detectorParameters.minMarkerPerimeterRate = min(4., (4. * markerSide) / float(imageSize) + 0.1); |
|
detector.setDetectorParameters(detectorParameters); |
|
detector.detectMarkers(img, corners, ids); |
|
if(corners.size() != 0) { |
|
ts->printf(cvtest::TS::LOG, "Error in DetectorParameters::minMarkerPerimeterRate"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
|
|
// set an valid minMarkerPerimeterRate |
|
detectorParameters = params; |
|
detectorParameters.minMarkerPerimeterRate = max(0., (4. * markerSide) / float(imageSize) - 0.1); |
|
detector.setDetectorParameters(detectorParameters); |
|
detector.detectMarkers(img, corners, ids); |
|
if(corners.size() != 1 || (corners.size() == 1 && ids[0] != id)) { |
|
ts->printf(cvtest::TS::LOG, "Error in DetectorParameters::minMarkerPerimeterRate"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
|
|
// set a invalid maxMarkerPerimeterRate |
|
detectorParameters = params; |
|
detectorParameters.maxMarkerPerimeterRate = min(4., (4. * markerSide) / float(imageSize) - 0.1); |
|
detector.setDetectorParameters(detectorParameters); |
|
detector.detectMarkers(img, corners, ids); |
|
if(corners.size() != 0) { |
|
ts->printf(cvtest::TS::LOG, "Error in DetectorParameters::maxMarkerPerimeterRate"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
|
|
// set an valid maxMarkerPerimeterRate |
|
detectorParameters = params; |
|
detectorParameters.maxMarkerPerimeterRate = max(0., (4. * markerSide) / float(imageSize) + 0.1); |
|
detector.setDetectorParameters(detectorParameters); |
|
detector.detectMarkers(img, corners, ids); |
|
if(corners.size() != 1 || (corners.size() == 1 && ids[0] != id)) { |
|
ts->printf(cvtest::TS::LOG, "Error in DetectorParameters::maxMarkerPerimeterRate"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
|
|
/** |
|
* @brief Check error correction in marker bits |
|
*/ |
|
class CV_ArucoBitCorrection : public cvtest::BaseTest { |
|
public: |
|
CV_ArucoBitCorrection(); |
|
|
|
protected: |
|
void run(int); |
|
}; |
|
|
|
|
|
CV_ArucoBitCorrection::CV_ArucoBitCorrection() {} |
|
|
|
|
|
void CV_ArucoBitCorrection::run(int) { |
|
|
|
aruco::Dictionary dictionary1 = aruco::getPredefinedDictionary(aruco::DICT_6X6_250); |
|
aruco::Dictionary dictionary2 = aruco::getPredefinedDictionary(aruco::DICT_6X6_250); |
|
aruco::DetectorParameters params; |
|
aruco::ArucoDetector detector1(dictionary1, params); |
|
int markerSide = 50; |
|
int imageSize = 150; |
|
|
|
// 10 markers |
|
for(int l = 0; l < 10; l++) { |
|
Mat marker; |
|
int id = 10 + l * 20; |
|
|
|
Mat currentCodeBytes = dictionary1.bytesList.rowRange(id, id + 1); |
|
aruco::DetectorParameters detectorParameters = detector1.getDetectorParameters(); |
|
// 5 valid cases |
|
for(int i = 0; i < 5; i++) { |
|
// how many bit errors (the error is low enough so it can be corrected) |
|
detectorParameters.errorCorrectionRate = 0.2 + i * 0.1; |
|
detector1.setDetectorParameters(detectorParameters); |
|
int errors = |
|
(int)std::floor(dictionary1.maxCorrectionBits * detector1.getDetectorParameters().errorCorrectionRate - 1.); |
|
|
|
// create erroneous marker in currentCodeBits |
|
Mat currentCodeBits = |
|
aruco::Dictionary::getBitsFromByteList(currentCodeBytes, dictionary1.markerSize); |
|
for(int e = 0; e < errors; e++) { |
|
currentCodeBits.ptr<unsigned char>()[2 * e] = |
|
!currentCodeBits.ptr<unsigned char>()[2 * e]; |
