mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
99 lines
3.7 KiB
99 lines
3.7 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
BIGDATA_TEST(Imgproc_Threshold, huge) |
|
{ |
|
Mat m(65000, 40000, CV_8U); |
|
ASSERT_FALSE(m.isContinuous()); |
|
|
|
uint64 i, n = (uint64)m.rows*m.cols; |
|
for( i = 0; i < n; i++ ) |
|
m.data[i] = (uchar)(i & 255); |
|
|
|
cv::threshold(m, m, 127, 255, cv::THRESH_BINARY); |
|
int nz = cv::countNonZero(m); // FIXIT 'int' is not enough here (overflow is possible with other inputs) |
|
ASSERT_EQ((uint64)nz, n / 2); |
|
} |
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_16085) |
|
{ |
|
Size sz(16, 16); |
|
Mat input(sz, CV_32F, Scalar::all(2)); |
|
Mat result; |
|
cv::threshold(input, result, 2.0, 0.0, THRESH_TOZERO); |
|
EXPECT_EQ(0, cv::norm(result, NORM_INF)); |
|
} |
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258) |
|
{ |
|
Size sz(16, 16); |
|
float val = nextafterf(16.0f, 0.0f); // 0x417fffff, all bits in mantissa are 1 |
|
Mat input(sz, CV_32F, Scalar::all(val)); |
|
Mat result; |
|
cv::threshold(input, result, val, 0.0, THRESH_TOZERO); |
|
EXPECT_EQ(0, cv::norm(result, NORM_INF)); |
|
} |
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258_Min) |
|
{ |
|
Size sz(16, 16); |
|
float min_val = -std::numeric_limits<float>::max(); |
|
Mat input(sz, CV_32F, Scalar::all(min_val)); |
|
Mat result; |
|
cv::threshold(input, result, min_val, 0.0, THRESH_TOZERO); |
|
EXPECT_EQ(0, cv::norm(result, NORM_INF)); |
|
} |
|
|
|
TEST(Imgproc_Threshold, regression_THRESH_TOZERO_IPP_21258_Max) |
|
{ |
|
Size sz(16, 16); |
|
float max_val = std::numeric_limits<float>::max(); |
|
Mat input(sz, CV_32F, Scalar::all(max_val)); |
|
Mat result; |
|
cv::threshold(input, result, max_val, 0.0, THRESH_TOZERO); |
|
EXPECT_EQ(0, cv::norm(result, NORM_INF)); |
|
} |
|
|
|
}} // namespace
|
|
|