|
} |
|
|
|
// add erroneous marker to dictionary2 in order to create the erroneous marker image |
|
Mat currentCodeBytesError = aruco::Dictionary::getByteListFromBits(currentCodeBits); |
|
currentCodeBytesError.copyTo(dictionary2.bytesList.rowRange(id, id + 1)); |
|
Mat img = Mat(imageSize, imageSize, CV_8UC1, Scalar::all(255)); |
|
dictionary2.generateImageMarker(id, markerSide, marker); |
|
Mat aux = img.colRange(30, 30 + markerSide).rowRange(50, 50 + markerSide); |
|
marker.copyTo(aux); |
|
|
|
// try to detect using original dictionary |
|
vector<vector<Point2f> > corners; |
|
vector<int> ids; |
|
detector1.detectMarkers(img, corners, ids); |
|
if(corners.size() != 1 || (corners.size() == 1 && ids[0] != id)) { |
|
ts->printf(cvtest::TS::LOG, "Error in bit correction"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
} |
|
|
|
// 5 invalid cases |
|
for(int i = 0; i < 5; i++) { |
|
// how many bit errors (the error is too high to be corrected) |
|
detectorParameters.errorCorrectionRate = 0.2 + i * 0.1; |
|
detector1.setDetectorParameters(detectorParameters); |
|
int errors = |
|
(int)std::floor(dictionary1.maxCorrectionBits * detector1.getDetectorParameters().errorCorrectionRate + 1.); |
|
|
|
// create erroneous marker in currentCodeBits |
|
Mat currentCodeBits = |
|
aruco::Dictionary::getBitsFromByteList(currentCodeBytes, dictionary1.markerSize); |
|
for(int e = 0; e < errors; e++) { |
|
currentCodeBits.ptr<unsigned char>()[2 * e] = |
|
!currentCodeBits.ptr<unsigned char>()[2 * e]; |
|
} |
|
|
|
// dictionary3 is only composed by the modified marker (in its original form) |
|
aruco::Dictionary _dictionary3 = aruco::Dictionary( |
|
dictionary2.bytesList.rowRange(id, id + 1).clone(), |
|
dictionary1.markerSize, |
|
dictionary1.maxCorrectionBits); |
|
aruco::ArucoDetector detector3(_dictionary3, detector1.getDetectorParameters()); |
|
// add erroneous marker to dictionary2 in order to create the erroneous marker image |
|
Mat currentCodeBytesError = aruco::Dictionary::getByteListFromBits(currentCodeBits); |
|
currentCodeBytesError.copyTo(dictionary2.bytesList.rowRange(id, id + 1)); |
|
Mat img = Mat(imageSize, imageSize, CV_8UC1, Scalar::all(255)); |
|
dictionary2.generateImageMarker(id, markerSide, marker); |
|
Mat aux = img.colRange(30, 30 + markerSide).rowRange(50, 50 + markerSide); |
|
marker.copyTo(aux); |
|
|
|
// try to detect using dictionary3, it should fail |
|
vector<vector<Point2f> > corners; |
|
vector<int> ids; |
|
detector3.detectMarkers(img, corners, ids); |
|
if(corners.size() != 0) { |
|
ts->printf(cvtest::TS::LOG, "Error in DetectorParameters::errorCorrectionRate"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
|
|
typedef CV_ArucoDetectionPerspective CV_AprilTagDetectionPerspective; |
|
typedef CV_ArucoDetectionPerspective CV_InvertedArucoDetectionPerspective; |
|
typedef CV_ArucoDetectionPerspective CV_Aruco3DetectionPerspective; |
|
|
|
TEST(CV_InvertedArucoDetectionPerspective, algorithmic) { |
|
CV_InvertedArucoDetectionPerspective test(ArucoAlgParams::DETECT_INVERTED_MARKER); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(CV_AprilTagDetectionPerspective, algorithmic) { |
|
CV_AprilTagDetectionPerspective test(ArucoAlgParams::USE_APRILTAG); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(CV_Aruco3DetectionPerspective, algorithmic) { |
|
CV_Aruco3DetectionPerspective test(ArucoAlgParams::USE_ARUCO3); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(CV_ArucoDetectionSimple, algorithmic) { |
|
CV_ArucoDetectionSimple test; |
|
test.safe_run(); |
|
} |
|
|
|
TEST(CV_ArucoDetectionPerspective, algorithmic) { |
|
CV_ArucoDetectionPerspective test(ArucoAlgParams::USE_DEFAULT); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(CV_ArucoDetectionMarkerSize, algorithmic) { |
|
CV_ArucoDetectionMarkerSize test; |
|
test.safe_run(); |
|
} |
|
|
|
TEST(CV_ArucoBitCorrection, algorithmic) { |
|
CV_ArucoBitCorrection test; |
|
test.safe_run(); |
|
} |
|
|
|
TEST(CV_ArucoDetectMarkers, regression_3192) |
|
{ |
|
aruco::ArucoDetector detector(aruco::getPredefinedDictionary(aruco::DICT_4X4_50)); |
|
vector<int> markerIds; |
|
vector<vector<Point2f> > markerCorners; |
|
string imgPath = cvtest::findDataFile("aruco/regression_3192.png"); |
|
Mat image = imread(imgPath); |
|
const size_t N = 2ull; |
|
const int goldCorners[N][8] = { {345,120, 520,120, 520,295, 345,295}, {101,114, 270,112, 276,287, 101,287} }; |
|
const int goldCornersIds[N] = { 6, 4 }; |
|
map<int, const int*> mapGoldCorners; |
|
for (size_t i = 0; i < N; i++) |
|
mapGoldCorners[goldCornersIds[i]] = goldCorners[i]; |
|
|
|
detector.detectMarkers(image, markerCorners, markerIds); |
|
|
|
ASSERT_EQ(N, markerIds.size()); |
|
for (size_t i = 0; i < N; i++) |
|
{ |
|
int arucoId = markerIds[i]; |
|
ASSERT_EQ(4ull, markerCorners[i].size()); |
|
ASSERT_TRUE(mapGoldCorners.find(arucoId) != mapGoldCorners.end()); |
|
for (int j = 0; j < 4; j++) |
|
{ |
|
EXPECT_NEAR(static_cast<float>(mapGoldCorners[arucoId][j * 2]), markerCorners[i][j].x, 1.f); |
|
EXPECT_NEAR(static_cast<float>(mapGoldCorners[arucoId][j * 2 + 1]), markerCorners[i][j].y, 1.f); |
|
} |
|
} |
|
} |
|
|
|
TEST(CV_ArucoDetectMarkers, regression_2492) |
|
{ |
|
aruco::ArucoDetector detector(aruco::getPredefinedDictionary(aruco::DICT_5X5_50)); |
|
aruco::DetectorParameters detectorParameters = detector.getDetectorParameters(); |
|
detectorParameters.minMarkerDistanceRate = 0.026; |
|
detector.setDetectorParameters(detectorParameters); |
|
vector<int> markerIds; |
|
vector<vector<Point2f> > markerCorners; |
|
string imgPath = cvtest::findDataFile("aruco/regression_2492.png"); |
|
Mat image = imread(imgPath); |
|
const size_t N = 8ull; |
|
const int goldCorners[N][8] = { {179,139, 179,95, 223,95, 223,139}, {99,139, 99,95, 143,95, 143,139}, |
|
{19,139, 19,95, 63,95, 63,139}, {256,140, 256,93, 303,93, 303,140}, |
|
{256,62, 259,21, 300,23, 297,64}, {99,21, 143,17, 147,60, 103,64}, |
|
{69,61, 28,61, 14,21, 58,17}, {174,62, 182,13, 230,19, 223,68} }; |
|
const int goldCornersIds[N] = {13, 13, 13, 13, 1, 15, 14, 4}; |
|
map<int, vector<const int*> > mapGoldCorners; |
|
for (size_t i = 0; i < N; i++) |
|
mapGoldCorners[goldCornersIds[i]].push_back(goldCorners[i]); |
|
|
|
detector.detectMarkers(image, markerCorners, markerIds); |
|
|
|
ASSERT_EQ(N, markerIds.size()); |
|
for (size_t i = 0; i < N; i++) |
|
{ |
|
int arucoId = markerIds[i]; |
|
ASSERT_EQ(4ull, markerCorners[i].size()); |
|
ASSERT_TRUE(mapGoldCorners.find(arucoId) != mapGoldCorners.end()); |
|
float totalDist = 8.f; |
|
for (size_t k = 0ull; k < mapGoldCorners[arucoId].size(); k++) |
|
{ |
|
float dist = 0.f; |
|
for (int j = 0; j < 4; j++) // total distance up to 4 points |
|
{ |
|
dist += abs(mapGoldCorners[arucoId][k][j * 2] - markerCorners[i][j].x); |
|
dist += abs(mapGoldCorners[arucoId][k][j * 2 + 1] - markerCorners[i][j].y); |
|
} |
|
totalDist = min(totalDist, dist); |
|
} |
|
EXPECT_LT(totalDist, 8.f); |
|
} |
|
} |
|
|
|
struct ArucoThreading: public testing::TestWithParam<aruco::CornerRefineMethod> |
|
{ |
|
struct NumThreadsSetter { |
|
NumThreadsSetter(const int num_threads) |
|
: original_num_threads_(getNumThreads()) { |
|
setNumThreads(num_threads); |
|
} |
|
|
|
~NumThreadsSetter() { |
|
setNumThreads(original_num_threads_); |
|
} |
|
private: |
|
int original_num_threads_; |
|
}; |
|
}; |
|
|
|
TEST_P(ArucoThreading, number_of_threads_does_not_change_results) |
|
{ |
|
// We are not testing against different dictionaries |
|
// As we are interested mostly in small images, smaller |
|
// markers is better -> 4x4 |
|
aruco::ArucoDetector detector(aruco::getPredefinedDictionary(aruco::DICT_4X4_50)); |
|
|
|
// Height of the test image can be chosen quite freely |
|
// We aim to test against small images as in those the |
|
// number of threads has most effect |
|
const int height_img = 20; |
|
// Just to get nice white boarder |
|
const int shift = height_img > 10 ? 5 : 1; |
|
const int height_marker = height_img-2*shift; |
|
|
|
// Create a test image |
|
Mat img_marker; |
|
aruco::generateImageMarker(detector.getDictionary(), 23, height_marker, img_marker, 1); |
|
|
|
// Copy to bigger image to get a white border |
|
Mat img(height_img, height_img, CV_8UC1, Scalar(255)); |
|
img_marker.copyTo(img(Rect(shift, shift, height_marker, height_marker))); |
|
|
|
aruco::DetectorParameters detectorParameters = detector.getDetectorParameters(); |
|
detectorParameters.cornerRefinementMethod = (int)GetParam(); |
|
detector.setDetectorParameters(detectorParameters); |
|
|
|
vector<vector<Point2f> > original_corners; |
|
vector<int> original_ids; |
|
{ |
|
NumThreadsSetter thread_num_setter(1); |
|
detector.detectMarkers(img, original_corners, original_ids); |
|
} |
|
|
|
ASSERT_EQ(original_ids.size(), 1ull); |
|
ASSERT_EQ(original_corners.size(), 1ull); |
|
|
|
int num_threads_to_test[] = { 2, 8, 16, 32, height_img-1, height_img, height_img+1}; |
|
|
|
for (size_t i_num_threads = 0; i_num_threads < sizeof(num_threads_to_test)/sizeof(int); ++i_num_threads) { |
|
NumThreadsSetter thread_num_setter(num_threads_to_test[i_num_threads]); |
|
|
|
vector<vector<Point2f> > corners; |
|
vector<int> ids; |
|
detector.detectMarkers(img, corners, ids); |
|
|
|
// If we don't find any markers, the test is broken |
|
ASSERT_EQ(ids.size(), 1ull); |
|
|
|
// Make sure we got the same result as the first time |
|
ASSERT_EQ(corners.size(), original_corners.size()); |
|
ASSERT_EQ(ids.size(), original_ids.size()); |
|
ASSERT_EQ(ids.size(), corners.size()); |
|
for (size_t i = 0; i < corners.size(); ++i) { |
|
EXPECT_EQ(ids[i], original_ids[i]); |
|
for (size_t j = 0; j < corners[i].size(); ++j) { |
|
EXPECT_NEAR(corners[i][j].x, original_corners[i][j].x, 0.1f); |
|
EXPECT_NEAR(corners[i][j].y, original_corners[i][j].y, 0.1f); |
|
} |
|
} |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P( |
|
CV_ArucoDetectMarkers, ArucoThreading, |
|
::testing::Values( |
|
aruco::CORNER_REFINE_NONE, |
|
aruco::CORNER_REFINE_SUBPIX, |
|
aruco::CORNER_REFINE_CONTOUR, |
|
aruco::CORNER_REFINE_APRILTAG |
|
)); |
|
|
|
}} // namespace
|
|
|